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ABSTRACT: Numerical modeling of soil can be used as a complementary or alternative method for 
laboratory tests. Therefore, in the simulations of geotechnical problems, properly using constitutive 
models (such as the cap model) requires accurate calibration of the model parameters. In the present 
study, the draining behavior of Nevada sand at a relative density of 40% was evaluated using Mohr-
Coulomb (MC), Drucker-Prager (DP), and modified Drucker-Prager/cap (MDPC) models in Abaqus and 
compared with laboratory data. In this context, the conventional triaxial compression (CTC) technique 
was used for finite element modeling of selected drained triaxial tests by keeping the radial stress 
constant and increasing the axial stress. Based on the results, MC and DP constitutive models, where 
the behavior of the materials is linear elastic-perfectly plastic, at high confining pressures, due to the 
inability to simulate soil hardening, showed significant differences with the experimental results. In 
other words, with increasing confining pressure, the behavior of sand tends to harden, and the ability 
of the MDPC model, which has a hardening function based on volumetric plastic strain, increased in 
simulating sand behavior. Proper determination of cap parameters can have a significant effect on the 
results. In the present study, cap hardening parameters for Nevada sand have been determined based on 
experimental data.
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1- Introduction
Elastoplastic models are usually used to simulate the 

behavior of soils. In this context, the elastoplastic laws 
obtained based on Terzaghi’s effective stress principle are 
often used for analyzing the effective stress field for soil. 
While appropriate models for saturated solids (e.g., rocks) 
are properly expressed by Biot’s effective stress theory 
(known as poroelasticity theory), which considers solid and 
fluid parts for geomaterials [1]. Investigating the failure 
mechanism and crack propagation in rocks and rock-like 
materials is also essential [2,3]. Generally, constitutive 
models can be evaluated for soil in two approaches: with 
and without the cap. Constitutive models without the cap are 
models whose yield surface in a specific confining pressure 
has a constant shape and are divided into two categories: 
pressure-independent yield surface (suitable for low friction 
materials such as metals) and pressure-dependent yield 
surface (e.g., Mohr-Coulomb and Drucker-Prager models). 
These constitutive models have fixed yield surfaces, and the 
effect of plastic deformation under hydrostatic compression 
is not considered. In contrast, constitutive models with the 
cap are models whose yield surface, in addition to changing 
at different hydrostatic pressure, also changes at constant 
hydrostatic pressure by considering the material’s hardening. 

Mohr-Coulomb and Drucker-Prager are two of the most 
popular without the cap constitutive models for soil. One 
of the main disadvantages of the Mohr-Coulomb criterion 
is the presence of corners on the yield surface. The Mohr-
Coulomb yield criterion is a hexagonal pyramid in the П 
plane that reasonably determines the failure locus compared 
to the data obtained from the experimental results. Studies 
showed that the actual surface of the failure is softer than the 
hexagon. These corners can imply singularities in the yield 
function [4,5]. Therefore, this causes the Mohr-Coulomb 
yield criterion leads to numerical difficulties when treating 
plastic flow at the corners of the yield surface [5,6]. In other 
words, in the case of using the associated flow rule, where 
the yield function is equal to the potential function, the Mohr-
Coulomb model will encounter numerical problems in which 
the non-associated flow rule must be used. Researchers have 
proposed a softer yield surface to overcome these problems 
by modifying the Mohr-Coulomb model. In this context, the 
Drucker-Prager yield function can be used mainly to express 
the behavior of sand [7]. Studies have shown that using the 
cap model appropriately expresses sand behavior. The reason 
is the ability to consider the effect of stress history, stress 
path, dilatancy, and the effect of the intermediate principal 
stress [8–10]. In other words, during dynamic loading, the 
plastic hardening of volume is critical to sandy soils, and it 
is appropriate to simulate its behavior using the cap model 
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[11,12]. Therefore, if the numerical modeling of soil behavior 
is simulated correctly, it can be used as a complementary or 
alternative method for laboratory tests [13–15]. Accordingly, 
using advanced constitutive models (such as the cap model) 
to simulate geotechnical engineering problems requires 
accurate calibration of the input model parameters. According 
to Calvello and Finno (2004), inverse analysis can be used 
to calibrate the parameters based on reducing the difference 
between experimental and numerical modeling results [16]. 
In this way, the initial values are assumed for parameters 
whose values are not precisely available, and the numerical 
modeling results are compared with that of the experimental 
data. This process continues until both results are matched. In 
the present study, the hardening parameters of the modified 
Drucker-Prager/Cap (MDPC) constitutive model are 
presented for Nevada sand (Dr = 40%) based on laboratory 
data and using the inverse method, which can be used in 
future studies for numerical simulation of this type of sand. 
Also, the results obtained from the Mohr-Coulomb (MC) and 
Drucker-Prager (DP) constitutive models are presented..

2- Materials
The soil used in the present study is Nevada sand. Nevada 

Sand (#120) was used during the VELACS Research Program 
(Verification of Liquefaction Analyses by Centrifuge Studies) 
by the Earth Technology Corporation in the 1990s. The 
results of this project, supported by the National Science 
Foundation (NSF), were presented by Arulmoli et al. (1992) 
at two relative densities of 40% and 60% [17]. Nevada sand is 
uniformly graded soil with an average grain size of about D50 
= 0.15 mm and is quartz sand [18]. The grain size distribution 
curve of Nevada sand is presented in Fig. 1.

