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ABSTRACT: The main aim in the design of welded plate girders is to minimize the weight of the beam 
while satisfying design requirements which turns the design procedure into a nonlinear and complex 
optimization problem. In this paper, a two-stage optimization procedure is introduced to find the best 
design of welded plate girders in terms of both safety and economy. The total weight of the girder 
is considered as the objective function where some predefined constraints are applied using penalty 
functions to restrict the solution space. In the first stage, the theoretical optimum values of girder 
dimensions are obtained using the Artificial Bee Colony (ABC) algorithm based on the optimum use of 
steel material while satisfying restrictions on the flexural and shear strength, permissible deflection, and 
proportioning limits. Since the plate dimension values obtained by the first stage may not be available 
in the market, the second stage of optimization is carried out to reach a safe and economical design by 
considering available plate dimension values. The critical ratio of the designing procedure is obtained 
equal to one, which is the ideal design. To demonstrate the effectiveness of the proposed method, two 
examples are considered at the end of this article. The results show that the dimension of the plate 
girder calculated by the proposed approach is more economical and practical than that obtained by the 
traditional trial and error techniques.
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1- Introduction
Using plate girders as flexural members is an alternative 

solution to resist the bending moment and shear force in 
beams when the standard rolled sections cannot satisfy the 
minimum requirements of the design criteria. Although other 
solutions are available in such situations, the advantages of 
plate girders have made them a desirable choice for long-
span beams supporting considerable loads. One of the biggest 
advantages of plate girders is the more efficient use of steel 
material because of the placement of flanges far away from 
the centroid, increasing the section’s modulus and moment 
of inertia. Other benefits include its ability to be used in 
non-prismatic and composite sections and the possibility 
of fabricating the plate girder at desired length and depth, 
reducing the material waste during construction. Although 
the high shear and flexural strengths and considerable rigidity 
of the plate girders may be attractive from an economic point 
of view, their design to achieve the minimum weight possible 
is usually a challenging subject for designers.

One of the first studies on this matter was carried out [1] 
in 1966 to optimize the design of plate girders with constant 
depth. Another research [2] investigated the optimum weight 
of a continuous beam with a non-uniform cross-section 
subject to a uniformly distributed load using the plastic 

method. The optimization procedure was carried out through 
a direct search method in which some design parameters 
sequentially varied in small steps. The results indicated the 
largest permissible depth of the web, based on the design 
requirements, that could be used in the interior support with 
the maximum bending moment. A generalized geometric 
programming technique for the optimum design of prismatic 
multi-span plate girders is utilized for highway bridges[3]. 
The weight of the beam was considered as the objective 
function. The study was extended by researchers [4] where the 
thickness of the plates was rounded up to the practical values 
that were available in the market. A direct search procedure 
was utilized to find the minimum weight of non-uniform 
built-up stiffened plate girders [5]. He compared the results 
of the direct search procedure in finding the minimum weight 
of the plate girder with those of the generalized gradient-
based design procedure. He also showed that the results of the 
first method were more economical than those of the latter. 
This study [6] propose an optimization procedure developed 
using buckling and frequency constraints in addition to the 
traditional strength ones. An analytical model to predict the 
strength of plate girders with minimum weight based on a 
parametric study is developed [7]. The experimental results 
were used to validate the model. The results indicated that 
the lightest weight and maximum strength were obtained 
when the maximum web slenderness was used. A variable *Corresponding author’s email: banimahd@ardakan.ac.ir
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plate thickness for the girder along its length is studied [8]. 
Although using a variable thickness can reduce the total 
weight of the girder, the additional fabrication and welding 
required eventually increase the total cost. Saleem et al., 2019 
studied the effect of the slenderness of the web and flange 
as well as the beam’s unbraced length To find the minimum 
weight of plate girders. The selected slenderness values 
covered a broad range from compact to highly slender flange 
and web of plate girders. 

