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A modification of Hardy-Littlewood maximal-function on Lie groups
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ABSTRACT: For a real-valued function f on a metric measure space (X, d, µ) the
Hardy-Littlewood centered-ball maximal-function of f is given by the ‘supremum-
norm’:

Mf(x) := sup
r>0

1

µ(Bx,r)

∫
Bx,r

|f |dµ.

In this note, we replace the supremum-norm on parameters r by Lp-norm with
weight w on parameters r and define Hardy-Littlewood integral-function Ip,wf . It
is shown that Ip,wf converges pointwise to Mf as p → ∞. Boundedness of the
sublinear operator Ip,w and continuity of the function Ip,wf in case that X is a
Lie group, d is a left-invariant metric, and µ is a left Haar-measure (resp. right
Haar-measure) are studied.
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1. Introduction

Maximal sublinear operators and their boundedness properties are one of the main tools in various aspects of
Fourier Analysis on Euclidean spaces Rn [9]. The prototype of these operators is the Hardy-Littlewood centered-
ball maximal-function M defined by

Mf(x) := sup
r>0

1

2r

∫ x+r

x−r

|f(y)|dy (1)

for any locally integrable function f on R. On other hand, there has been many attempts to extend various
classical results of Fourier Analysis for general metric measure spaces and in particular for Riemannian manifolds
and Lie groups. We only mention a few recent works with different flavors: [1, 3, 4, 5, 6, 8, 10]. One of the problems
concerning such extensions, is to define appropriate maximal operators with good boundedness properties. In [7] we
considered an abstract and unified approach to (1, 1)-weak type boundedness of Hardy-Littlewood maximal-function
operators. The main idea of the present note is to replace ‘supremum’ in the definitions of maximal operators by
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appropriate integrals on parameter-spaces, in order to find some affable substitutes for maximal operators. In this
note we apply this idea to Hardy-Littlewood maximal-function operator on metric measure spaces. For instance,
our modified version of (1) becomes

Ip,wf(x) :=

(∫ ∞

0

( 1

2r

∫ x+r

x−r

|f(y)|dy
)p

w(r)dr

) 1
p

,

where w is an integrable function of r and 1 ≤ p < ∞. We call Ip,wf the Hardy-Littlewood integral-function. In
§2, we give the definition of integral-function operators Ip,w and prove that limp→∞ Ip,wf(x) = Mf(x). In §3 (resp.
§4), we prove that for any (non-compact) Lie group G with a left-invariant metric and a left-invariant measure
(resp. right-invariant measure) Ip,w is (Lq(G),Lq(G))-bounded for 1 ≤ p ≤ q ≤ ∞ (and suitable w). We also show
that Ip,wf is almost everywhere continuous for f ∈ Lp(G) and 1 ≤ p < ∞.

Remark 1.1. We hope to give some applications of methods and results of this manuscript in future works (see
also Remark 2.7):

(i) To compute explicitly maximal functions of some sort of functions on Euclidean spaces by using Theorem 2.4.
(ii) To prove some regularity properties of maximal functions similar to Theorems 2.6 and 3.4.
(iii) To find boundedness properties of maximal function operators on general Lie groups.
(iv) To define some useful new classes of function spaces.

Acknowledgement. I would like to express my sincere gratitude to Dr. Mahdi Hormozi for valuable discussions
on various aspects of Fourier Analysis. Also, I would like to give thanks to the anonymous Referee for valuable
comments on the early version of this manuscript.

2. The main definition

Let X be a metric space with an unbounded distance function denoted by d. The open ball with center x ∈ X and
radius r > 0 is denoted by Bx,r. We have the following easy lemma.

Lemma 2.1. Let ν be a Borel measure on X which is finite on bounded subsets. Then the function (x, r) 7→ ν(Bx,r)
from X × (0,∞) into [0,∞) is lower semi-continuous and the function r 7→ ν(Bx,r) is left continuous. If for every
x, r we have ν{y : d(x, y) = r} = 0 (e.g. X is a Riemannian manifold and d, ν are the canonical metric and measure
on X) then the function (x, r) 7→ ν(Bx,r) is continuous.

Proof. Let (xn)n and (rn)n be sequences respectively in X and (0,∞) such that xn → x and rn → r > 0. We
have ∩n ∪k≥n (Bx,r \ Bxk,rk) = ∅ and hence ν(Bx,r \ Bxn,rn) → 0. Thus if ϵ > 0 then for sufficiently large n we have

ν(Bx,r)− ϵ < ν(Bx,r ∩ Bxn,rn) ≤ ν(Bxn,rn).