2- 1- Friction angle
The present study determined the friction angle for Nevada 

sand from the consolidated drained (CD) and undrained (CU) 
triaxial tests from the VELACS project. The CD and CU 
triaxial test standards were EM1110-2-1906(X)2 and D4767-
88, respectively. ‘EM’ and ‘D’ are related to the Department 
of the US Army’s standard and ASTM standard, respectively. 
The drained friction angle of the soil can be calculated from 
the slope of the critical state line (CSL), M, in the p′-q′ space 
by Eq. (1):
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Fig. 2 shows the results of 6 triaxial tests in drained and 
undrained conditions. Drained conditions related to the tests: 
(CIDC, No. 40-107), (CIDC, No. 40-100), (CIDC, No. 40-
106), and the undrained conditions are related to the tests 
(CIUC, No. 40-06), (CIUC, No. 40-04) and (CIUC, No. 40-
05), which are conducted at three effective consolidation 
stresses (p′) of 40, 80, and 160 kPa, respectively. It should be 
noted that the effective consolidation stresses were constant 
during the CD tests (p′ = cte). According to Fig. 2, the slope 
of the critical state line was determined to be about 1.34. The 
angle of this line relative to the p′ axis indicates the parameter 
β (friction angle) in the Drucker-Prager model. CSL is the 
best line fitted to the experimental data in the p′-q′ (q = q ′) 
space, and its slope represents M in Eq. (1). According to this 
figure, the peak friction angle of Nevada sand at a relative 
density of 40% was obtained equal to 33°, equivalent to the 
friction angle of 53° in the Drucker-Prager model.

2- 2- Dilation angle
Shear resistance in sand depends on components such as 

interparticle friction ( µϕ′ ), particle rearrangement (critical-

 

Fig. 1. Grain size distribution curve [17]. 
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Fig. 1. Grain size distribution curve [17].
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state shear strength), and dilatancy. The dilation angle controls 
the amount of plastic volumetric strain in the material during 
plastic shearing. For granular materials, the dilation angle can 
be estimated by using the well-known equation: ψ = ϕ - 30°. 
According to Bolton (1986) and Schanz and Vermeer (1996), 
the dilation angle of soil is related to the peak friction angle 
( pϕ′ ) and the critical friction angle ( cs cvϕ ϕ′ ′= ) [19,20]. 
Bolton (1986) studied the resistance and dilatancy of 17 
types of sands in different densities and confining pressures 
in axisymmetric and plane strain conditions. The dilatancy 
curve slope depends on the sand’s relative density and the 
mean effective stress at failure. Thus, Bolton (1986) studied 
the dependence of ( p csϕ ϕ′ ′− ) with relative density and mean 
effective stress and suggested Eq. (2) based on experimental 
results:
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Where IR is the relative dilatancy index, ID is the relative 
density of sand (ID = Dr/100), p′ is the mean effective stress 
at the peak shear strength in kPa, Q and RQ are also fitting 
parameters that depend on the intrinsic properties of sand. 
According to Bolton (1986), Q = 10 and RQ = 1 had the best 
fit with experimental results. However, based on Castro 
(2001) [21], the values of Q = 9.5 and RQ = 0.7 were obtained 
for Nevada sand from the undrained triaxial compression test 
[22]. Relative density (ID) can be calculated from ID = (emax 
– e)/(emax – emin), where emax and emin are the maximum and 
minimum void ratios, respectively.

According to Schanz and Vermeer (1996), the peak 
dilation angle ψp can be estimated from Eq. (3) for both 
triaxial strain and biaxial strain [20]:
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Where IR can be determined using Eq. (2). Therefore, the 
dilation angle can be calculated as a function of the mean 
effective stress p′ using the above equation.

2- 3- Shear and Young’s modulus
In the present study, the maximum shear modulus of sand 

was considered as Eq. (4):
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Where p′ and Gmax are both in kPa. Young’s modulus of 
the soil can be estimated from the shear modulus, as Eq. (5).
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Poisson’s ratio of Nevada sand was considered 0.33.

3- Constitutive models
3- 1- Mohr-Coulomb (MC) model in Abaqus

The Mohr-Coulomb yield criterion can be considered the 
generalized Tresca model. In both models, it is assumed that 
the maximum shear stress defines the yield criterion of the 
material. The value of the ultimate shear stress in the Tresca 
model is constant, while in the Mohr-Coulomb model is a 

 

Fig. 2. Drained and undrained triaxial test results for Nevada sand at a relative density of 40% (Arulmoli 
et al., 1992) [17]. 
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function of the normal stress that acts on the specific plane. 
Shear strength in the Mohr-Coulomb criterion increases 
with increasing normal stress. The Mohr-Coulomb model 
implemented in Abaqus is based on the classic MC yield 
criterion, which includes a straight line in the meridian plane 
(i.e., p-t plane, where p is the hydrostatic stress and t is the 
deviatoric stress) and a six-sided polygon in the deviatoric 
plane (i.e., П plane). In general, the plastic flow of this 
model in Abaqus is always non-associated. This model uses a 
smooth plastic flow potential instead of the classic hexagonal 
pyramid [23].

