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ABSTRACT: The adaptive fuzzy control algorithm using the novel membership function was designed
to suppress chattering phenomena in the performance of the three-axis Inertially Stabilized Platform
(ISP) applied to the stabilization and tracking of the line of sight in optical cameras mounted on a
moving boat. The stability of the nonlinear controller was proven through the Lyapunov method. For the
theoretical evaluation of the controller performance, a series of numerical simulations were performed.
The nonlinear kinematic and dynamic equations of the ISP were derived for this purpose. Due to the
coupling between ISP frames, direct implementation of the suggested controller was not feasible. To
this end, four simplified assumptions were applied to the ISP design. To evaluate the performance of
the proposed control algorithm, both numerical simulation and experimental methods were used on the
three-axis ISP, and the results of both methods were compared and validated. Further, the results of the
proposed nonlinear control algorithm were compared with the optimal PID linear algorithm. Besides,
experimentally obtained angular velocities of a boat were used for the base motion of the ISP in the
numerical simulations. Despite the existence of uncertainties in dynamic system modeling, the outcomes
of the implementation of the control algorithm and experimental tests indicated that the adaptive fuzzy
sliding mode algorithm stabilized the line of sight with acceptable accuracy and improved its performance
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in suppressing chattering phenomena.

1- Introduction

Vibrations of the base of the devices that carry optical,
telecommunication, measurement, and weapon systems
reduce efficiency, measurement accuracy, and subsequently
errors in the measurement results of these systems. One way
to avoid such errors is to actively isolate devices from the
vibrations of the base by stabilizing platforms. Based on the
degrees of freedom in the angular movement of ISP platforms,
stabilization devices are divided into one, two [1], and three-
axis [2] types. ISP platforms are used to stabilize images taken
by the camera mounted on the power transmission inspector
bird [3, 4]. In addition, visual-based controllers have been
addressed in some previous research [5].

So far, many studies in this field have designed control
algorithms for ISP stabilization and tracking. Conventional
linear controllers such as PID, Lead-Lag, and least mean
square-based active disturbance rejection control [6] have
been used in most engineering applications. The main
advantage of these kinds of controllers is that they are easy to
implement and have simple processors. However, due to their
limited performance, their applicability is somewhat limited.
External disturbances such as friction and mass imbalance,
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as well as dynamic coupling between axes, undermine the
performance of control algorithms.

Dynamic coupling between axes is another major
challenge in designing a controller for the ISP. The previous
study [4] used the Internal Model Control (IMC) algorithm
and system linearization to simplify the dynamic system and
two-axis dynamic coupling, as well as the reverse dynamic
system in designing the controller. Thus, the dynamic two-
input, two-output system with two-axis coupling (MIMO
controller) was transformed into two single-input, single-
output (SISO) systems. The authors in [7] applied a dual-
rate-loop control algorithm based on a disturbance observer
of angular acceleration to eliminate disturbances in the
stabilization loop. There is a critical need to use other control
algorithms with variable structures over time. This is because
uncertainty in dynamic system modeling results in different
optimal parameters for different dynamic systems.

Besides the advantages of the robust controller, this
controller has two main limitations: 1) The implementation
of the Hoo controller is quite intricate and requires advanced
processors, and 2) Since their design is conservative due
to disturbances, the system’s performance has various
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limitations. The authors in [8] investigated the possibility of
designing an optimal robust controller using the Hoo method
on the dynamic model of the platform, but they did not report
the improvement of the system response. To address this
challenge, a higher-order sliding mode observer (HOSMO)
was developed [9] to estimate the uncertainties and states of
the system and design the terminal sliding mode control rule.
One of the challenges in designing the active disturbance
rejection controller (ADRC) was the presence of sensor noise,
which reduced the controller’s robustness to uncertainties.
A study [10] has proposed the use of a combination of the
ADRC and Noise Reduction Disturbance Observer (NRDO)
to eliminate disturbances and noises associated with encoders
and uncertainties associated with parameter measurements.
Unfortunately, these works used a linear dynamic model in
their controller design process. To design the controller for
nonlinear systems and to be able to generalize the system
parameters, the Sliding mode and Backstepping design
methods have been used.