In recent years, numerical methods have been widely 
used for designing steel structures [10] and [11]. Among 
numerical approaches, metaheuristic algorithms have been 
attracted a great deal of attention. One of the first studies 
utilizing such algorithms to find the optimum design of plate 
girders was carried out by Fu et al. They [12]used the Genetic 
Algorithm (GA) to optimally design highway bridge beams 
and utilized the weight of the beams as well as the fabrication 
welding needed and the space between two adjacent girders 
along the bridge as their objective functions. Three kinds 
of constraints were utilized in their study and the results 
showed that the GA method is able to successfully find the 
minimum cost of plate girders. used a solver code developed 
based on the Newton Conjugate method to find the minimum 
weight of built-up beams and used the load factor method to 
define the constraints and penalty functions [13]. In another 
research, [14] developed a mathematical model to predict 
the minimum self-weight of plate girders. The weight of 
the beam was obtained based on the minimum use of steel 
material by optimizing the weight as the objective function. 
The procedure was carried out for different span lengths and 
applied loads using the Generalized Reduced Gradient (GRG) 
technique. A different meta-heuristic approach, the Harmony 
Search algorithm, is used to optimize the cross-section of 
plate girders [15]. They found a smaller cross-section for their 
plate girder with the same load-carrying capacity using their 
optimization technique. Among the metaheuristic algorithm, 
the Artificial Bee Colony (ABC) algorithm [16] with three 
setting parameters, which is more flexible than other most 
known approaches, is used in this study.

Published papers on the optimum design of plate girders 
are scarce. Despite many parameters and design constraints 
affecting the dimension of plate girders, the optimum design 
of the plate girder when all constraints are considered has not 
been comprehensively studied yet. This study focuses on this 
gap and provides a solution geared towards the optimum and 
safe designing of plate girders. In this paper, the optimum 
design of I-shaped plate girders with equal flanges is 
investigated under bending about the beam’s major axis based 
on the AISC360-16 design code requirements. The proposed 
optimization method is a two-stage procedure. In the first 
stage, the ABC algorithm is utilized to find the optimum 
weight of the beam including its web, flanges, and stiffeners. 
The problem restrictions include the depth of the web, the 
width of the flanges, and the thickness of plates, however, in 
practical problems, the main limit is usually triggered by the 
depth of the web. In the second stage, the obtained theoretical 
optimum dimensions have to be rounded to the available 

standard thicknesses in the market or other thickness values 
defined by the user. The height and width of the plates are also 
rounded to integer values for practical purposes. It should be 
noted that such changes in the dimensions of the plate girder 
may yield an unsafe or uneconomical design. 

To obtain the best solution after modifying plate 
dimensions based on the market availability, some partial 
changes are applied to the web height and the flange width 
to restore a critical penalty function ratio close to one. 
For this purpose, three approaches are presented for the 
second optimization stage. In the first approach, two of the 
variables, namely the web height and the flange width of the 
beam section, are optimized simultaneously using the ABC 
algorithm while the thickness of the plates is kept unchanged. 
In the second and third approaches, only the height of the 
web or the width of the flange is changed. Here again, the 
thickness of plates remains constant. The final solution is 
obtained more quickly in the two last approaches since only 
one single parameter is considered to be variable. The results 
show that using the proposed techniques, the optimum design 
of plate girders can be obtained. 

2- Methodology
One of the main advantages of plate girders is their 

flexibility in choosing the web and flange dimensions. 
Selecting the dimensions of the plate girder section is important 
from an economical point of view to minimize the use of steel 
material. Meanwhile, the plate girder should be designed to 
satisfy the strength criteria, serviceability requirements, and 
proportioning limits. Plate girders are usually categorized as 
flexural members based on their length-to-depth ratio, and 
occasionally as shear members. Therefore, they are primarily 
designed for flexural requirements and other requirements 
are examined for the sufficiency of the section. 

The proposed procedure to find the optimum design of 
plate girders works as follows: first, the flexural strength of 
the I-shaped section bent about its major axis is determined 
according to the governing design code (ANSI/AISC 360-16). 
The main aim is finding the height and thickness of the web 
and also the width and thickness of the bottom and top flanges. 
For simplification, designers prefer to design symmetric 
sections, therefore four unknown parameters are considered, 
i.e., the thickness and height of the web, thickness and width 
of the top or bottom flange. Since the weight of the beam is 
unknown at this stage, it needs to be estimated empirically 
To determine the total load that must be carried by the beam. 
It should be noted that under-estimating or over-estimating 
the plate girder’s weight may lead to unsafe or uneconomical 
design, respectively. Then, the shear and bearing stiffeners 
are designed. The variable parameters in the design of 
stiffeners are their dimensions and the clear space between 
them. After completing the design, the weight of the plate 
girder is calculated and compared with its initial weight at 
the beginning of the optimization process. The new weight 
is hopefully less than the previous one. If the difference is 
comparatively large, it means that the assumed beam section 
is far from optimum and the design procedure must be 
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repeated again to achieve a more economical design. The 
iterations will continue until satisfactory results are obtained.