3- 2- Extended Drucker-Prager plasticity model (DP) in 
Abaqus

The extended Drucker-Prager model can be used to 
describe the behavior of frictional materials (such as granular 
soils) that exhibit pressure-dependent yield. In other words, 
this model is used for materials that become harder as the 
pressure increases. The yield surface of the DP criterion in 
Abaqus can be linear, hyperbolic, and exponential. A linear 
model with the non-associated flow rule is usually used in 
the p-t plane for granular materials [10]. The Drucker-Prager 
model implemented in Abaqus is defined as Eq. (6):
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Where β is the friction angle (the slope of the shear yield 
surface in the p-t plane), and d is the cohesion. Also, p is the 
hydrostatic stress obtained from Eq. (7).
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In Eq. (6), t is the deviatoric stress and is given by:
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Where q is the Mises equivalent stress, r is the third 
invariant of deviatoric stress, and K is the flow stress ratio, 
which indicates the yield stress ratio in triaxial tension to yield 
stress in triaxial compression and is a scalar parameter. The 
flow stress ratio determines the shape of the yield surface, 
which according to Fig. 3, controls the curvature of the yield 
surface in the deviatoric principal stress plane (Π-plane). The 
maximum value of K is equal to 1, in which case the shape of 
the yield surface will be a circle, and the third stress invariant 
will not affect the yield surface. According to Eq. (8), if K = 
1, then t = q. By reducing K, the shape of the yield surface 
will be triangular with smoothly rounded edges, as shown in 
Fig. 3. Therefore, it is possible to define non-circular yield 
surfaces in the Π-plane by reducing the K value. Based on 
the principles of plasticity, the yield surface must be convex. 
To ensure the yield surface’s convexity, the K value cannot 
be less than 0.778 (i.e., 0.778 ≤ K ≤ 1.0). It should be noted 
that in the plane strain condition, the value of this parameter 
is considered equal to 1, but in the triaxial condition can be 
determined from Eq. (9) [10]. According to Helwany (2007), 
the setting of K = 1 has properly simulated the triaxial stress-
strain response of Ottawa sand (ϕ = 37°) at two confining 
stresses of 35 and 70 kPa [9].
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Fig. 3. Modified Drucker-Prager yield surface in the deviatoric principal stress plane (Π-plane). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Modified Drucker-Prager yield surface in the deviatoric principal stress plane (Π-plane).
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3- 3- Modified Drucker-Prager/Cap (MDPC) plasticity model 
in Abaqus

The cap model implemented in the Abaqus defines 
the transfer surface to the Drucker-Prager cap model. This 
additional yield surface located between the shear failure 
surface and the cap surface is known as the modified 
Drucker-Prager/cap (MDPC) model in the literature. This 
constitutive model can simulate materials whose compressive 
yield strength is more significant than tensile yield strength 
(such as rock and soil). As shown in Fig. 4, the yield surface 
of the MDPC implemented in Abaqus includes three parts: 
the Drucker-Prager shear failure surface, an elliptical cap 
intersecting the mean effective stress axis, and a smooth 
transition between the shear failure and the cap surface. The 
smooth transition region is introduced to achieve convergence 
in the numerical analysis [24,25]. The Drucker-Prager failure 
part is a perfectly plastic yield surface (without hardening). 
Plastic flow in the Drucker-Prager shear failure surface 
produces a volumetric plastic dilation, causing the cap to 
soften. While the plastic flow on the cap surface causes the 
material to compaction [10]. In other words, when the stress 
conditions cause yielding on the cap, volumetric plastic strains 
cause hardening, and as a result, the cap becomes larger. On 
the other hand, if the stress conditions led to yielding on 
the Drucker-Prager shear failure surface, volumetric plastic 
dilation caused the cap to shrink (softening) [9]. According 
to Fig. 4, because at the point of intersection of the cap with 
the p-axis, the induced strains are only volumetric type, the 
cap intersects the mean effective stress axis at a right angle. 
In the cap region, flow potential is similar to the yield surface 
(i.e., flow is associated). While for the Drucker-Prager shear 
failure surface and the transition yield surface, the flow is 

non-associated.
As shown in Fig. 4, the cap yield surface is an ellipse with 

an eccentricity of R in the p-t space, which depends on the 
third stress invariant, r, in the deviatoric plane (See Fig. 3). 
The cap yield surface as a function of volumetric plastic strain 
hardens (expands) or softens (shrinks), which is expressed as 
Eq. (10):
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Where R is the material parameter that, according to Fig. 
4, controls the cap shape. This parameter must be greater 
than zero and can be determined based on the contours of 
constant plastic volumetric strains from experimental results 
(conventional triaxial compression test and hydrostatic 
compression test) [26,27]. Based on Han et al. (2008), values 
of R range from 0.0001 to 1000 [28]. Desai and Siriwardane 
(1984) reported R values in the range of 1.67 to 2 (for artificial 
soil). However, this parameter for Ottawa sand has been 
considered 0.4 [9] and 2.45 in dense conditions [11]. Similar 
to Lee et al. (2010), R can be determined by the inverse 
method using numerical simulations [12]. The value of this 
parameter depends on the mean stress, p. As the mean stress 
increases, R decreases. Lee et al. (2010) obtained R values 
from the inverse method for Tsukuba sand using LS-DYNA 
finite element software, ranging between 5 and 8 under mean 
stresses of 100 and 40 kPa, respectively.

In Eq. (10), α is a small number (usually 0.01 to 0.05) 

 
Fig. 4. Yield surface of the MDPC model in the p-t plane [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Yield surface of the MDPC model in the p-t plane [9].
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utilized to define a smooth transition surface between the 
Drucker-Prager shear failure surface and the cap. If this 
parameter is considered zero (α = 0), the MDPC model does 
not have a transition region, implying a sharp-edge connection 
between the shear failure and the cap surfaces [29]. The lack 
of a transition region can lead to convergence problems. 
Therefore, if it is assumed that the transition zone does not 
exist in this model, it is better to use small values for α (for 
example, 0.001) [30]. This parameter is usually between 0.01 
and 0.05, which for Ottawa sand has been considered 0.05 [9] 
and 0.01 [11] in the literature. The transition surface in the 
MDPC model is defined as Eq. (11):
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As mentioned before, K = 1 causes the deviatoric stress 
(t) will be equal to the Mises equivalent stress (i.e., t = q). 
Therefore, in the triaxial test, it will be t = q = σ1 – σ3, where 
σ1 and σ3 are the maximum and minimum principal stresses, 
respectively [10].