The sliding mode controller is a variable structure control
method. However, the responses of the control system do not
change due to disturbances and changes in dynamic system
parameters. Thus, its advantage is its non-sensitivity to
disturbances and noise and its disadvantage is its performance
in actual conditions. Some studies used the sliding mode
control algorithm to stabilize the platform [11, 12]. Due to the
robustness of the sliding mode controller, it has been discussed
in the literature [13]. Furthermore, using the continuous
finite-time sliding mode control method, a control algorithm
was designed to eliminate the chattering phenomenon which
is the main limitation of the Sliding mode method in the
stabilization of the dynamic system [12]. The conventional
backstepping nonlinear control algorithm has been discussed
in some ISP literature [11, 14, 15] to stabilize the platform. Its
advantage over the sliding mode method is the reduction of
the chattering phenomenon in the controller design. Despite
the effectiveness of the Backstepping algorithm, adaptive
sliding mode algorithms have been shown to exhibit a more
appropriate response. As a result, the controller proposed in
this study has also been designed based on adaptive sliding
mode algorithms.

A well-known feature of fuzzy control is its simplicity
of design and ability to overcome uncertainties. Because
fuzzy rules express the knowledge and experience of experts
linguistically, they are preferred over classical control
methods [16]. An important feature of fuzzy systems is their
ability to approximate any nonlinear, indefinite, and uncertain
function [17]. The different fuzzy control techniques (fuzzy
type-1 and type-2) and their hybrid forms (adaptive hybrid
fuzzy controller and PID fuzzy controller) in ISPs were also
discussed [18]. In [19], MIMO multi-input fuzzy control
algorithms have also been used to stabilize ISPs.

Another method of solving the challenges of uncertainty
of system parameters, mentioned in the literature, is to
implement adaptive algorithms. The Radial basis function
neural network (RBFNN) adaptive neural network algorithm
has been used in [1, 14, 20]. The adaptive control algorithm
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of the neural network has been used as well as the extended
state observer [1] to design a control system to improve the
stabilization accuracy and speed of the platform dynamic
response due to the nonlinear dynamics of the platform and
changes in the structure of the platform over time. Adaptive
controls based on RBFNN are presented in [20] for improving
the precision of attitude stabilization. Its method was based
on estimating disturbance torques. Adaptive control based
on RBFNN is shown to have a more fluent control voltage
than state feedback control according to the results of the
proposed controller [20]. Research has also addressed the
stabilization of the platform using a combined PID model and
Model Reference Adaptive Control (MRAC) [21] to design a
controller to eliminate mass imbalance disturbances loaded
onto the ISP in a time-varying and non-linear manner.

This study implements a combination of fuzzy-adaptive
and sliding mode controllers, which was first introduced in
[19] for a complex ISP considering all coupling terms of
three-axis dynamics. The main objective of the controller
design was to compensate for the effect of base motion on the
ISP’s performance, which was not addressed in the previous
study [19]. In addition to the fact that the controller in this
study is the same as that in [19], the stability of the algorithm
has been verified by applying the Lyapunov theorem due
to the following two factors: (1) our dynamic equations
differ from those in [19], and (2) we designed the controller
for three axes separately (roll, pitch, and yaw), while the
controller in [19] was designed for the roll axis in three
perpendicular directions. Four assumptions were imposed
on the design of ISP to simplify the dynamic equations.
These assumptions are characterized by the fact that they are
very close to reality and simplify the dynamic equations of
ISP. In addition, due to technological limitations (electrical
motors), we chose the controller’s parameters such that the
driving torque remained within a reasonable range. In this
paper, there are two terms of the control algorithm: fuzzy
and adaptive sliding mode controllers. The fuzzy controller
is designed to generate torque corresponding to errors in the
positions and velocities of ISP gimbals to solve the chattering
challenge. In addition, dynamic coupling between the axes is
considered in the design of the fuzzy controller. The sliding
mode controller was designed based on the “s” parameter,
which is defined as a representative of these errors, and it is
defined in equation (21). Moreover, the parameter “s” is used
as an input for the fuzzy controller. Low “s” values cause the
fuzzy controller to generate proportional torque that does not
lead to the chattering phenomenon. In both fuzzy and sliding
mode controllers, adaptive structures are used to address the
uncertainties of parameters and their change over time. The
derivatives of fuzzy control parameters are proportional to
the “s” parameters. The outline of the paper is organized as
follows: Section 2 explains the nonlinear dynamic equations
of the 3-axis ISP and their simplified assumptions. Section 3
describes an adaptive fuzzy sliding mode controller and its
stability is proved by the Lyapunov theorem. In Section 4, the
results of numerical simulation are presented and compared
with the experimental tests. Finally, conclusions are presented
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Outer Axis

Yaw Gimbal
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Fig. 1. (a) Schematic of three-axis gimbal platform, (b) Kinematics of 3-axis gimbal platform. Definition
of Roll, Pitch, and Yaw axis.

in the last section.