This shows the desired lower semi-continuity. Since r 7→ ν(Bx,r) is an increasing function, the lower semi-continuity
implies the desired left continuity. We have

∩n ∪k≥n (Bxk,rk \ Bx,r) ⊆ {y : d(x, y) = r}.

Thus if ν{y : d(x, y) = r} = 0 then ν(Bxn,rn \ Bx,r) → 0 and hence for sufficiently large n we have

ν(Bxn,rn)− ϵ < ν(Bxn,rn ∩ Bx,r) ≤ ν(Bx,r).

□

Let µ be a Borel measure on X with µ(X) = ∞ and such that for any nonempty bounded open subset U of X,
0 < µ(U) < ∞. We denote by Floc(X) the set of measurable functions f on X such that

∫
U
|f |dµ < ∞ for every

bounded Borel subset U . For any f ∈ Floc(X) the averaging-function Af of f is defined by

Af : X × (0,∞) → [0,∞), Af(x, r) :=
1

µ(Bx,r)

∫
Bx,r

|f |dµ.

By Lemma 2.1 the functions (x, r) 7→
∫
Bx,r

|f |dµ and (x, r) 7→ 1
µ(Bx,r)

are measurable. Thus Af is measurable. The

Hardy-Littlewood maximal-function Mf of f is a measurable function on X defined by

Mf : X → [0,∞], Mf(x) := sup
r>0

Af(x, r).

Thus Mf(x) is just the supremum-norm of the function r 7→ Af(x, r). Our main idea is to replace the supremum-
norm by an Lp-norm:
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Definition 2.2. Let X, d, µ be as above. Let w denote a nonnegative measurable function on (0,∞) with

∥w∥ :=

∫ ∞

0

w(r)dr < ∞

and such that w is also almost everywhere nonzero. We call w a radius-weight. Denote by ŵ the finite measure on
(0,∞) with density w. For any f ∈ Floc(X) the Hardy-Littlewood integral-function Ip,wf of type (p, w), 1 ≤ p ≤ ∞,
is defined to be the measurable function on X given by

Ip,wf : X → [0,∞], Ip,wf(x) := ∥r 7→ Af(x, r)∥Lp(ŵ).

More explicitly, for 1 ≤ p < ∞ we have

Ip,wf(x) :=
(∫ ∞

0

w(r)(Af(x, r))pdr
)1/p

.

By Lemma 2.1, r 7→ Af(x, r) is left continuous. Thus for p = ∞ we have

I∞,wf(x) = Mf(x).

Since A is sublinear, Ip,w is sublinear on Floc(X).

Lemma 2.3. Let θ be a finite measure on a measurable space T and let ϕ : T → [0,∞) be measurable. Then

∥ϕ∥L∞(θ) = lim
p→∞

∥ϕ∥Lp(θ).

Proof. We denote ∥ · ∥Lp(θ) by ∥ · ∥p. Suppose ∥ϕ∥∞ < ∞. Without loss of generality assume ∥ϕ∥∞ = 1 and

θ(T ) = 1. We have lim supp ∥ϕ∥p ≤ 1. For ϵ > 0 let Sϵ := {t : ϕ(t) > 1 − ϵ}. Then (1 − ϵ)θ(Sϵ)
1
p ≤ ∥ϕ∥p. Since

θ(Sϵ) ̸= 0 we have (1 − ϵ) ≤ lim infp ∥ϕ∥p, and hence 1 ≤ lim infp ∥ϕ∥p. Thus ∥ϕ∥∞ = limp ∥ϕ∥p. Now suppose
∥ϕ∥∞ = ∞. Let S′

n := {t : ϕ(t) ≤ n}. By the first part of the proof we have ∥ϕ|S′
n
∥∞ = limp ∥ϕ|S′

n
∥p. Thus

∥ϕ|S′
n
∥∞ ≤ lim infp ∥ϕ∥p. Since supn ∥ϕ|S′

n
∥∞ = ∞ we have limp ∥ϕ∥p = ∞. □

Theorem 2.4. For any f ∈ Floc(X) and every x ∈ X we have

lim
p→∞

Ip,wf(x) = Mf(x).