In Eqs. (10) and (11), pa is a parameter that controls the 
hardening-softening behavior as a function of the plastic 
volumetric strain, which is also called the evolution parameter 
and is defined as:
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Where pb is the hydrostatic compression yield stress that, 
according to Eq. (13), is defined as a function of volumetric 
plastic strain.
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Where p
v0ε  shows the initial condition of the material at 

the beginning of the analysis. Hardening-softening behavior 
can be defined by a piecewise linear function relating the 
mean effective stress pb and the volumetric plastic strain. 
This curve can be determined from an isotropic consolidation 
test with several unloading-reloading cycles [9]. The slope 
of the unloading-reloading line can be used to calculate 
the volumetric elastic strain. The contribution of elastic 
strain must be subtracted from the total volumetric strain to 
calculate volumetric plastic strain. In saturated soft soils, no 
volume change might occur during seismic loading caused by 
assuming undrained conditions. In these cases, the Drucker-
Prager model should be used instead of the MDPC model 
(without considering the volumetric plastic hardening) [11].

4- Volumetric strain under hydrostatic loading for Nevada 
sand

In the MDPC constitutive model, the volumetric strain that 
occurs under hydrostatic loading can be determined based on 
experimental data from Lade and Abelev (2005) for Nevada 
sand. As is known, the stress history of soil (maximum 
effective stress that the soil has endured in its geological 
history) plays an essential role in the behavior of granular 
soil [31–33]. Therefore, comprehensive experimental data for 
the hydrostatic compression of Nevada sand will be required 
to consider the effect of the initial position of the hardening 
cap ( 0p′ ) on soil resistance and the determination of strain 
components at different stress levels. The models presented in 
the literature for the hydrostatic compression of Nevada sand 
were used in the present study to determine the volumetric 
plastic strains at the relative density of 40% under different 
confining stresses. Table 1 summarizes these hydrostatic 
compression models to estimate the volumetric strain of sand.

Fig. 5 shows the hydrostatic compression curves obtained 
from models listed in Table 1 and the results of the Lade and 
Abelev (2005) tests for Nevada sand at two relative densities 
of 30% and 70%. As can be seen from this figure, Vallejos 
(2008) [37] and Lee et al. (2010) [12] models have shown the 
best agreement with the experimental results. The volumetric 
strain calculated by Qubain et al. (2003) [35] and Lee et al. 
(2010) were obtained almost the same.

In Fig. 5, εv represents the total volumetric strain. Total 
volumetric strain is the sum of the elastic strain increment and 
plastic strain increment. Therefore, the total volumetric strain 
calculated from the proposed models, as presented in Table 
1, must be subtracted from the elastic strain to determine the 
plastic volumetric strain. The increment of elastic volumetric 
strain during hydrostatic loading can be determined from Eq. 
(14): )( 0
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Where e
vδε  is elastic volumetric strain increment, 

δp′ denotes hydrostatic pressure increment, K′ is the bulk 
modulus, κ is the slope of the unloading-reloading line in 
the e-ln(p′) space, υ represents the specific volume of soil 
(υ = 1+e) at the starting of loading (i.e., e = e0), and p′ is 
the hydrostatic pressure at the starting of loading ( 0p p′ ′=
). According to Eq. (14), bulk modulus refers to the ratio of 
hydrostatic stress to volumetric strain change. Therefore, 
tangent bulk modulus can be determined by differentiating 
equations in Table 1 concerning the hydrostatic stress p′. The 
tangent bulk modulus is the slope of the stress-strain curve 
at any given stress or strain. Therefore, the amount of plastic 
volumetric strain can be determined as [12]:
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Table 1. Proposed models to predict the volumetric strain of sandy soils under hydrostatic loading.Table 1. Proposed models to predict the volumetric strain of sandy soils under hydrostatic loading. 
 

Model 
No. formula and description 

Parameter 
values for 

Nevada sand 
Reference 
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e0: initial void ratio of sand, β: dimensionless parameter, ρc: 
compression coefficient in the limiting compression curve (LCC), Cb: 
dimensionless elastic coefficient, p′: hydrostatic pressure, patm: 
atmospheric pressure (100 kPa) 

ρc
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β = 0.0023 
Cb = 850 

Pestana and 
Whittle 

(1995) [34] 
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b and m: intercept and the slope of straight-line isotropic compression 
for sandy soil, in the volumetric strain versus the ratio of volumetric 
strain to effective mean stress space (i.e., εv - εv/p′), respectively. 

Dr = 30%: 
b** = 0.0039  
m** = 0.001  
Dr = 70%: 
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m** = 0.0009 

Qubain et al. 
(2003) [35] 
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Dr0: initial relative density, C: material constant, patm: atmospheric 
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[36] 
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e0: initial void ratio, patm: atmospheric pressure (100 kPa), p′: 
hydrostatic pressure, As, b, and αv parameters used for sandy soils 

As/patm
† = 637 

b = 1.571 
αv = 0.37 

Vallejos 
(2008) [37] 
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p′: hydrostatic pressure, Ki: initial tangential bulk modulus, and (εv)asy: 
asymptotic total volumetric strain that occurs at p′ = ∞ 

Dr = 30%: 
Ki

‡ = 26000 
(εv)asy

‡ = 4.1 
Dr = 70%: 

Ki
‡ = 38783 

(εv)asy
‡ = 2.95 

Lee et al. 
(2010) [12] 

* Average values of Manchester fine sand and Toyoura sand 
** Units: b (%/kPa), m (1/kPa) 
† Specimen preparation technique (Air Pluviation, AP) 
‡ Units: Ki (kPa), (εv)asy (%) 
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Where p′ is the hydrostatic stress at each loading step and 
Kt is the tangent bulk modulus.