2- Dynamic Modeling of Three-Axis Stabilized Platform

The kinematic model of the system includes four members
in three-axis stabilized platform modeling (Figure 1): Gimbal
platform, Yaw gimbal, Pitch gimbal, and Roll gimbal. All
members are assumed to be rigid and each has a separate
coordinate system. A torque motor and an angle sensor
are connected to each gimbal on its axes. An Attitude and
Heading Reference System (AHRS) sensor is used to measure
the absolute angular movements of the stable platform.

2- 1- Kinematic Relations

The structure of the three-axis gimbal platform is presented
in Fig. 1 As shown, four reference coordinate systems
including the gimbal attached to body B, and three gimbals
of Y, P, and R, which are fixed to the yaw, pitch, and roll
axes, have been used to describe the stabilizing performance.
These rotation angles are defined as vectors [¢ o l//]T for the
roll, pitch, or yaw axis, respectively. For coordinates of each
axis, subscripts of “R”, “P”, “Y”, and “B” were used for roll,
pitch, yaw, and body axis, respectively. Given that there are
measurement sensors on the carrier, therefore it is defined as:

w=[p q 1" (1

The angular velocity of all axes in the inertial monitoring
device is calculated according to the parameters in Eq. (3)
and the angles [¢ @ v . The angular accelerations of cach
gimbal can be calculated through derivation of the angular
velocity relations associated with that gimbal as follows:

o= ¢ 7 2

@)y =[e, (p+qy)+s, (4 —pv)

(3)
¢, (d—pv)-s,(p+ay) 7+yT

0

Wfp = a(wfy +16) 4)
0
(0]

ofe = E(‘Ufp +1o[ Q)
0

2- 2- Friction Modeling
The friction of the roll, pitch, and yaw axes are modeled
using Eq. (6) as follows:

Friction = D X 6; + F x (sgn éi) (6)

Where D : Viscous friction between axial components
(roll, pitch, and yaw), F x(sgn 6’1> Coulomb friction
and static friction representative function (related to wire
tension), (91 : Relative angular velocity of the (roll, pitch, and
yaw) axes.
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2- 3- Dynamic Equations of the Gimbals

The dynamic equations of the stabilized platform are
extracted from ref [19], through the Newton—Euler method.
According to the extracted dynamic equations in Appendix
Al and the equation related to the mentioned system, the
relations between the relative angular acceleration of the axes
and the torques of the motors are represented in Equations
(7). The parameters used in Equations (7) are defined in
Appendix Al:

. ApgAygMXR + AgyAygMYP — ApgAgyMZY ()
ApyArpAve — ApoArpAyvy + ApgAryAye

§ - “AvwAroMXR + (ArypAvp — ArpAyy)MYP + ApyApyMZY () 7
ApypArpAve — ApaArpAvy + ApoAryAre

AppAygMXR — ApgAyyMXR — ApyyAyoMYP + ApgApyMZY  (c)
ApyArpAve — ApoArpAyy + ApgAryAyg

2- 4- Simplifying Dynamic equations

To design a control system and prove its stability, the
dynamic equations of nonlinear and coupled motion should
be somewhat simplified. This section represents simplified
dynamic motion calculations.

Assumption 1: Following Eq. (8), assume the roll axis
is designed such that the moments of inertia of two axes
perpendicular to their motions are equal:

Ig, = Iy, ®)

Assumption 2: The 3D design of the three-axis ISP is
developed in such a way that Eq. (9) is established.

IYz > IPx 9)

Assumption 3: In the 3D design of the three-axis ISP,
the order of the magnitude of the value of 4, is 107 and
the value of the parameter / .sin* @ is of the’order of 107
or less. Therefore, in calculations and to prove stability, the
following approximation should be used:

Ay, = Ip,.sin? 6 = Ay, (10)

Assumption 4: Since the ISP is mounted on a boat on the
sea, the motion of the base of the three-axis ISP in the various
tests is such that the angle of the pitch axis with respect to the
horizontal line (perpendicular to the direction of gravity) is in
the relational range (11). To stabilize and track the target in
the horizontal line, it is necessary to stabilize the pitch angle

around the value of —Bpl, o
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0 < Byien < 10° = 0.1745 (rad) (11)

By applying the above assumptions and using equations
(7), the simplified equations are stated as follows:

b MyP

B Ip, + I, (a)
. Aylp
¢ = .MXR +

I, (Ay y — In,-sin? 9)

_ sm8 oy (b) (12)
Ay —Ig .sin? 6

P X
= ! MZy +
V= Ay, = Ip,.sin2 6’ (©)

sin @
MXR

AYI/) - IRx.SiI’IZ 9 '

Where all parameters used in the above equations
including MXR, MYP, and MZY are defined in Appendix A1.