Although theoretically optimum, the dimensions of the 
plate girder section at this stage most probably will not be 
practical considering the available dimensions of plates in 
the market or the user’s predefined dimensions. Therefore, 
the reported dimensions at the end of the first optimization 
stage should be modified to be compatible with the market 
or predefined values. For this purpose, the reported plate 
thicknesses are rounded up to the available dimensions. 
Moreover, the width (or height) of the flange (or web) is also 
rounded up to the practical values, which are in increments 
of cm. Obviously, the new beam with modified dimensions 
does not satisfy the optimum design requirements. To obtain 
an optimum design for the beam with its new practical 
dimensions, a second stage of optimization is required. 

In the second stage, it is assumed that the flange width 
and web height are variables while two remaining parameters 
(the flange and web thicknesses) are kept constant, equal 
to the modified values of the previous stage, and a second 
optimization is performed. The section obtained through the 
second optimization stage satisfies the necessary requirements 
of the design code as well as minimizing the use of the steel 
material. Note that at the end of this stage, the critical penalty 
function ratio will be next to zero and the thickness values are 
corresponding to the predefined ones. 

To determine the flexural strength of a symmetric I-shaped 
section bent about its major axis, the design code AISC360-16  
presents equations based on the slenderness of the section’s 
web and flange. The web is classified into three categories: 
compact, non-compact, and slender. To determine the nominal 
flexural strength, three limit states are used: yielding 

1
( )nM , 

flexural-torsional buckling 
2

( )nM , and local buckling of the 
compression flange 

3
( )nM . The yielding and lateral-torsional 

buckling formulas are used to define the flexural strength of 
a section with compact flanges. The flexural strength of a 
section with a non-compact or slender flange is controlled by 
the local buckling of the compression flange in addition to the 
first two limit states (see Appendix A). 

A steel section should be designed to have enough 
shear strength capacity as well as flexural strength. Without 
stiffeners, plate girders usually do not have adequate strength 
to resist shear forces, so utilizing stiffeners is an indispensable 
part of the girder design. The shear design of the girder yields 
to determining the clear space between the dimensions of the 
stiffeners.

At the end of the optimization procedure, the weight of 
the plate girder, W , can be defined by Eq. (1)  as: 
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where fb  and ft are the width and thickness of the 
flanges, h  and wt denote the height and thickness of the 
web, respectively. sW  is the weight of the stiffeners. L  
indicates the length of the beam and sγ  is the specific weight 

of the steel. As stated earlier, the main aim of the study is 
to minimize the weight of the plate girder. This goal is 
accompanied by satisfying the requirements of the design 
code including strength, serviceability, and proportioning 
limit according to AISC360-16. The serviceability limitations 
are applied to prevent structural damages under service loads 
and are presented as:(2 )   f f w s sW b t ht L W  (1) 
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where Lδ  and D L+δ  are the maximum deflections 
under the live load and the sum of the live and dead loads, 
respectively.

Restrictions on the web height are also applied according 
to the design code. It is evident that the flexural strength 
of a plate girder grows by increasing the flanges’ distance 
from the neutral axis, hence the use of a slender web may 
be justifiable and beneficial to the design procedure. The 
maximum slenderness of the web ( )wλ is limited by the code 
based on the following formula to prevent the compression 
buckling of the web:
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where a  denotes the clear distance between transverse 
shear stiffeners E  and yF  denote the modulus of elasticity 
and yield stress of the steel material, respectively.

3- Review of the Artificial Bee Colony Optimization
In finding an economical design of plate girders satisfying 

all the code requirements, the major variables are the 
beam’s web and flange dimension. To find the economical 
dimensions of the beam among the structurally permissible 
ones that are determined by the code, it is necessary to utilize 
optimization techniques. The simultaneous economical and 
structural considerations in the design of plate girders increase 
the complexity of the optimization problem. Traditional 
algorithms based on the gradient approach are too tedious for 
solving such multidimensional and complicated problems, 
however, stochastic search methods are a powerful tool to 
find the optimum solution.