In addition to the models presented in Table 1, the soil 
plastic volumetric strain can be directly calculated from the 
Cam clay model using Eq. (16) [9,38].
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Where λ and κ are material parameters. λ and κ for Nevada 
sand can be determined from the hydrostatic compression 
curves reported by Vallejos (2008) based on the experimental 
data of Lade and Abelev (2005). In the present study, λ 
and κ for Nevada sand at the relative density of 40% were 

 

 
Fig. 5. Measured (prepared by Air Pluviation method) and predicted values for hydrostatic compression of 

Nevada sand (a) Dr = 30%, and (b) Dr = 70%. 
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Fig. 5. Measured (prepared by Air Pluviation method) and predicted values for hydrostatic compression 
of Nevada sand (a) Dr = 30%, and (b) Dr = 70%.
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considered equal to 0.012 and 0.0045, respectively.
Fig. 6 shows the volumetric plastic strain of Nevada 

sand for the initial confining stress ( 0p′ ) of 40 kPa. As can 
be seen, the Cam clay model overestimated the volumetric 
plastic strain. Also, the calculated values of elastic strain up 
to hydrostatic stress of about 1050 kP have been greater than 
those of plastic strain in the Lee et al. (2010) model. However, 
the elastic strain amplitude is a small fraction of the total strain 
[34]. Based on this, it seems that the Lee et al. (2010) model 
cannot correctly predict the plastic strains which develop 
in the Nevada sand. Therefore, the present study used the 
Vallejos model to determine the cap parameters.

5- Calibration of resistance parameters for triaxial 
condition
5- 1- Friction angle

To determine the Drucker-Prager parameters (β and d), 
it is necessary to have the results of at least three triaxial 
compression tests. The at-failure conditions obtained from 
the results of the tests can be plotted in the p-t plane. A 
straight line is then fitted to these points. The intersection of 
this line with the t-axis represents d (cohesion in Drucker-
Prager), and the slope of the line is also equal to β (friction 
angle in Drucker-Prager), which was previously presented in 
Fig. 2 for Nevada sand. In addition, Drucker-Prager model 
parameters (β and d) can also be determined for triaxial 
conditions using Mohr-Coulomb model parameters (ϕ and c) 
from Eqs. (17) and (18) [10]:
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Where ϕ and c are the friction angle and cohesion in the 
Mohr-Coulomb model, respectively.

5- 2- Soil dilation
In addition to the friction angle and cohesion, the dilation 

angle of soil should also be calculated in the p-t space for the 
triaxial condition using Eq. (19) [39,40].
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Where ψMC and ψDP are the dilation angles in the σ-τ and 
p-t coordinate space, respectively.

5- 3- Determination of R parameter in p-t space
According to Fig. 7, two approaches were used in the 

present study to determine the R parameter: theory and 
numerical modeling (inverse method). This parameter can be 
obtained for Nevada sand from the triaxial compression test 
conducted by Arulmoli et al. (1992), according to the loading 
path shown in Fig. 8. In this figure, based on the drain testing 
procedure (p′ = cte), the evolution parameter (pa) is equivalent 
to the effective consolidation stress.

Decreasing the value of R causes the specimen to reach its 
maximum deviatoric stress at a faster rise. However, reducing 
R will no longer affect the maximum deviatoric stress when 

 
Fig. 6. The volumetric plastic strain of Nevada sand at a relative density of 40%. 
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Fig. 7. Procedures for determining the R parameter in the present study. 
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Fig. 7. Procedures for determining the R parameter in the present study.
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the soil strain reaches the ultimate value. In this condition, 
the maximum deviator stress of soil will be affected by the 
α value. In this case, increasing the α value decreases the 
ultimate deviatoric stress of the soil. According to Shin and 
Kim (2015), it is desirable to determine R by considering α 
as zero. In the MDPC model, α is defined only for numerical 
stability; therefore, it is not a material constant [25]. By 
setting α = 0, R in p-t space is determined as below:
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Fig. 9 shows the results of the drained triaxial tests of 
Nevada sand. In this figure, the peak deviatoric stresses 
have been shown for different effective consolidation 
stresses.

Table 2 shows the determination of the R parameter based 
on the final cap using the theoretical approach (in the p-t 
space). As mentioned, it is proper to obtain the R-value by 
setting α = 0. Therefore, the peak shear stress measured by 
Arulmoli et al. (1992) was considered a failure value (See 
Fig. 8). Also, pb was determined based on the Vallejos model 
from Eq. (21).

 
 

Fig. 8. The stress path in the drained triaxial test of Arulmoli et al. (1992) and the yield surfaces of the 
MDPC model in the p-t space to determine the R parameter (α = 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. The stress path in the drained triaxial test of Arulmoli et al. (1992) and the yield surfaces of 
the MDPC model in the p-t space to determine the R parameter (α = 0).

  

Fig. 9. CD tests results for Nevada sand at a relative density of 40% under effective consolidation stresses of 
40, 80, and 160 kPa (a) εa - q diagram and (b) εa - εv diagram (Arulmoli et al., 1992). 
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According to Table 2, R was calculated based on 
volumetric strain corresponding to peak shear strength, which 
led to a good agreement between the theoretical approach 
and numerical modeling (inverse method). Based on this, εv 
for p′ = 160 kPa was lower than the other tests (See Table 
2). Therefore, by decreasing the volumetric plastic strain, 
pb decreased according to Eq. (21), and the result of the 
expression |pb - pa| for p′ = 160 kPa was obtained more than 
that of p′ = 80 kPa. Thus, with increasing confining stress 
from 80 to 160 kPa due to the increase in |pb - pa|, according 
to Eq. (20), R has raised to 0.75. While compared to the value 
calculated for p′ = 40 kPa, R has decreased with increasing 
mean effective stress, similar to Lee et al. (2010) study.