2- 5- Checking the Action Control Coefficient Sign

System controllability requires a non-zero (or single
signal) action control coefficient. Accordingly, to determine
the sign of the MXR, MYP, and MZY coefficients (or
Ty .Tp.Tg torque coefficients in equations (12)), we will have:

Ay

20 _ ein2
w—IRx.sm 0 =1I,—sin"0.1p,

A >Ot' 2

ssumption 13

+ COS2 0 (I + 1 ) ( )
Py Ry

>0

AY‘([) - IRx.Sinz 9 = IYZ + IPZ + IRZL‘,Ry > O

5 (14)
AYI[)_IRx'Sln ngy¢>O
0<6pitch<100 = 15
—10<6 <0 = sinf <0 (15)

3- Designing an Adaptive Fuzzy Sliding Mode Controller
and Proving the Stability

3- 1- Designing Controller
Following the definition for each of the variables ¢,0,y
, we will have:
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¢ —ba

e=[9—9dl (16)
Y — Py

s=é+[cle (17)

Where ¢, ,60, i, are the desired values of angles. Hence,
through calculating the derivative of the Eq. (17) we will
have:

é ¢d g 0 0
gl=[,1+s-[0 c Olé (18)
bl i, 0 0 o

By replacing Eq. (12) into matrix form, we will have:

) MXR
il =1F) {MYP} (19)

0 MZzY

By combining equations (18) and (19) we will have:
TR ‘l:ﬁ:d
[F] [Tp}= —[FlA{V}+<0, ¢ +5—[c]lé (20)
fr Ya
Where {J/ } is defined as follows:
MXR TR
v}= {MYP} - {r,,} (21)
MZYy Ty

According to the Equations (12-a) to (12-c) and the
definition of the matrix F in Equation (19), we have:

1 0 sin @
IRX IYZ + IPZ + IRZ
1
Fl = 0 —_— 0
[F] Y (22)
sin @ 0 1
_IYZ + IPZ + IRZ IYz + IPz + IRz-

Following Eq. (22), the determinant of the matrix F is
positive, so this matrix is invertible.

1
det(F) =
Iny-(Ipy + In, ) - (ly, + I, + Ix,)
sin?(6)
(In, + In, ) (Iy, + In, + In,)’
1 (23)

X
(Ipy + IRy) (ly, +1p, + 1)

>0
1 sin?(0)
Ip, Iy, +1p, +Ip,

>0

By defining G = [F]f1 and using Eq. (20), we will have:

$a

TR
Gs = {TP} +{V}+ G| [c]le — éd (24)
tr Vq

On the other hand, we define the control rule as Eq. (25)
as pointed out in the literature [15, 19]. The u, part is the
output of the compensating controller and the u#, part is the
output of fuzzy controller.

TR
{TP} = _({uo} + {uc}) =

Ty
Ugp Uep
- qu + uCp
Uy Ue,

u, = ([a] + [o]s)s (26)

(25)

uCl
Ue = [uCZ] = [f]adap{uf} (27)

uc3

In equations (26, 27), the parameter [a is constant, and
the parameters [o']s and [f ]ad are calculated through
the matching rules presented in aﬁquations (28, 29). Block
diagram of the designed controller is illustrated in Fig. 2.

fij = YijSilsi (28)

d; = 1;S7 (29)
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fij = VijSii o
. E

Distuirbance: ISP’s
base motion
(a boat on the sea)

Tr
A
ty) | Three-axis
5P

d .
— 14 G; = st
$a
04
Ll @
LN g
r'y .-2.:‘
d S o
L 0 S
dt J5S
1
N
N
3
L

Ue (p
U, = [f]adap{uf} {6}

Fig. 2. Block diagram of the proposed combination of adaptive fuzzy controller and sliding mode algorithm.

