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1. Introduction

The well-known Graph Reconstruction Conjecture of Kelly [4, 5] and Ulam [14] has been open for more than 50
years. It asserts that every graph with at least three vertices can be (uniquely) reconstructed from its “deck” of
vertex-deleted subgraphs. A card of a graph G is a subgraph of G obtained by deleting one vertex. The deck of
G is the multiset of all cards of G. A graph is reconstructible if it is uniquely determined by its deck. Surveys on
graph reconstruction include [2, 9].

Kelly [5] extended the conjecture, considering deletion of more than one vertex. A k-card of a graph is an
induced subgraph having k vertices. The k-deck of G, denoted Dy (@), is the multiset of all k-cards. Let G be a
graph with n vertices. The graph G is k-deck reconstructible, if Dy (G) = Dy (H) implies that G = H. The graph G
is “l reconstructible” if it is determined by D,,_;(G). The graph G is k-deck reconstructible and “I-reconstructible”
have the same meaning when k + | = n. The reconstructibility of G, written p(G), is the maximum [ such that G
is l-reconstructible.

The more general conjecture by Kelly [5] implies that for every positive integer [ there exists M; such that when
n > M; every graph G with n vertices is determined by the D,,_;(G). For a survey on this conjecture refer to [8].

There are several papers investigate what can be deduced about a graph from its k-deck. Manvel [10] proved
for n > 6 that the (n — 2)-deck of a graph with n vertices determines whether the graph satisfies the following
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properties: connected, acyclic, unicyclic, regular, and bipartite. Kostochka et al. [6] proved that connectedness is
3-reconstructible for graphs with n vertices when n > 7 (sharp by {C5 + K, K{ 3} where K{ 3 is the tree obtained
from K 3 by subdividing two edges). Spinoza and West proved that connectedness of graphs with n vertices is
l-reconstructible when n > 210+D°, Also, they showed that a complete r-partite graph is reconstructible from
its (r + 1)-deck. Kostochka et al. [7] proved that 3-regular graphs are 2 reconstructible. Some results about
reconstruction have been extended to the context of reconstruction from the k-deck. For example, Bollobas [1]
proved almost all graphs have reconstruction number 3. Spinoza and West [12] proved more generally that for
l=01- 0(1))@ almost all graphs are [-reconstructible using only (lf) cards that omit [ vertices. They also
determined p(G) exactly for every graph G with maximum degree at most 2. For more results on [-reconstructibility
of graphs refer to [8, 11, 12].

Now, we concentrate on the results about [-reconstructibility of degree list of graphs. There are some of more
important results in the following.

Theorem 1.1. [3] For any graph with n > 6, the degree list is 2-reconstructible and this threshold on n is sharp.
For sharpness, they considered Cy + k; and K7 3.

Theorem 1.2. [10] From the k-deck of a graph and the numbers of vertices with degree i for all i at least k, the
degree list of the graph is determined.

Theorem 1.3. [10] The degree list of a graph G is reconstructible from Da(c)+2(G).

Taylor showed that the degree list is reconstructible from the k-deck when the number of vertices is not too
much larger than k, regardless of the value of the maximum degree.

Theorem 1.4. [13] If1 > 3 and n > g(1), then the degree list of any n-vertex graph is determined by its (n—1)-deck,

where
elogl+e+1

—)+1
(I—1)logl — 1) *
and e denotes the base of the natural logarithm. Thus the degree list is l-reconstructible when e > el + O(log(l)).

gl)=(+1logl+1)(e+

Theorem 1.5. [7] Forn > 7, any two graphs of order n that have the same (n — 3)-deck have the same degree list,
and this threshold on n is sharp.

For sharpness, they considered C5 + K1 and kY .

As remarked above, 2-reconstructibility and 3-reconstructibility of degree list of graphs are investigated in [3, 6].
So, we concentrate on [ > 4 in this paper. Our goal is to extend the Theorem 1.2 for [ > 4. The main theorem of
this paper is stated as follows.

