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On l-reconstructibility of degree list of graphs
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ABSTRACT: The k-deck of a graph is the multiset of its subgraphs induced by k
vertices which is denoted by Dk(G). A graph or graph property is l-reconstructible
if it is determined by the deck of subgraphs obtained by deleting l vertices. Manvel
proved that from the (n− l)-deck of a graph and the numbers of vertices with degree
i for all i, n− l ≤ i ≤ n− 1, the degree list of the graph is determined. In this paper,
we extend this result and prove that if G is a graph with n vertices, then from the
(n− l)-deck of G and the numbers of vertices with degree i for all i, n− l ≤ i ≤ n−3,
where l ≥ 4 and n ≥ l + 6, the degree list of the graph is determined.
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1. Introduction

The well-known Graph Reconstruction Conjecture of Kelly [4, 5] and Ulam [14] has been open for more than 50
years. It asserts that every graph with at least three vertices can be (uniquely) reconstructed from its “deck” of
vertex-deleted subgraphs. A card of a graph G is a subgraph of G obtained by deleting one vertex. The deck of
G is the multiset of all cards of G. A graph is reconstructible if it is uniquely determined by its deck. Surveys on
graph reconstruction include [2, 9].

Kelly [5] extended the conjecture, considering deletion of more than one vertex. A k-card of a graph is an
induced subgraph having k vertices. The k-deck of G, denoted Dk(G), is the multiset of all k-cards. Let G be a
graph with n vertices. The graph G is k-deck reconstructible, if Dk(G) = Dk(H) implies that G ∼= H. The graph G
is “l reconstructible” if it is determined by Dn−l(G). The graph G is k-deck reconstructible and “l-reconstructible”
have the same meaning when k + l = n. The reconstructibility of G, written ρ(G), is the maximum l such that G
is l-reconstructible.

The more general conjecture by Kelly [5] implies that for every positive integer l there exists Ml such that when
n ≥ Ml every graph G with n vertices is determined by the Dn−l(G). For a survey on this conjecture refer to [8].

There are several papers investigate what can be deduced about a graph from its k-deck. Manvel [10] proved
for n ≥ 6 that the (n − 2)-deck of a graph with n vertices determines whether the graph satisfies the following
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properties: connected, acyclic, unicyclic, regular, and bipartite. Kostochka et al. [6] proved that connectedness is
3-reconstructible for graphs with n vertices when n ≥ 7 (sharp by {C5 +K1, K

′′
1,3} where K ′′

1,3 is the tree obtained
from K1,3 by subdividing two edges). Spinoza and West proved that connectedness of graphs with n vertices is

l-reconstructible when n ≥ 2l(l+1)2 . Also, they showed that a complete r-partite graph is reconstructible from
its (r + 1)-deck. Kostochka et al. [7] proved that 3-regular graphs are 2 reconstructible. Some results about
reconstruction have been extended to the context of reconstruction from the k-deck. For example, Bollobas [1]
proved almost all graphs have reconstruction number 3. Spinoza and West [12] proved more generally that for

l = (1 − o(1))V (G)
2 almost all graphs are l-reconstructible using only

(
l+2
2

)
cards that omit l vertices. They also

determined ρ(G) exactly for every graph G with maximum degree at most 2. For more results on l-reconstructibility
of graphs refer to [8, 11, 12].

Now, we concentrate on the results about l-reconstructibility of degree list of graphs. There are some of more
important results in the following.

Theorem 1.1. [3] For any graph with n ≥ 6, the degree list is 2-reconstructible and this threshold on n is sharp.

For sharpness, they considered C4 + k1 and K ′
1,3.

Theorem 1.2. [10] From the k-deck of a graph and the numbers of vertices with degree i for all i at least k, the
degree list of the graph is determined.

Theorem 1.3. [10] The degree list of a graph G is reconstructible from D∆(G)+2(G).

Taylor showed that the degree list is reconstructible from the k-deck when the number of vertices is not too
much larger than k, regardless of the value of the maximum degree.

Theorem 1.4. [13] If l ≥ 3 and n ≥ g(l), then the degree list of any n-vertex graph is determined by its (n−l)-deck,
where

g(l) = (l + log l + 1)(e+
e log l + e+ 1

(l − 1) log l − 1
) + 1

and e denotes the base of the natural logarithm. Thus the degree list is l-reconstructible when e > el +O(log(l)).

Theorem 1.5. [7] For n ≥ 7, any two graphs of order n that have the same (n− 3)-deck have the same degree list,
and this threshold on n is sharp.

For sharpness, they considered C5 +K1 and k′′1,3.
As remarked above, 2-reconstructibility and 3-reconstructibility of degree list of graphs are investigated in [3, 6].

So, we concentrate on l ≥ 4 in this paper. Our goal is to extend the Theorem 1.2 for l ≥ 4. The main theorem of
this paper is stated as follows.