In the present study, according to the procedure shown 
in Fig. 7, the constant value of R = 0.8 was set for Nevada 
sand at all confining stresses. Helwany (2007) also used a 
constant value of 0.4 for Ottawa sand based on triaxial test 
results (under confining stresses of 35-70 kPa). The transition 
surface parameter (α) was assumed to be 0.05, previously 
considered for Ottawa sand in the literature [9].

6- Numerical modeling of triaxial test
In this section, the numerical simulation of the drained 

triaxial test has been evaluated using MC, DP, and MDPC 
constitutive models in Abaqus version 6.14 [41]. Also, the 
accuracy of the cap parameters discussed in the previous 

sections for Nevada sand was investigated. The results of 
numerical simulations were compared with the laboratory 
data of Arulmoli et al. (1992) and Castro (2001). It should 
be noted that tests No (CIDC, 40-107), (CIDC, 40-100), and 
(CIDC, 40-106) from Arulmoli et al. (1992) were selected, 
which related to effective consolidation stresses (p′) of 40, 
80, and 160 kPa, respectively. The standard used in these tests 
was EM1110-2-1906(X)2, and the diameter and height of the 
cylindrical specimen were 6.35 cm (2.5 inches) and 15.3 cm, 
respectively. Fig. 10 shows the boundary conditions of the 
finite element model used in the triaxial test simulation of 
Nevada sand in Abaqus. In this figure, O is the center of the 
soil specimen, and the results of the simulations (stresses and 
strains) have been obtained from this point.

As shown in Fig. 10, a two-dimensional axisymmetric 
mesh with only one element was used for soil. The chosen 
element was a pore fluid/stress eight-node axisymmetric 
quadrilateral element and reduced integration (CAX8RP). As 
can be seen, the vertical displacement is fixed on the lower 
part of the model (uy = 0). Also, the left side of the mesh is 
a symmetry line (ux = 0). On the top surface of the mesh, 
a uniform downward displacement was applied very slowly 
(strain-control triaxial test), which is a common approach 
in numerical simulation [9,42]. The top surface of the mesh 
was considered a pervious boundary during the loading. 
Therefore, the top and bottom of the soil specimen were 
allowed to drain due to the symmetry concerning the plane 
passing through the mid-height of the soil. The analyses were 
carried out in two steps: a consolidation step and a shearing 
step. In the first step, confining pressure was applied to the 
upper and right sides of the mesh. The geostatic command 

Table 2. Initial estimation of R parameter from the theoretical approach.Table 2. Initial estimation of R parameter from the theoretical approach. 
 

Arulmoli et al (1992) [17] Vallejos (2008) [37] 
pa (kPa) R‡ 

p′ (kPa) q (kPa) εv (%)* εv0
p  (%) pb (kPa)† 

40 58.32 -1.51 0.49 82.47 40 0.8 

80 103.12 -1.81 0.64 121.70 80 0.39 

160 220.1 -0.89 0.82 0.06 160 0.75 
* Volumetric strain corresponding to peak shear strength (q) was chosen for εv. In the drained triaxial test 

conducted by Arulmoli et al. (1992) the mean effective stress was kept constant throughout the test (No. 40-107, 

No. 40-100, and No. 40-106), so: (εe = 0) and (εv = εv
p). Also, compressive stresses and strains were considered 

positive in these tests. 

† Calculated from Eq. (21) with e0 = 0.748,  εv
p = εv , As/patm = 637, b = 1.571, αv = 0.37 and patm = 100kPa 

‡ Calculated from Eq. (20) with d = 0 and β = 53° 
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was used in this step to ensure equilibrium existence within 
the soil specimen. Also, to ensure that the initial horizontal 
stresses are the same as the vertical stresses in the first step 
of the test, the value of the lateral coefficient was defined as 
1. The second step (shearing) was also performed (within 109 
seconds) by applying downward displacement at a minimal 
rate. In this step, a displacement-type load of 1.5 cm was 
applied to the top surface, which type of load variation with 
time was considered as “ramp linearly overstep”. It should be 
noted that the loading rate used in the numerical simulation 
of the CD test should be selected so that the excess pore water 
pressure within the soil specimen is always zero. However, 
the maximum pore water pressure change was set to 7 × 10-3 
kPa per time increment. This procedure is suitable for loading 
steps with a very long duration [9]

As mentioned before, the mean effective stress p′ was 
constant within the soil specimen throughout the drained 
triaxial test of Arulmoli et al. (1992). This type of triaxial test 
can be simulated by changing pore water pressure (such as 
the periodic opening and closing of the drain tap connected 
to the specimen in the study of Eslami et al., 2018 [43]) using 
subroutine coding in Abaqus. However, to avoid numerical 
complexity in the present study, the drained triaxial tests of 
Arulmoli et al. (1992) were modeled as the conventional 
triaxial compression, CTC, test (keeping the radial stress 
constant and increasing the axial stress). Also, once again 
conventional drained triaxial compression test of Castro 
(2001), as reported by Kulasingam et al. (2004) and Jaeger 
et al. (2014) [44,45]a range of initial relative densities (DR, 
was simulated.