Theorem 1.6. Let G be a graph with n vertices. Then, from the k-deck (I+k=n) of G and the numbers of vertices
with degree © for alli, k <1 <n—3 wherel >4 and n > 1+ 6, the degree list of the graph G is determined.

2. Main Results

Lemma 2.1. [7] Let G be a graph with n vertices and a; be the number of vertices of degree j in G. Denote by ¢;
the total number of vertices of degree i over all cards in Di(G) (I=n-k) where i < k — 1.

i+l

¢ =y a; () (72 (1)

j=i
Note that all of coefficients x,y, z and a, b, ¢ and values n and [ in the following lemmas are integer.

Lemma 2.2. Ifn>1+4+6 andl > 4, then %(?__12) >n.

Proof. It suffices to show that the following inequality holds:
(n=2)n=3)...(n=10)>nx (D

We proceed by induction on n and . The inequality is clearly true for I = 4 and n > 10 (the basis of the induction).
Suppose that the inequality holds for [ and n where [ > 4,n > 10 and n > [ + 6. We show that it holds for [ + 1
and n + 1.
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By induction hypothesis, we have
n—=2)n—3)...(n—1)>nx (D
So,
m=1)n-2)...(n—=1) >nn—-1) x ()

Also, since [ < n — 6, we have
(n)n—1)>n+1)x (+1).

So, we have
n=1)n-=2)...n=0)>Mn+1)x(I+1).

Lemma 2.3. Ifn>146 andl > 3, then H%(”f) > n.
Proof. It suffices to show the following inequality holds:
n=2)n—=3)...(n—1—-1)>nx(+1)

We proceed by induction on n and [. The inequality is true for [ = 4 and n > 10 (the basis of the induction).
Suppose that the inequality holds for [ and n where [ > 4,n > 10 and n > [ + 6. We show that it holds for [ 4 1
and n + 1. By induction hypothesis, we have

n—=2)n=3)...(n—1—-1)>nx {1+ 1)
So,
(n—1)n—-2)...(n—1—1)>nn—-1)x (+ 1)

Also, since [ < n — 6, we have
(n)(n—1)>(n+1) x (I+2).

So, we have
(n=1)(n=2)...(n—=1-=1)>(n+1)x (I+2).

O

Lemma 2.4. If there exist 0 < z,y < n such that © + y(?:f) = ("?1) where n >1+6 andl > 4. Then x =0 and
1
y=1(n—1).

Proof. By way of contradiction, assume = > 0. If y = 0, then =z = ("?1) > n, a contradiction. So, suppose

that z,y > 0. If n — 1 = al + b where 0 < b < [ — 1, then there exist ' > 0 and a” > 0 such that y = a’ and

xz=(a"+ %)(7:12) where a’ + a” = a. Since x > 0, we have = > %(7:12) On the other hand, Lemma 2.2 implies

that 1(777) > n. So, z > n, a contradiction. O
Lemma 2.5. Let a—&—b(?:lz)(}) =r such that 0 <a+b<nand0<a,b<n, wheren>14+6 andl > 4. If
n—2\ /1
T+ y(lfl)(l) =T
where 0 < x,y < n, then x =a and y = b.

Proof. By way of contradiction, assume that (z,y) # (a,b). Since n > 1+ 6 and [ > 4, we have (’;:12) G) >n. On

the other hand, (x —a)+ (y—b) (7—_12) G) = 0. Hence, z = a+(b—vy) (7;__12) (1) If (b—y) > 0, then = > (7__12) (1) >n,
a contradiction. If (b —y) < 0, then since (b —y)(7~7)(}) < —n, we have z < a —n < 0. Hence, z < 0, a
contradiction. O

Lemma 2.6. Leta(l—l—l)—&—b(”f) =7 such that 0 <a+b<mnand0<a,b<n, wheren>1+6 andl > 4. If
z(l+1)+ y("l_z) =r

where 0 < x,y < n, then x = a and y = b.
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Proof. By contradiction, assume that (z,y) # (a,b). Then Lemma 2.3 implies that (";?) > n(l + 1). Also,

(z—a)l+1)+ (y—0b)(";?) =0. So, z(l+1) =a(l+1)+ (b—y)(";%). fb—y >0, then z(I + 1) > n(l +1). So,

x > n, a contradiction. If b — y < 0, then (b — y) (”?2) < —n(l+1). Also, a(l+1) <n(l+1). So,
z(l+1)=a(l+1)+ (b—y)("]°) <O.