Proof. It follows from Lemma 2.3, with T = (0,∞), θ = ŵ, ϕ = Af(x, ·). □

Theorem 2.5. For q ∈ [1,∞) the following statements are equivalent:

(i) M is (Lq(X),Lq(X))-bounded.
(ii) The family {Ip,w}1≤p<∞ is uniformly (Lq(X),Lq(X))-bounded.
(iii) There exists a sequence (pn)n in [1,∞) such that pn → ∞ and such that the family {Ipn,w}n is uniformly

(Lq(X),Lq(X))-bounded.

Proof. Since Af(x, r) ≤ Mf(x) we have Ip,wf(x) ≤ ∥w∥
1
pMf(x). Thus ∥Ip,wf∥Lq(X) ≤ ∥w∥

1
p ∥Mf∥Lq(X). This

shows (i)⇒(ii). By Theorem 2.4 and Fatou’s Lemma we have∫
X

(Mf)qdµ ≤ lim inf
p

∫
X

(Ip,wf)
qdµ.

This shows (iii)⇒(i). (ii)⇒(iii) is trivial. □

It is not hard to see that the statement of Theorem 2.5 is valid if the term ‘(Lq(X),Lq(X))-bounded’ is replaced
by ‘(Lq(X),Lq(X))-weak-bounded’. In the case that X = Rn, d the standard Euclidean distance, and µ the
n-dimensional Lebesgue-measure, it is well-known that M is (Lq(Rn),Lq(Rn))-bounded for 1 < q ≤ ∞ and also
(L1(Rn),L1(Rn))-weak-bounded ([9]). Thus the latter statement is valid with M replaced by Ip,w. We will see from
Theorem 3.3 that I1,w is also (L1(Rn),L1(Rn))-bounded. The proof of the next result follows from the definition
of Ip,w, and is omitted.

Theorem 2.6. In the case that X = Rn, for any nonnegative Schwartz test-function f on Rn and every p ∈ [1,∞),
Ip,wf is continuously [p] times differentiable, where [p] denotes the greatest integer ≤ p.

We will see from Theorem 3.4 that for any p ∈ [1,∞) and every f ∈ Lp(Rn), the function Ip,wf is almost everywhere
continuous.

Remark 2.7. It is clear that the above formalism of ‘replacing supremum-norm by Lp-norm on parameter-space’
may be applied to almost all maximal sublinear operators of any kind. One can also work in an abstract framework
as in [7]. In this note we only consider the formalism for centered-ball Hardy-Littlewood maximal-function operators.
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3. Ip,w on Lie groups (I)

With the notations X, d, µ, w as in §2, suppose that X = G is a non-compact Lie group and suppose that d and
µ = λ denote the distance function and the measure canonically induced by a left-invariant Riemannian metric on
G. Thus d is a left-invariant metric and λ is a left Haar-measure on G. The space Floc(λ) = Floc(G) coincides
with the vector space of locally integrable functions on G with respect to λ. By Lemma 2.1, we know that for any
f ∈ Floc(λ) the function Af : G× (0,∞) → [0,∞) is continuous.

Lemma 3.1. For any f ∈ Floc(λ), r ∈ (0,∞), p ∈ [1,∞) we have

∥Af(·, r)∥Lp(λ) ≤
( 1

λ(Be,r)

∫
Be,r

∆(y−1)dλ(y)
) 1

p ∥f∥Lp(λ). (2)

Also we have ∥Af(·, r)∥L∞(λ) ≤ ∥f∥L∞(λ).

Here ∆ denotes the modular function of G ([2]), i.e. the unique mapping ∆ : G → (0,∞) satisfying λ(Bx) =
∆(x)λ(B) for every x ∈ G and every Borel subset B of G. Note that ∆ is a continuous group-homomorphism.
Thus, it follows from the relatively-compactness of Be,r in G, that the integral in right-hand side of (2) is finite.
For unimodular groups (e.g. abelian groups) ∆ ≡ 1. Thus for unimodular G, (2) becomes

∥Af(·, r)∥Lp(λ) ≤ ∥f∥Lp(λ).