The model parameters for the Nevada sand are presented 
in Table 3. The initial position of the cap in the MDPC 
constitutive model, which shows the initial consolidation of 
the soil, was taken as p

v0 0ε = , corresponding to the effective 
consolidation stresses of p′ (i.e., 40, 80, 160, and 390 kPa). 
Also, the hydrostatic compression curves used in the cap 
model under consolidation stresses of 40, 80, and 160 kPa 
(for Arulmoli et al., 1992) and 390 kPa (for Castro, 2001) 
are presented in Fig. 11. Notably, a small cohesion value was 
used for Nevada sand in Abaqus.

7- Numerical Modeling Results
Fig. 12 shows pore water pressure and vertical 

displacement of the soil specimen contours obtained from the 
numerical simulation of the Castro (2001) test at the end of 
the analysis for the MDPC model. As can be seen, the pore 
water pressure in the center of the soil specimen is zero, so 
the duration of the shearing step (109 seconds) was a good 
choice and did not need to increase. Similar results were 
obtained for other analyses.

Fig. 13 shows the results of simulations in terms of stress 
paths and deviatoric stress values using Mohr-Coulomb 
(MC), Drucker-Prager (DP), and modified Drucker-Prager/
cap (MDPC) constitutive models. In this figure, the laboratory 
data of Arulmoli et al. (1992) (with constant mean effective 
stress) and Castro (2001) (CTC test) are also presented. As 
mentioned, the drained triaxial tests of Arulmoli et al. (1992), 
similar to Castro (2001), were simulated as the CTC test 
in Abaqus. Fig. 13 (a) shows the measured and computed 
effective stress paths. In this figure, the peak stress points 

 
Fig. 10. Axisymmetric finite element model of the drained triaxial test used in Abaqus. 
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Fig. 10. Axisymmetric finite element model of the drained triaxial test used in Abaqus.



N. Hasanpouri Notash et al., AUT J. Civil Eng., 6(3) (2022) 339-358, DOI: 10.22060/ajce.2023.22031.5817

352

Table 3. Mohr-Coulomb (MC), Drucker-Prager (DP), and modified Drucker-Prager/cap (MDPC) 
model parameters for Nevada sand used in the numerical simulation of the triaxial test.

Table 3. Mohr-Coulomb (MC), Drucker-Prager (DP), and modified Drucker-Prager/cap (MDPC) model 
parameters for Nevada sand used in the numerical simulation of the triaxial test. 

 

Parameter Unit Constitutive 
model 

Dr = 20% Dr = 40% 
Confining stress (kPa) 

p′ = 390 p′ = 40 p′ = 80 p′ = 160 
ρ kg/m3 

In
 a

ll 
m

od
el

s 

1467 1523 
e0 - 0.815 0.748 
k m/sec 6.6  10-5 
γw kN/m3 9.81 

Gmax MPa 160.46 51.39 72.67 102.77 
E MPa 426.81 136.69 193.31 273.38 
ν - 0.33 

ϕ, β* deg (°) MC 33 
DP, MDPC 53 

ψ deg (°) MC 0.1 9.9 8.2 6.4 
DP 0.2 20 16.7 13 

c, d* kPa MC 10-5 
DP, MDPC 10-5 

K - DP, MDPC 1 
εv0

p † - MDPC 0 
R‡ - MDPC 0.8 
α - MDPC 0.05 

Cap hardening - MDPC According to Fig. 11 
* In the Drucker-Parger and cap Model (β, d) and in the Mohr-Coulomb Model (ϕ, c) 
† Expresses the initial position of the cap 
‡ Cap eccentricity 

 

 

 

 

 

 

 

 

 
Fig. 11. Hydrostatic compression curves for Nevada sand under different effective consolidation stress 

based on the Vallejos (2008) model, (As/patm = 637, b = 1.571, αv = 0.37). 
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Fig. 11. Hydrostatic compression curves for Nevada sand under different effective consolidation stress 
based on the Vallejos (2008) model, (As/patm = 637, b = 1.571, αv = 0.37).
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(b) 

 

Fig. 12. Results of numerical simulation of Castro triaxial test using the MDPC model at the end of the 
analysis (a) pore water pressure contours in Pa, and (b) axial displacement contours in meter. 

Fig. 12. Results of numerical simulation of Castro triaxial test using the MDPC model at the end of the 
analysis (a) pore water pressure contours in Pa, and (b) axial displacement contours in meter.
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of each path represent the ultimate (failure) values. In the 
present study, the friction angle and slope of the critical state 
line, CSL (i.e., M = q′/p′), for Nevada sand were determined 
based on the triaxial test results of Arulmoli et al. (1992). 
However, based on the experimental data of Castro (2001), 
the slope of the CSL was calculated at about M = 1.25, and 
the corresponding friction angle was obtained at about 31° 
by the well-known equation: sinϕ = 3M/(6+M). Nevertheless, 
the friction angle of Nevada sand was considered ϕ = 33° 
(See Table 3). For this reason, the experimental stress path of 
Castro (2001) has not intersected the critical state line. As can 
be seen, the computed effective stress path is consistent with 
the experimental data of Castro (2001). Also, the computed 
effective stress paths for Arulmoli et al. (1992) have a slope 
of 3:1, which resulted from the simulation of these tests as 
conventional triaxial compression in Abaqus. The stress paths 
for all constitutive models had almost similar results, and 
only the stress paths obtained from the DP model have been 
presented in Fig. 13 (a). According to Fig. 13 (b), the ultimate 
deviatoric stress obtained from the MC and DP constitutive 
models are almost the same, which indicates the appropriate 
matching of the resistance parameters of these two models 
for the triaxial condition (See section ‎05). As seen from this 
figure, in all confining stresses, maximum deviatoric stresses 
from the elastic-perfectly plastic models (i.e., MC and DP) 
were obtained about 6% more than those of the cap model 
(i.e., MDPC). The maximum deviatoric stresses obtained 
from the MC and DP constitutive models had an error of 

