تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,037 |
تعداد دریافت فایل اصل مقاله | 4,882,775 |
روشی کاربردی برای کنترل مسیر ربات موازی بر پایۀ سطح لغزش با ضرایب تنظیم شوندۀ فازی | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 6، دوره 55، شماره 2، اردیبهشت 1402، صفحه 257-282 اصل مقاله (2.01 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2023.21694.7491 | ||
نویسندگان | ||
بابک تاران1؛ مصطفی برغندان2؛ علی اکبر پیر محمدی* 3؛ صالح مبین3 | ||
1دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران | ||
2گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه زنجان، زنجان، ایران | ||
3گروه مهندسی برق، دانشکده مهندسی، دانشگاه زنجان، زنجان، ایران | ||
چکیده | ||
بازوهای ماهر موازی به دلایلی مانند دقت و صلبیت بالا، سرعت و شتاب زیاد و در مقابل، اینرسی پایین مورد توجه صنایع مختلف قرار دارند. کنترل این نوع سیستمها به دلیل داشتن دینامیک پیچیده و غیرخطی با چالشهایی مواجه است. از میان روشهای متعدد کنترل مسیر رباتها، روشهای گشتاور محاسبه شده و کنترل مد لغزشی از روشهای معروفی هستند که پیشنهاد میشوند. اما در کاربردهای عملی وقتی که سرعت ربات افزایش مییابد، تنظیم ضرایب کنترل کننده بسیار مشکل و وابسته به شرایط کاری ربات است و ربات نمیتواند با ضرایب ثابت و از پیش تعیین شده و تحت هر شرایطی به درستی کار کند. نوع مسیر، سرعت ربات در طول مسیر، شرایط اولیۀ عملگر نهایی ربات نسبت به مسیر و حتی سرعت نمونه برداری دادهها، از جمله عواملی هستند که با تغییر آنها، کنترلکننده دقت خود را از دست میدهد و در نتیجه لزوم باز طراحی و تغییر ضرایب کنترلکننده احساس می گردد. در این مقاله اشکالات این دو روش برای بکارگیری عملی روی یک ربات پنج بازویی موازی بررسی شده و سپس روشی ارائه شدهاست که بر مبنای روش کنترل مد لغزشی عمل میکند و به روش فازی ضرایب و بهرههای کنترلکننده، تنظیم میشوند. عملکرد این روش به دو شکل مدلسازی در نرم افزارمتلب و پیادهسازی بر روی ربات موازی صفحهای به صورت آزمایشگاهی بررسی و با سایر روشها مقایسه شده است. | ||
کلیدواژهها | ||
کنترل مد لغزشی؛ کنترل فازی؛ دینامیک ربات موازی صفحهای؛ تنظیم برخط ضرایب کنترل؛ کنترل مقاوم | ||
عنوان مقاله [English] | ||
A Practical Method for Controlling the Parallel Robot Path Based on the Sliding Mode Method with Fuzzy Adjustable Coefficients | ||
نویسندگان [English] | ||
Babak Taran1؛ Mostafa Barghandan2؛ Ali Akbar Pirmohammadi3؛ Saleh Mobayen3 | ||
1Tarbiat Modarres University | ||
2University of Zanjan | ||
3Mechanical Engineering, Zanjan University, Zanjan https://orcid.org/0000-0001-5070-1495 | ||
چکیده [English] | ||
Parallel manipulators are of interest in various industries due to their high precision, rigidity, high speed and low inertia. Controlling these types of systems faces challenges due to their complex and non-linear dynamics. Among the many methods of controlling the path of parallel manipulators, computed torque and sliding mode methods are the famous methods that are proposed. In practical applications, when the speed of the robot increases, adjusting the controller parameters is very difficult and depends on the working conditions of the robot, so the robot cannot work properly with fixed and predetermined coefficients under any condition. The type of path, the speed of the robot along the path, the initial conditions of the end effector of the robot in relation to the path, and even the sampling time are factors that affect the accuracy of the controller, and by changing each of them, it may be necessary to redefine the parameters of the control system and change the control coefficients. In this article, a method is presented which is based on the sliding mode method and the coefficients of the control system are adjusted appropriately by changing the sliding surface and sliding speed using the fuzzy method. The performance of this method has been investigated in two ways: modeling in MATLAB software and real time applying it to a planar parallel robot. | ||
کلیدواژهها [English] | ||
Sliding mode control, fuzzy control, Parallel planar manipulator dynamics, on-line parameters tunning, Robust control | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] D. Kim, W. Chung, Analytic singularity equation and analysis of six-DOF parallel manipulators using local structurization method, IEEE Transactions on Robotics and Automation, 15(4) (1999) 612-622. [2] Y. Su, D. Sun, L. Ren, J.K. Mills, Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators, IEEE Transactions on Robotics, 22(1) (2006) 202-207. [3] H. Cheng, Y.