Proof. Suppose that f ≥ 0. For 1 ≤ p < ∞, by Jensen’s inequality we have∫
G

(Af(x, r))pdλ(x) ≤
∫
G

( 1

λ(Bx,r)

∫
Bx,r

fp(y)dλ(y)
)
dλ(x)

=

∫
G

( 1

λ(xBe,r)

∫
Be,r

fp(xy)dλ(y)
)
dλ(x)

=
1

λ(Be,r)

∫
Be,r

(∫
G

fp(xy)dλ(x)
)
dλ(y)

=
1

λ(Be,r)

∫
Be,r

(
∆(y−1)

∫
G

fp(x)dλ(x)
)
dλ(y)

=
∥f∥pLp(λ)

λ(Be,r)

∫
Be,r

∆(y−1)dλ(y).

The case p = ∞ is trivial. □

Definition 3.2. With the above assumptions, the G-norm of any radius-weight w is denoted by ∥w∥G and is defined
by

∥w∥G :=

∫ ∞

0

w(r)

λ(Be,r)

(∫
Be,r

∆(y−1)dλ(y)
)
dr.

If G is unimodular then we have ∥w∥G = ∥w∥ < ∞. It is clear that for any G there exist radius-weights with finite
G-norm. For instance:

w(r) =

{
e−r2λ(Be,r)∫

Be,r
∆(y−1)dλ(y)

if 1 < 1
λ(Be,r)

∫
Be,r

∆(y−1)dλ(y)

e−r2 otherwise

Theorem 3.3. With assumptions of this section on G, suppose that w is a radius-weight with finite G-norm. Then
we have

∥Ip,wf∥Lq(λ) ≤ ∥w∥
q−p
qp ∥w∥

1
q

G∥f∥Lq(λ), (f ∈ Floc(λ), 1 ≤ p ≤ q ≤ ∞).

(Note that, for q = ∞ we let q−p
qp := 1

p and 1
q := 0.)
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Proof. By Jensen’s Inequality and Lemma 3.1, for q ̸= ∞ we have

∥Ip,wf∥qLq(λ)
=

∫
G

(∫ ∞

0

w(r)(Af(x, r))pdr
) q

p

dλ(x)

= ∥w∥
q
p

∫
G

(∫ ∞

0

w(r)

∥w∥
(Af(x, r))pdr

) q
p

dλ(x)

≤ ∥w∥
q
p

∫
G

∫ ∞

0

w(r)

∥w∥
(Af(x, r))qdrdλ(x)

= ∥w∥
q−p
p

∫ ∞

0

w(r)
(∫

G

(Af(x, r))qdλ(x)
)
dr

≤ ∥w∥
q−p
p

∫ ∞

0

w(r)∥f∥qLq(λ)

λ(Be,r)

(∫
Be,r

∆(y−1)dλ(y)
)
dr

= ∥w∥
q−p
p ∥w∥G∥f∥qLq(λ)

.

For q = ∞ the desired inequality is easily concluded. □

Theorem 3.4. With assumptions of this section on G, suppose that w is an arbitrary radius-weight. Let f ∈ Lp(λ)
with 1 ≤ p < ∞. Then for any x ∈ G such that f is essentially bounded on a neighborhood of x, Ip,wf is continuous
at x. In particular, Ip,wf is continuous almost everywhere.

Proof. Without loss of generality, suppose that f ≥ 0. Let ϵ > 0 be arbitrary and fixed. Choose a positive real
number a such that

∫ a

0
w(r)dr < ϵ and such that M := ess sup f |B(x,2a) < ∞. Then, for any y ∈ G with d(x, y) < a

we have ∫ a

0

w(r)
∣∣Af(x, r)−Af(y, r)

∣∣pdr =

∫ a

0

w(r)
∣∣ 1

λ(Be,r)

∫
Be,r

(f(xz)− f(yz))dλ(z)
∣∣pdr

≤
∫ a

0

w(r)
( 1

λ(Be,r)

∫
Be,r

|f(xz)− f(yz)|dλ(z)
)p
dr

≤
∫ a

0

w(r)2pMpdr < 2pMpϵ.

(3)

Choose a positive real number b such that 1
λ(Be,b)

< ϵ. Then, by Jensen’s Inequality, for any y ∈ G we have∫ ∞

b

w(r)
∣∣Af(x, r)−Af(y, r)

∣∣pdr ≤
∫ ∞

b

w(r)
( 1

λ(Be,r)

∫
Be,r

|f(xz)− f(yz)|dλ(z)
)p
dr

≤
∫ ∞

b

w(r)

λ(Be,r)

∫
Be,r

|f(xz)− f(yz)|pdλ(z)dr

≤
∫ ∞

b

w(r)

λ(Be,r)

∫
G

|f(x·)− f(y·)|pdλdr

≤
∫ ∞

b

w(r)

λ(Be,r)
2p∥f∥pLp(λ)

dr < 2p∥w∥∥f∥pLp(λ)
ϵ.