about 11% compared with that measured by Castro (2001). 
However, this error for the MDPC model was reduced to 
about 5%. Therefore, the MDPC model is in good agreement 
with the experimental results of Castro (2001). For MC and 
DP constitutive models, where the behavior of the soil is 
linearly elastic up to the yield stress level and then becomes 
completely plastic, the lowest simulation accuracies were 
obtained due to the lack of hardening definition, compared 
with the experimental data of Castro (2001). In other words, 
with increasing confining stress, the behavior of sand tends 
to harden, and the ability of the MDPC model, which has 
a hardening function based on volumetric plastic strain, has 
increased in simulating the behavior of Nevada sand. At 
confining stresses less than 160 kPa, the maximum deviatoric 
stresses obtained from MC and DP models had an error of 
about 1.5% with the predicted values for Arulmoli et al. (based 
on a stress path of 3:1 in the p′-q′ space). This error for the 
MDPC model was increased to about 7%. In other words, at 
high confining stresses MDPC model and under low confining 
stresses, MC and DP models showed the highest simulation 
accuracy. Also, by increasing the confining pressure, the 
MC model implemented in the Abaqus overestimates the 
deviatoric stress of sand. A similar result was obtained by 
Jarast and Ghayoomi (2018) for saturated Sydney sand at 
confining stresses of 50 and 100 kPa [46]. The α parameter 
can be reduced in Abaqus to enhance the accuracy of the 
MDPC model for low confining stresses. The maximum 
deviatoric stress of the soil is affected by the α parameter. In 
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Fig. 13. Comparison of simulation results of conventional triaxial compression test (CTC) with experimental 
results, (a) stress paths, and (b) (εa - q) curves. 
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other words, decreasing the α value increases the maximum 
deviatoric stress of the soil. Consequently, according to Fig. 
13 (b), the results of the MDPC model will be consistent with 
the MC and DP models. According to Shin and Kim (2015), 
in numerical analysis using the MDPC model, setting α as 
small as possible is desirable unless the simulation solution 
does not converge. This parameter for Ottawa sand has been 
considered 0.01 and 0.05 in the literature [9,11]. The value 
of α was set to 0.05 for Nevada sand in the present study. 
Therefore, smaller values of maximum deviatoric stress in the 
MDPC model compared with those of the MC and DP models 
are due to the transition surface parameter. It is reminded that 
α has been introduced to the MDPC model only for numerical 
stability (convergence of the numerical solution). Therefore, 
it is not a material constant (Shin and Kim, 2015) [25]. Based 
on the results, α can be set to 0.01 for confining stresses less 
than 160 kPa, otherwise to 0.05 (e.g., greater than 390 kPa).

8- Summary and conclusions
During dynamic loading (such as blast loading), the 

plastic hardening of volume should be considered in the 
numerical simulation of sandy soils. This type of hardening 
can be simulated using the cap model in Abaqus. During 
hydrostatic loading, soils undergo plastic deformation, which 
may not necessarily lead to failure. Therefore, materials can 
experience hardening behavior in the cap model if hydrostatic 
pressure increases. This plastic hardening of volume is the 
advantage of the cap model (MDPC) over other linear elastic-
perfectly plastic models (e.g., MC and DP). In the simulations 
of geotechnical problems, properly using constitutive models 
(such as the cap model) requires accurate calibration of 
model parameters. In the present study, cap parameters 
of the MDPC model (i.e., hydrostatic compression curve 
and cap eccentricity) were determined based on the results 
of laboratory data for Nevada sand at a relative density of 
40%. Comparison of cap model results with those measured 
and computed from MC and DP models indicate proper 
calibration of hardening parameters for Nevada sand. The 
results obtained from the present study can be categorized 
as follows:

1- Under high confining stress (e.g., 390 kPa) MDPC 
model and under low confining stress (less than 160 kPa), 
MC and DP models had the highest simulation accuracies in 
predicting the ultimate deviatoric stress. In other words, with 
the increase of confining pressure, the behavior of Nevada 
sand has tended to harden, and the ability of the MDPC 
model, which has a hardening function based on volumetric 
plastic strain, has increased in simulating the behavior of 
Nevada sand.

2- It is desirable to set α as small as possible to improve 
the accuracy of the MDPC model for low confining stresses. 
The ultimate strength of the soil in the MDPC model 
is influenced by the α parameter so that the decrease in α 
value increases the maximum deviatoric stress. It should be 
mentioned that the recommended range for α is between 0.01 
and 0.05. The parameter α in the MDPC model is only for 
convergence of the numerical solution and is not a material 

constant. According to the results, it is recommended that for 
low confining stresses α = 0.01 (e.g., less than 160 kPa) and 
for high confining stresses α = 0.05 (e.g., greater than 390 
kPa).

3- The cap eccentricity parameter (R) does not affect 
the value of the maximum deviatoric stress of the soil. It 
is recommended from the present study that the R-value be 
determined based on volumetric strain corresponding to the 
peak deviatoric stress of sand. This procedure causes the 
simulation results to be consistent with the experimental 
data. Cap eccentricity, R, is highly dependent on the plastic 
strain. Therefore, the accurate estimation of the R requires 
choosing the appropriate hydrostatic compression model. In 
the present study, the best hydrostatic compression model, 
which appropriately predicted the volumetric strain values 
under different hydrostatic stresses, has been proposed for 
Nevada sand based on experimental data.
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