Theorem 1.6. Let G be a graph with n vertices. Then, from the k-deck (l+k=n) of G and the numbers of vertices
with degree i for all i, k ≤ i ≤ n− 3 where l ≥ 4 and n ≥ l + 6, the degree list of the graph G is determined.

2. Main Results

Lemma 2.1. [7] Let G be a graph with n vertices and aj be the number of vertices of degree j in G. Denote by ϕi

the total number of vertices of degree i over all cards in Dk(G) (l=n-k) where i ≤ k − 1.

ϕi =

i+l∑
j=i

aj
(
j
i

)(
n−j−1
l−j+i

)
. (1)

Note that all of coefficients x, y, z and a, b, c and values n and l in the following lemmas are integer.

Lemma 2.2. If n ≥ l + 6 and l ≥ 4, then 1
l

(
n−2
l−1

)
> n.

Proof. It suffices to show that the following inequality holds:

(n− 2)(n− 3) . . . (n− l) > n× (l)!.

We proceed by induction on n and l. The inequality is clearly true for l = 4 and n ≥ 10 (the basis of the induction).
Suppose that the inequality holds for l and n where l ≥ 4, n ≥ 10 and n ≥ l + 6. We show that it holds for l + 1
and n+ 1.
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By induction hypothesis, we have

(n− 2)(n− 3) . . . (n− l) > n× (l)!.

So,
(n− 1)(n− 2) . . . (n− l) > n(n− 1)× (l)!.

Also, since l ≤ n− 6, we have
(n)(n− 1) > (n+ 1)× (l + 1).

So, we have
(n− 1)(n− 2) . . . (n− l) > (n+ 1)× (l + 1)!.

□

Lemma 2.3. If n ≥ l + 6 and l ≥ 3, then 1
l+1

(
n−2
l

)
> n.

Proof. It suffices to show the following inequality holds:

(n− 2)(n− 3) . . . (n− l − 1) > n× (l + 1)!.

We proceed by induction on n and l. The inequality is true for l = 4 and n ≥ 10 (the basis of the induction).
Suppose that the inequality holds for l and n where l ≥ 4, n ≥ 10 and n ≥ l + 6. We show that it holds for l + 1
and n+ 1. By induction hypothesis, we have

(n− 2)(n− 3) . . . (n− l − 1) > n× (l + 1)!.

So,
(n− 1)(n− 2) . . . (n− l − 1) > n(n− 1)× (l + 1)!.

Also, since l ≤ n− 6, we have
(n)(n− 1) > (n+ 1)× (l + 2).

So, we have
(n− 1)(n− 2) . . . (n− l − 1) > (n+ 1)× (l + 2)!.

□

Lemma 2.4. If there exist 0 ≤ x, y ≤ n such that x+ y
(
n−2
l−1

)
=

(
n−1
l

)
where n ≥ l + 6 and l ≥ 4. Then x = 0 and

y = 1
l (n− 1).

Proof. By way of contradiction, assume x > 0. If y = 0, then x =
(
n−1
l

)
> n, a contradiction. So, suppose

that x, y > 0. If n − 1 = al + b where 0 ≤ b ≤ l − 1, then there exist a′ > 0 and a′′ ≥ 0 such that y = a′ and
x = (a′′ + b

l )
(
n−2
l−1

)
where a′ + a′′ = a. Since x > 0, we have x ≥ 1

l

(
n−2
l−1

)
. On the other hand, Lemma 2.2 implies

that 1
l

(
n−2
l−1

)
> n. So, x > n, a contradiction. □

Lemma 2.5. Let a+ b
(
n−2
l−1

)(
1
1

)
= r such that 0 ≤ a+ b ≤ n and 0 ≤ a, b ≤ n, where n ≥ l + 6 and l ≥ 4. If

x+ y
(
n−2
l−1

)(
1
1

)
= r,

where 0 ≤ x, y ≤ n, then x = a and y = b.

Proof. By way of contradiction, assume that (x, y) ̸= (a, b). Since n ≥ l + 6 and l ≥ 4, we have
(
n−2
l−1

)(
1
1

)
> n. On

the other hand, (x−a)+(y−b)
(
n−2
l−1

)(
1
1

)
= 0. Hence, x = a+(b−y)

(
n−2
l−1

)(
1
1

)
. If (b−y) > 0, then x >

(
n−2
l−1

)(
1
1

)
> n,

a contradiction. If (b − y) < 0, then since (b − y)
(
n−2
l−1

)(
1
1

)
< −n, we have x < a − n ≤ 0. Hence, x < 0, a

contradiction. □

Lemma 2.6. Let a(l + 1) + b
(
n−2
l

)
= r such that 0 ≤ a+ b ≤ n and 0 ≤ a, b ≤ n, where n ≥ l + 6 and l ≥ 4. If

x(l + 1) + y
(
n−2
l

)
= r

where 0 ≤ x, y ≤ n, then x = a and y = b.
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Proof. By contradiction, assume that (x, y) ̸= (a, b). Then Lemma 2.3 implies that
(
n−2
l

)
> n(l + 1). Also,

(x− a)(l+ 1) + (y − b)
(
n−2
l

)
= 0. So, x(l+ 1) = a(l+ 1) + (b− y)

(
n−2
l

)
. If b− y > 0, then x(l+ 1) > n(l+ 1). So,

x > n, a contradiction. If b− y < 0, then (b− y)
(
n−2
l

)
< −n(l + 1). Also, a(l + 1) ≤ n(l + 1). So,

x(l + 1) = a(l + 1) + (b− y)
(
n−2
l

)
< 0.