Therefore, x < 0, a contradiction. g

Lemma 2.7. Let a + b(’;:lz) (1) + c(”l_l) (8) =7 such that 0 <a+b+c<nand0<a,bc<n wheren>1+6

1
andl > 4. If n—2 /1 n—1y (0\ _
$+y(l_1)(1)+z( 1 )(o)_r’

where 0 < x,y,z < n, then xr = a.
Proof. If z = ¢, then by Lemma 2.5, we have y = b and = = a. If z # ¢, then Lemma 2.4 implies that xt =a. [

Theorem 2.8. Let G be a graph with n vertices. Then from the k-deck (I+k = n) of G and the numbers of vertices
with degree i for all i, k <i<n—3 wherel >4 and n > 1+ 6, the degree list of the graph is determined.

Proof. Let 1 be the total number of vertices of degree k — 1 over all cards in Dy (G). So, by (1), we have

k—1y (1 ky (1—1 n—2\ (1 n—1y (0
dr—1=ar—1("5 ") () +ar(7) G2+ +Fan2(720) () +an-a (") () = 1
Also, we have a; for all £k < ¢ < n — 3 by hypothesis. Thus, we obtain a;_1 by Lemma 2.7. Let ry be the total
number of vertices of degree k — 2 over all cards in Dy (G). By (1), we conclude that

on—2 = a2 ("% (7)) + axa (T (L)) + 0+ Hans (720) (D) + an—2("77) (o) = r2-
Moreover, we have a; for all k—1 < i < n—3. Hence, we obtain a;_s and a,_o by Lemma 2.6. Also, by considering

¢r—1 = r1, we obtain a,_1. Now, we have a; for all kK < i < n — 1. Therefore, by Theorem 1.2, the degree list is
determined. [l

Example 2.1. Let G be a graph on 10 vertices with degree list (see Figure 1)
(9,8,7,6,4,4,4,3,2,1).

Denote by a; the number of vertices of degree i in G. We show that the degree list is determined from ag, a7 and
D, —4(G). The number of vertices of degree 5 in D,,_4(G) is 209. So, by (1), we have

95 = a5(3) (3) + 1) (3) + 1) ) + as(5) (1) + a0 (3) (5) = 209,

Now, one can easily prove that if there exist 0 < x,y,z < 10 such that
T + 56y + 1262 = 182,

then x = 0. So, a5 = 0.
Also, the number of vertices of degree 4 in D, _4(G) is 200. Using (1), we imply that

g6 = a1(5) (3) +0()) (5) +1() ) + 1(5) (1) + as (5) (o) = 200.

Now, one can easily prove that if there exist 0 < x,y < 10 such that
5z 4 70y = 85,

then x =3 andy =1. So, ay = 3 and ag = 1.
Now, we obtain ag by ¢¢ = 200. Next, we obtain ag by ¢5 = 209. Hence, by Lemma 1.2 the degree list is
determined.

3. Conclusion

As we mentioned, it is proved that the degree list of graphs with at least 6 vertices is 2-reconstructible. Also, it
is proved that the degree list of graphs with at least 7 vertices is 3-reconstructible. For the case | = 4, we showed
that the degree list of a graph G is determined from the (n — 4)-deck of G and the numbers of vertices with degree
n —4 and n — 3 when n > 10. By this result, 4-reconstructibility of the degree list of graphs can be investigated.
As a future work, we will try to find n sufficiently large for which the degree list of graphs with n vertices is
4-reconstructible.
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Figure 1: A graph with degree list (9,8,7,6,4,4,4,3,2,1).
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