3- 2- Proving the Stability

In this article, we provide evidence for the stability
of the ISP based on the reference [22]. Our approach to
proving controller stability differs from that of [22] in that
the proposed controller is designed for three axes (roll, pitch,
yaw) separately, while [22] designed the controller for three
perpendicular directions of the roll frame axis. The control
system in the mentioned study is represented for adjusting the
angle of the roll axis in three directions. This study, however,
uses it to control the roll, pitch, and yaw axes separately.
Thus, it is necessary to re-examine the proof of stability. To
prove the stability of the control rule, the Lyapunov function
is defined as follows:

V=s'G +1E E 1fz+1n§1”2 30
=S S — — f.4 — — 0

i=1

The derivative of section V| is divided as follows:

V, =$7Gs +sTGs +sTGs 31

[7amsl)

By defining “w” and “B” according to equations (33, 34),
we will have:
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V, = sT(wsTGs + Gs + Gs) =
TR
sT <B + {TPD =sT(B—u,—u,) = (32)

Ty
sT[B—(a+0)s —u.]

The parameters used in Eq. (31) are the same as the
parameters in Equations (32) and (33):

w = [1/3s; 1/3s, 1/3s5]7 (33)

TR
B=wsTGs +Gs + Gs — {Tp} =

Ty

b4 (34)
wsTGs +Gs+ G| [cle =46, ¢ | +{V}

Ya

Thus, the derivative of Lyapunov function will be
expressed via Eq. (35):
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i=1j=1 i=1
3
= z si(By — a;s; — 038; —ug) + (35)
i=1
3 3 3
RRTTRS
—Jijlij i0i
i=1 j=1 Vij =

In Eq. (35), parameter B, represents the rows of vector
B. According to [19], due to the definition of #_ in equation
(26), the tracking error of the system approaches zero
asymptotically. As a result, all of the terms of relation (34)
are bounded including 5 , 5, G, G , and second derivatives
of desired angles. Vector “V” in equation (34), as defined as
equation (21) is a function of angles and their rates, therefore
this term is also bounded, and thus all B, are bounded. If f l./,*
is defined as the optimal coefficients for estimating B, there
must be at least an error of &, to predict the error:

3
B; — z fijusi
i=1

The parameter fl p is defined according to Eq. (37):

=g (36)

fij = fij — fij (37)

From Equations (27, 37), we will have:

3
Ug = z fipupe + z fijupe =123 Y

3
i=1 i=1

The parameter 0; is also selected so that Eq. (39) is
established:

g <oa/ls;| i=123 (39)

Moreover, the parameter &, is defined as Eq. (40):

6;=0,—0; (40)

According to the calculations presented in Appendix A2,
and by replacing the Equations (32) to (40) in the derivative
of the Lyapunov function (31), the inequality of Eq. (41)

was proved. Thus, according to the Lyapunov theorem,
convergence, and stability of the proposed controller are
proved for all of the three axes.

V-3 a;s?<0,a;<0 i=123 (41)

3- 3- Design of the Fuzzy Controller of the torque control
u
fA fuzzy control system is designed to create coupling

torque between the axes. The equations proposed in
this section are written for the yaw axis and the body. By
converting the equations from  to ¢ and @, they can be
generalized to the pitch and roll axes. The s, parameter
in Eq. (21) represents the relative angle between the Yaw
gimbal and the body. Inputs of the fuzzy system and the yaw
motor torque (U y ) are considered as system outputs. Five
membership functions are intended for fuzzy inputs. Fuzzy
rules are written as follows:

Rule 1: If s is the NB value, then u P is equal to the output
NB.

Rule 2: If s is the NM value, then ’ is equal to the output
NM.

Rule 3: If' s is the ZO value, then u 5 is equal to the output
Z0.

Rule 4: If s is the PM value, then u p is equal to the output
PM.

Rule 5: If s is the PB value, then u 5 is equal to the output
PB.

The five membership functions of NB, NM, ZO, PM,
and PB are considered for the input variable, as shown in
Fig. 3. The membership functions are defined as linear and
triangular functions. The fuzzy system is designed to meet
the conditions of continuity, compatibility, and completeness.
Continuity condition means that the output of the fuzzy
system is not intermittent. Compatibility means that two or
more fuzzy laws cannot have the same output. Completeness
implies that at least one fuzzy rule should be activated for
each value of input. Besides, the fuzzy groups of each fuzzy
variable must cover the entire range, and for each value of
the input variable, at least one fuzzy group must be activated.

The output of the fuzzy rule is determined using the
weighted mean method according to Equation (43):

u = 2152=1 irtr(s;)
D FETHE)

i =123 (42)

The parameter R in this equation is the number of
matching rules, g, (sl.) is the input of the membership
function corresponding to the R matching rule. The [f ]adap
adaptive factor, which is obtained from adaptation law (30),
compensates for dynamic coupling between ISP axes based
on Equation (29). Thus, the fuzzy control torque section was
defined according to Equation (43) for all three axes.
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Input membership functions

—Rule 1: NB
—Rule 2: NM

—Rule 3: ZO
——Rule 4: PM
Rule 5: PB

-1 a a a

S¢or890rS

¥

Fig. 3. Membership function of ¢ for rules one to five (NB, NM, ZO, PM, and PB).