-K. Yiu, Z. Li, Dynamics and control of redundantly actuated parallel manipulators, IEEE/ASME Transactions on mechatronics, 8(4) (2003) 483-491. [4] A. Shintemirov, A. Niyetkaliyev, M. Rubagotti, Numerical optimal control of a spherical parallel manipulator based on unique kinematic solutions, IEEE/ASME Transactions on Mechatronics, 21(1) (2015) 98-109. [5] H. Liu, T. Zhang, Fuzzy sliding mode control of robotic manipulators with kinematic and dynamic uncertainties, Journal of dynamic systems, measurement, and control, 134(6) (2012) 061007. [6] J. Xu, Q. Wang, Q. Lin, Parallel robot with fuzzy neural network sliding mode control, Advances in Mechanical Engineering, 10(10) (2018) 1687814018801261. [7] X. Yin, L. Pan, S. Cai, Robust adaptive fuzzy sliding mode trajectory tracking control for serial robotic manipulators, Robotics and Computer-Integrated Manufacturing, 72 (2021) 101884. [8] N. Yagiz, Y. Hacioglu, Robust control of a spatial robot using fuzzy sliding modes, Mathematical and Computer Modelling, 49(1-2) (2009) 114-127. [9] G. Wu, X. Zhang, L. Zhu, Z. Lin, J. Liu, Fuzzy sliding mode variable structure control of a high-speed parallel PnP robot, Mechanism and Machine Theory, 162 (2021) 104349. [10] B. Maalej, H. Medhaffar, A. Chemori, N. Derbel, A Fuzzy Sliding Mode Controller for Reducing Torques Applied to a Rehabilitation Robot, in: 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE, 2020, pp. 740-746. [11] K. Zheng, Y. Hu, B. Wu, Intelligent fuzzy sliding mode control for complex robot system with disturbances, European Journal of Control, 51 (2020) 95-109. [12] J. Wang, A.B. Rad, P. Chan, Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching, Fuzzy sets and Systems, 122(1) (2001) 21-30. [13] P. Chan, A.B. Rad, J. Wang, Indirect adaptive fuzzy sliding mode control: Part II: Parameter projection and supervisory control, Fuzzy Sets and Systems, 122(1) (2001) 31-43. [14] H. Navvabi, A.H.D. Markazi, Position control of Stewart manipulator using a new extended adaptive fuzzy sliding mode controller and observer (E-AFSMCO), Journal of the Franklin Institute, 355(5) (2018) 2583-2609. [15] A. Filabi, M. Yaghoobi, Fuzzy adaptive sliding mode control of 6 DOF parallel manipulator with electromechanical actuators in cartesian space coordinates, Communications on Advanced Computational Science with Applications, 2015(1) (2015) 1-21. [16] Y. Aoun, A. Medjghou, B. Maaoui, N. Slimane, Improved Sliding Mode Controller Using Backstepping and Fuzzy Logic for a Quadrotor Aircraft, in: International Symposium on Mechatronics and Renewable Energies El-Oued, University of Eloued, Algerie, 2018. [17] A. Razzaghian, R.K. Moghaddam, Fuzzy sliding mode control of 5 DOF upper-limb exoskeleton robot, in: 2015 international congress on technology, communication and knowledge (ICTCK), IEEE, 2015, pp. 25-32. [18] M.S. Qureshi, P. Swarnkar, S. Gupta, A supervisory on-line tuned fuzzy logic based sliding mode control for robotics: An application to surgical robots, Robotics and Autonomous Systems, 109 (2018) 68-85. [19] Q. Liu, D. Liu, W. Meng, Z. Zhou, Q. Ai, Fuzzy sliding mode control of a multi-DOF parallel robot in rehabilitation environment, International Journal of Humanoid Robotics, 11(01) (2014) 1450004. [20] Q.H. Ngo, N.P. Nguyen, C.N. Nguyen, T.H. Tran, Q.P. Ha, Fuzzy sliding mode control of an offshore container crane, Ocean Engineering, 140 (2017) 125-134. [21] M.R. Soltanpour, M.H. Khooban, A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator, Nonlinear Dynamics, 74(1) (2013) 467-478. [22] B. Taran, A. Pirmohammadi, Designing an optimal fuzzy sliding mode control for a two-link robot, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(1) (2020) 1-12. [23] Z. Xie, T. Sun, T. Kwan, X. Wu, Motion control of a space manipulator using fuzzy sliding mode control with reinforcement learning, Acta Astronautica, 176 (2020) 156-172. [24] X. Wu, P. Jin, T. Zou, Z. Qi, H. Xiao, P. Lou, Backstepping trajectory tracking based on fuzzy sliding mode control for differential mobile robots, Journal of Intelligent & Robotic Systems, 96(1) (2019) 109-121. [25] M. Vijay, D. Jena, PSO based neuro fuzzy sliding mode control for a robot manipulator, Journal of Electrical Systems and Information Technology, 4(1) (2017) 243-256. [26] C.S. Chin, W.P. Lin, Robust genetic algorithm and fuzzy inference mechanism embedded in a sliding-mode controller for an uncertain underwater robot, IEEE/ASME Transactions on Mechatronics, 23(2) (2018) 655-666. [27] S.y. Chen, T. Zhang, Y.b. Zou, Fuzzy-sliding mode force control research on robotic machining, Journal of Robotics, 2017 (2017) 8. [28] S.B. Hu, M.X. Lu, Backstepping Fuzzy sliding mode control for a three-links spatial robot based on variable rate reaching law, Applied Mechanics and Materials, 105-107 (2012) 2213-2216. [29] Y.L. Haoyu Shen, Hongtao Wu, Chunlong Hu and Shuai Wang, Forward and Inverse Kinematics for a Novel Double Scara Robot, in: 2nd International Symposium on Resource Exploration and Environmental Science, IOP Conf. Ser., Canada, 2018. [30] J.J. Slotine, W. Li, Applied Nonlinear Control, Prentice-Hall International,Inc, 1991. [31] M. Roopaei, M.Z. Jahromi, Chattering-free fuzzy sliding mode control in MIMO uncertain systems, Nonlinear Analysis, 71 (2009) 8. [32] F. Yorgancıo˘glu, H. Kömürcügil, Single-input fuzzy-like moving sliding surface approach to the sliding mode control, Electr Eng, 90 (2008) 9. | ||
آمار تعداد مشاهده مقاله: 390 تعداد دریافت فایل اصل مقاله: 439 |