Therefore, x < 0, a contradiction. □

Lemma 2.7. Let a + b
(
n−2
l−1

)(
1
1

)
+ c

(
n−1
l

)(
0
0

)
= r such that 0 ≤ a + b + c ≤ n and 0 ≤ a, b, c ≤ n where n ≥ l + 6

and l ≥ 4. If
x+ y

(
n−2
l−1

)(
1
1

)
+ z

(
n−1
l

)(
0
0

)
= r,

where 0 ≤ x, y, z ≤ n, then x = a.

Proof. If z = c, then by Lemma 2.5, we have y = b and x = a. If z ̸= c, then Lemma 2.4 implies that x = a. □

Theorem 2.8. Let G be a graph with n vertices. Then from the k-deck (l+k = n) of G and the numbers of vertices
with degree i for all i, k ≤ i ≤ n− 3 where l ≥ 4 and n ≥ l + 6, the degree list of the graph is determined.

Proof. Let r1 be the total number of vertices of degree k − 1 over all cards in Dk(G). So, by (1), we have

ϕk−1 = ak−1

(
k−1
0

)(
l
l

)
+ ak

(
k
1

)(
l−1
l−1

)
+ · · ·++an−2

(
n−2
l−1

)(
1
1

)
+ an−1

(
n−1
l

)(
0
0

)
= r1.

Also, we have ai for all k ≤ i ≤ n − 3 by hypothesis. Thus, we obtain ak−1 by Lemma 2.7. Let r2 be the total
number of vertices of degree k − 2 over all cards in Dk(G). By (1), we conclude that

ϕk−2 = ak−2

(
k−2
0

)(
l+1
l

)
+ ak−1

(
k−1
1

)(
l

l−1

)
+ · · ·++an−3

(
n−3
l−1

)(
2
1

)
+ an−2

(
n−2
l

)(
1
0

)
= r2.

Moreover, we have ai for all k−1 ≤ i ≤ n−3. Hence, we obtain ak−2 and an−2 by Lemma 2.6. Also, by considering
ϕk−1 = r1, we obtain an−1. Now, we have ai for all k ≤ i ≤ n − 1. Therefore, by Theorem 1.2, the degree list is
determined. □

Example 2.1. Let G be a graph on 10 vertices with degree list (see Figure 1)

(9, 8, 7, 6, 4, 4, 4, 3, 2, 1).

Denote by ai the number of vertices of degree i in G. We show that the degree list is determined from a6, a7 and
Dn−4(G). The number of vertices of degree 5 in Dn−4(G) is 209. So, by (1), we have

ϕ5 = a5
(
5
0

)(
4
4

)
+ 1

(
6
1

)(
3
3

)
+ 1

(
7
2

)(
2
2

)
+ a8

(
8
3

)(
1
1

)
+ a9

(
9
4

)(
0
0

)
= 209.

Now, one can easily prove that if there exist 0 ≤ x, y, z ≤ 10 such that

x+ 56y + 126z = 182,

then x = 0. So, a5 = 0.
Also, the number of vertices of degree 4 in Dn−4(G) is 200. Using (1), we imply that

ϕ6 = a4
(
4
0

)(
5
4

)
+ 0

(
5
1

)(
4
3

)
+ 1

(
6
2

)(
3
2

)
+ 1

(
7
3

)(
2
1

)
+ a8

(
8
4

)(
1
0

)
= 200.

Now, one can easily prove that if there exist 0 ≤ x, y ≤ 10 such that

5x+ 70y = 85,

then x = 3 and y = 1. So, a4 = 3 and a8 = 1.
Now, we obtain a8 by ϕ6 = 200. Next, we obtain a9 by ϕ5 = 209. Hence, by Lemma 1.2 the degree list is

determined.

3. Conclusion

As we mentioned, it is proved that the degree list of graphs with at least 6 vertices is 2-reconstructible. Also, it
is proved that the degree list of graphs with at least 7 vertices is 3-reconstructible. For the case l = 4, we showed
that the degree list of a graph G is determined from the (n− 4)-deck of G and the numbers of vertices with degree
n − 4 and n − 3 when n ≥ 10. By this result, 4-reconstructibility of the degree list of graphs can be investigated.
As a future work, we will try to find n sufficiently large for which the degree list of graphs with n vertices is
4-reconstructible.
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Figure 1: A graph with degree list (9, 8, 7, 6, 4, 4, 4, 3, 2, 1).
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