4- Results and Discussions

To compare the applicability of the adaptive fuzzy
controller with the PID method, the numerical simulation
method has been used on the governing dynamic equations.
The results of both controllers are presented in this section.
System state variables refer to the relative angles of each
gimbal, as defined in the schematics of Fig. 1b, as well as
their rates x =[¢ 0 v ¢ 6 y/]. Moreover, the torque
calculated by the stabilized platform controller system
u= [TY Tp TR] is considered as the output of the
dynamic system controller.

In the present simulation, the purpose of the designed
controllers is to stabilize the system despite the movements
of the stabilized platform’s base and to bring the system state
variables to the desired state x. In other words, the controller’s
main function is to maintain the line of sight (LOS) of the
imaging sensor with respect to its inertial coordinates.
In each simulation step, the desired angle is defined as an
angle between the carrier of the ISP and the line of sight of
the imaging sensor. Thus, the torques that are calculated by
the controller and applied to the dynamic system have to
minimize the platform stabilization error.

Dynamic system simulation starts with zero initial
conditions (for all state variables). The parameters related to
the gyroscopic stabilizer on which the simulation is performed
are given in Table 2 and Table 3. Based on experimental tests
of boat movements at sea, the ISP was simulated. These
experimental data were used for ISP’s base acceleration in
each step of the simulation. For this purpose, the diagram of
the movements of the platform’s base in the three directions
of roll, pitch, and yaw is shown in Fig. 4. Fig. 5. illustrates
the tracking errors of the ISP relative angles when the
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proposed adaptive fuzzy controller is utilized. Fig. 6a shows
the control actions required for roll, pitch, and yaw electric
motors. Experimental tests were conducted by mounting ISP
on a moving boat in the sea. Fig. 6b illustrates the errors of
stabilization, which are defined as differences between the
actual and desired relative angles of the frame.

Table 3 compares the results of using an adaptive fuzzy
controller and the results of using a traditional PID controller.
To evaluate the performance results of each controller, the
Mean Absolute Error (MAE) was applied as a criterion
according to Eq. (44):

n
L e

MAE = l—1| ll (43)
n

The results presented in the table below show that the use
of the adaptive fuzzy controller has reduced the stabilization
error of the roll, pitch, and yaw axes by 86%, 90%, and
94%, respectively in theory (simulation). Moreover, the
stabilization errors of frames have been reduced by 66%,
85%, and 88%, respectively.

To compare the performance of the ISP controller with
that of previous relevant literature, sinusoidal motion
is applied to the carrier. A simulation method was used
for comparison. According to the results, the proposed
controller had the same control performance as the reference
[19], which designed a controller for the roll axis in three
perpendicular directions. The results indicate that designing
controllers separately for three gimbals has no adverse
effect on controller performance.
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Roll (Rad)

Pitch (Rad)
°
N

Yaw (Rad)

50 100 150 200 250 300
Time (s)

Fig. 4. Relative angle of the base’s movement with re-
spect to the axis of inertia coordinates in the direction of
roll, pitch, and yaw.

Error of Stabilization in 3 axis in theoretical simulation
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Fig. 5. The tracking error of the ISP angles in simulation.
The difference between ISP angles and desired angles in
numerical simulation.

Table 1. Comparison of the stabilization error of the adaptive fuzzy control algorithm with PID. A MAE criterion was

employed.
Algorithm Yaw (Rad) Pitch (Rad)  Roll (Rad)
PID 48x1072  1.2x1072 22x1072
Feedforward compensation [23] . 2% 101 1.5 x 101
Dual closed-loop PID [3] 71%10"3 7.8% 1073 B
Internal model control [4] 1.1 x 1072 2 x 1073 -
Single axis model reference adaptive
control [21] 1.7 X 1072 - -
Single axis least mean square based
ADRC [6] 47 x107* - -
Combination of a backstepping with
adaptive neural network [11] in case of s
carrier sinusoidal motion (single axis) ) 21x10 )
Fuzzy-PID [24] - 2.7%x1072 2.4 %1072
MIMO fuzzy controller [19] 6.1x107* 4.6x10™* 33x107*
Fuzzy-adaptive (simulation) 27x107%  1.2x107% 3.1x1073
Fuzzy-adaptive (experiments) 58x1073 1.8x107* 7.5x1073
Fuzzy-adaptive (simulation) in case of
carrier sinusoidal motion 5x107* 8x107* 23x107*
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Fig. 6. (a) Control action needed to achieve desired performance using 3-DOF ISP. (b) Error of stabilization. The
difference between ISP angles and desired angles in the experimental test. (c) Control action needed to achieve
desired performance using 3-DOF ISP. (d) Error of stabilization. The difference between ISP angles and desired
angles in the experimental test.
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5- Conclusion

