تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,172 |
تعداد دریافت فایل اصل مقاله | 4,882,909 |
On the tree-number of the power graph associated with some finite groups | ||
AUT Journal of Mathematics and Computing | ||
مقاله 1، دوره 5، شماره 2، 2024، صفحه 81-89 اصل مقاله (409.29 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2023.21910.1123 | ||
نویسنده | ||
Sakineh Rahbariyan* | ||
Department of Mathematics, Faculty of Sciences, Arak University, Arak, Iran | ||
چکیده | ||
Given a group $G$, we define the power graph $\mathcal{P}(G)$ as follows: the vertices are the elements of $G$ and two vertices $x$ and $y$ are joined by an edge if $\langle x \rangle \subseteq \langle y \rangle$ or $\langle y \rangle \subseteq \langle x \rangle$. Obviously the power graph of any group is always connected, because the identity element of the group is adjacent to all other vertices. We consider $\kappa(G)$, the number of spanning trees of the power graph associated with a finite group $G$. In this paper, for a finite group $G$, first we represent some properties of $\mathcal{P}(G)$, then we are going to find some divisors of $\kappa(G)$, and finally we prove that the simple group $A_6\cong L_2(9)$ is uniquely determined by tree-number of its power graph among all finite simple groups. | ||
کلیدواژهها | ||
Power graph؛ Tree-number؛ Simple group | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 346 تعداد دریافت فایل اصل مقاله: 236 |