(4)

Since Af is continuous there exists δ > 0 such that for any y ∈ Bx,δ:

|Af(x, r)−Af(y, r)| < ϵ, (a ≤ r ≤ b),

and hence ∫ b

a

w(r)
∣∣Af(x, r)−Af(y, r)

∣∣pdr ≤ ∥w∥ϵp. (5)

If d(x, y) < min{a, δ} then by (3),(4),(5) we have

∣∣Ip,wf(x)− Ip,wf(y)
∣∣p ≤

∫ ∞

0

w(r)
∣∣Af(x, r)−Af(y, r)

∣∣pdr
≤
(
2pMpϵ

)
+
(
∥w∥ϵp

)
+
(
2p∥w∥∥f∥pLp(λ)

ϵ
)
.

The proof is complete. □

147



M. Maysami Sadr, AUT J. Math. Comput., 5(2) (2024) 143-149, DOI:10.22060/AJMC.2023.22259.1147

4. Ip,w on Lie Groups (II)

With the notations X, d, µ, w as in §2, suppose that X = G is a non-compact Lie group. Consider two Riemannian
metrics on G such that one of them is left-invariant and another one is right-invariant, and such that the two
metrics coincide on Lie-algebra of G. Let d denote the distance function on G induced by the left-invariant metric
and let µ = ρ denote the measure on G induced by the right-invariant metric. Thus ρ is a right Haar-measure
on G. If λ as in §3 denotes the measure induced by the left-invariant metric then we have λ(B) = ρ(B−1) and
ρ(xB) = ∆(x−1)ρ(B) for every x ∈ G and Borel subset B of G.

Lemma 4.1. For any f ∈ Floc(ρ), r ∈ (0,∞), p ∈ [1,∞] we have

∥Af(·, r)∥Lp(ρ) ≤ ∥f∥Lp(ρ).

.

Proof. Suppose that f ≥ 0. For 1 ≤ p < ∞, by Jensen’s inequality we have∫
G

(Af(x, r))pdρ(x) ≤
∫
G

( 1

ρ(Bx,r)

∫
Bx,r

fp(y)dρ(y)
)
dρ(x)

=

∫
G

( 1

∆(x−1)ρ(Be,r)

∫
xBe,r

fp(y)dρ(y)
)
dρ(x)

=
1

ρ(Be,r)

∫
G

∫
Be,r

fp(xy)dρ(y)dρ(x)

=
1

ρ(Be,r)

∫
Be,r

∫
G

fp(xy)dρ(x)dρ(y)

=
1

ρ(Be,r)

∫
Be,r

∥f∥pLp(ρ)
dρ(y)

= ∥f∥pLp(ρ)
.

The case p = ∞ is trivial. □

The proof of the following theorem is omitted. It is similar to the proof of Theorem 3.3 but uses Lemma 4.1.

Theorem 4.2. With assumptions of this section on G, suppose that w is an arbitrary radius-weight. We have

∥Ip,wf∥Lq(ρ) ≤ ∥w∥
1
p ∥f∥Lq(ρ), (f ∈ Floc(ρ), 1 ≤ p ≤ q ≤ ∞).

The statements of Theorem 3.4 remain valid with the new assumptions of this section on G. The proof is also
similar to the proof of Theorem 3.4. The only thing that may need an explanation is the relevant modification of
(4): We have ∥f∥pLp(ρ)

= ∆(x−1)
∫
G
fp(x·)dρ. Thus if we get y so close to x such that ∆(y) ≤ 2∆(x) then we have∫

G

|f(x·)− f(y·)|pdρ = ∥f(x·)− f(y·)∥pLp(ρ)

≤
(
∥f(x·)∥Lp(ρ) + ∥f(y·)∥Lp(ρ)

)p
=
(
∆(x)

1
p +∆(y)

1
p

)p
∥f∥pLp(ρ)

≤ 3p∆(x)∥f∥pLp(ρ)
.

Hence we replace the last line of (4) by

≤
∫ ∞

b

w(r)

λ(Be,r)
3p∆(x)∥f∥pLp(ρ)

dr < 3p∆(x)∥w∥∥f∥pLp(ρ)
ϵ.
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