The present article investigated the dynamic modeling
of a stable three-axis gyroscopic platform and developed an
adaptive sliding mode fuzzy control system for it, considering
the coupling between the axes. The fuzzy controller was
designed based on a novel asymmetric membership function
that enhances controller stabilization performance. To
stabilize the platform, an adaptive fuzzy nonlinear controller
and a PID linear controller were used separately. The process
of designing and proving the stability of an adaptive fuzzy

Nomenclature

nonlinear controller is described. The performed simulation
indicated that an adaptive sliding mode fuzzy controller
had one order of magnitude better performance than the
PID controller in the experimental test. The use of real
movements for the base of the stabilized platform made
the assessment of controller performance more realistic
than previous researches. Hence, the results of simulations
and experimental tests indicated that by using the proposed
adaptive fuzzy controller, the stabilization error would be
90% less than using the PID controller.

Table 2. Definition and naming the parameters used in dynamic equations (three-axis ISP)

Parameters Value or definition
Wg the angular velocity of the body gimbal
M Roll axis torque includes viscous friction, dry friction, and roll
PRx axis motor torque
M Pitch axis torque includes viscous friction, dry friction, and pitch
YPy axis motor torque
M Yaw axis torque includes viscous friction, dry friction, and yaw
BYz axis motor torque
MXR Defined in the equation (53)
MYP Defined in the equation (54)
MZY Defined in the equation (55)
The moment of inertia of the gimbals. The first term of their
I;; index identifies the name of the gimbal and the second term

Moment of inertia of the roll axis
gimbal in three directions

Moment of inertia of the pitch
axis gimbal in three directions

Moment of inertia of the yaw axis
gimbal in three directions

Dpg

FPR(SgnqS)

specifies the direction of the axis.

Irx = 4x10* Iry = 2.53%104, Irz = 2.53x10* kg.m?

Ipx = 4.98x107 Ipy = 2.02x10%, Ipz = 3.46x10° kg.m?

Iyx = 6.55><10'3 ,IYY = 1.46><10'3, Iyz= 5.46x% 10'3 kg.m2

Viscous friction between pitch and roll gimbals 0.01 N.m.s

Coulomb friction and static friction representative function

(related to tension in wiring) 0.01 N.m

Motor torque of the roll (i = R), pitch (i = P), and yaw (i=Y)

axes
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Table 3. Values of the parameters of the proposed controller

Parameters

Value or definition

PID coefficient of roll gimbal
PID coefficient of pitch gimbal
PID coefficient of yaw gimbal

Gamma matrix of the equation
(28)y

Parameter 1 of the equation (29)

¢ matrix of the equation (18)

“a” matrix of the equation (26)

Fuzzy input range for the roll axis
(S¢) [a1,a2,33,84,85,86,87]

Fuzzy input range for the pitch
aXiS (SQ) [31,32,3-3,34:35,36,37]

Fuzzy input range for the yaw axis
(SIIJ) [al,azaa39a4535,a6,a7]

@ value for the roll axis
@ value for the pitch axis

® value for the yaw axis

KD:2,K1:20,KP:6
KD:2,K1:6,KPZ6
KD:2,K1:20,KP:8

10 0 1
[ 0 10 O
1 0 10
16

10 0 O
0 30 O
0 0 10

1 0 O

0 3 0

0 0 1

[-0.5-0.2-0.100.10.20.5]

[-1-0.6-0.500.50.6 1]

[7-3-10137]

[-1 —05 0 05 1]
[-3 —15 0 1.5 3]
[-1 —05 0 0.5 1]
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A. Appendix

Al- Extracting Dynamic Equations

This section includes Table 2 of the nomenclatures that are used in the dynamic equations. To obtain the
dynamic equations of the three-axis ISP, we used the relations of reference [19]. It should be noted that
friction on each axis is modeled as two components: viscous friction and Coulomb friction. The three
equations of movement, namely Equations (44-46) can also be written as second-order differential

equations in terms of system state variables as follows:

App- ¢ + Apy- P = MXR (1)
Apg.0 + Apy.p = MYP (2)
Ayp. ¢ + Ayy. ) + Ayg.0 = MZY (3)

The other terms of the above equations are expressed as follows:

AR¢ = Ipx 4)

Apy = —Sglpx (5)

Apg = Ipy + IpyCG + Ig,S5 (6)

Apy = 654y (Iry — Irz) (7)

Ayp = —IpxSe (8)

Ayy = Iy, = $5(Ipx — Irx) + 5, + IpsCh + IryS3) )

Ayg = co5pCy(Iry — Irz) (10)

MXR = Mppy — I {[(® + q¥)cy + (¢ — p¥)sy, — (r + )0 co (11)

+ [—7‘” - (pcw + qsw)é]sg} - (IRZ - IRy)a)fRZ. Wiky
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MYP = Mypy — Ipy. [(d = p¥)cy — (0 + q¥)sp] — Upx — Ip) lpx- @ip, (12)
—Cp (IRy {{[T' + (pey + asy)]co — (acy —psy +6)d
+[(@—p)sy + (B + q)ey — (r+ ¥)0]se}sy
+{(a—pd)ey — (B + a¥)sy
+[(r +)co + (pey + a5y)s0]$ Yoo } + Ure — Ir) 0fix- ;)
+ 56 (Inz (([7 + (pcy + qsy)0]co — (qey —psy + 0)
+[(a—p¥)sy + (B + a¥)ey, — (v +¥)0]s0)cy
—[(@=p¥)ey — (B + a¥)sy

+[(r +)co + (pclp + qs,,,)sg](ﬁ]s(p) + (IRy - IRx)wfRy. whor)

ZY = Mpy, = lyz7 + (Iyy = lyx ) 0y @lyy (13)
+ 59 (Ipx- (B + q¥0)cyy + (G — p¥)sy — (r +1)8]co
+ |7 = (pcy + asy)B]se) + (Ipz = Ipy ) 0fp,- ipy
— Iee{[(P + a¥)ey + (4 = pP)sy — (r +1)6]c
+ [~ = (pey + asy)0]5e} — (Inz = Iry )0ikz @iky)
= co (1pa- (1 + @)ey + (d = p)sy =+ )6]so
+[7 + (pey +asy)0]co) + (Ipy = Ipx) Wipy. Wips
t 5S¢ (IRy {{[f + (pey +asy)0]co — (acy —psy +6)e
+[(G = p¥)sy + (B + a)ey — (r +)6]se}se
+{(G —p)ey — (P + q¥)sy
+[(r +9)co + (pey + asy)sold Yeg ) + Unx — Ine) 0fir ;)
+ ¢ (Irz (([7 + (pey + asy )6]co — (qcy —psy +6)d
+ (@ =p¥)sy + (B + a¥)cy — (r +¥)8]so)cy
—[(@—p¥)ey — (B + a¥)sy

+[(r +)co + (pc¢ + qsll,)sg]d}]sd)) + (Igy — IRx)wfRy.wfoD

Mppy = —Dppp — FPR(Sg”d)) + Tg (14)
MYPy = _Dypé - pr(Sgné) + TP (15)
Mgy, = —Dgy¥p — FBY(Sgnlp) + Ty (16)
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A2- Derivative Calculations of Lyapunov Function

By placing the equations, the Lyapunov function derivative will be obtained as Eq. (60):

V=Y si[Bi — aisi = (6 + 0)s; = Bioa fisupi — e fijupi] 17

1 = £ ~
+z?:12§:1(y—ijﬁ,-ﬁ,- sfyuge) + Tk (660 - ist)

By merging Equations (36) and (39), we will have:

3 3 (18)
Bi= ) fiuge | < Isil [Bi= ) fupe| < lsilw
j=1 j=1
Is;lw; < o (19)
Therefore, by placing the above equations in Eq. (60), we get:
3 3
V< Z a;s? + Z(Isllel 51075)) +Z}Zl<%f]f] - sifijuﬁ) + Z (%@&i - m;) (20)
<-Y3 as?+Y3 121 1( fl.].]"l.j lfuufl>+Zl 1( 5,6, — 6;S; )
The derivatives of equations (37, 40) are as follows:
fu = fu = YijSilsi (1)
G, = 6; = 1;s] (22)
By placing the equation (64, 65) in the Lyapunov function, we will have:
(23)

...
1]
-
~
1]
[y
~.
|
ey
-
]
[y

i=1 i=
3 3
+ l 5 2 _ =2\ — _ 2
n 0iNn;S; 0;S; | = a;s;
i=1 ' i=1
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