The stochastic algorithms explore the solution space by 
a logical decision. One of these metaheuristic algorithms is 
the Artificial Bee Colony (ABC) algorithm [16] which is 
developed based on the behavior of honeybees in finding 
nectars. Unlike most other algorithms, this method does 
not require initial setting parameters such as cross-over 
or mutation rate and only uses three control parameters: 
the number of population (NP), the number of iterations 
without fitness value improvement (limit), and the maximum 
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cycle number of iterations (MCN). This algorithm has been 
successfully utilized to solve optimization problems even 
though it has fewer control parameters in comparison with 
most of other algorithms. In the ABC algorithm, bees in 
the hive are categorized into three types: employed bees, 
onlookers, and scouts. Half of the population in the hive, 
called employed bees, fly into the space to find possible food 
sources (i.e. solutions) based on Eq. (4): 
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where jU  and jL  are the upper and lower bounds of 
parameters j , respectively. Rand  is a random number in the 
range [0,1] . ijβ  is the value of j th−  the parameter of the 
i th−  D-dimensional solution vector, where [1, , 2]i NP∈ 

, [1, , ]j D∈  and D is the number of parameters to be 
optimized. A neighbor food source near the last found food 
source, old

ijβ , is searched to find a new food source, new
ijβ , 

with a better quality using this formula:
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The k th− solution vector is chosen randomly which is 
different from the j th− solution. φ is a random number in 
the interval [ 1,1]− . The probability value associated with the 
i th− food source can be defined by:

(2 )   f f w s sW b t ht L W  (1) 
 

/ 240, / 360,D L LL L    ,  (2) 
 

12 , 1.5

0.4 , 1.5

260,

y

w y

E F a h

E F a h

Unstiffned girder

 
  



 (3) 

  
 

.( )ij j i jL Rand U U    (4) 
 

.( ),new old old
ij ij ij ij kj k j         (5) 

 

( ) 0.1 [0.9 ( ) / max ( )]i i iP Fit Fit     (6) 
 

( ) 1 [1 ( )]i iFit F    (7) 
 

( ) 0.1 [0.9 ( ) / max ( )]i i iP Fit Fit     (8) 
 

( ) 1 [1 ( )]i iFit F    (9) 
 

.( ),new old old
ij ij ij ij kj k j         (10) 

 

' ( ) ( )(1 )F F rP   , ( )F W  (11) 
 

1
( )c

ii
P V 


  (12) 

 

( ), ( ) 0
( )

0, ( ) 0i

g g
V

g
 





  

 (13) 

 

1( ) 1u

b n

Mg
M

 


 (14) 

 

 (6)

where ( )iFit β  is the fitness value of the i th− food 
source, calculated by:
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Here, ( )iF β is the value of the objective function of the 
i th− food source. Artificial onlooker bees select a food source 
based on the calculated probability such that the superlative 
ones have greater chances to be selected in the next step. If a 
food quality does not enhance during a predefined number of 
trials (the limit value), then the food source is abandoned and 
will be replaced by a new food source found by scout bees 
using Eq. (4). The optimization algorithm will continue to 
meet the predefined termination condition, i.e. the maximum 
cycle number (MCN). 

4- Objective function and constraints
In this study, the objective function is defined as the weight 

of the plate girder with the variables of flange width, web 
height, and stiffener dimensions and their corresponding clear 
space. The plate girder is designed to satisfy the requirements 

of safety and serviceability as well as the proportioning 
limits. Finding a design solution with a minimum weight of 
the plate girder while it satisfies the limitations can be looked 
at as a constrained optimization problem. So, the constrained 
objective function can be expressed as:
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Where β  denotes a vector defining the problem 
parameters and r is a problem-dependent parameter that 
affects the convergence rate. Utilizing a large or small value 
for a parameter r  may result in an infeasible or premature 
solution. Based on some trial and error, the value of r   equal 
to 5 seems to be appropriate in this study. Changing r  can 
affect the convergence speed of the optimization procedure, 
however, a full investigation on this topic is out of the scope 
of this study. P is the penalty function related to the problem 
constraints, proposed as:
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where  is the number of the problem constraints and 
( )iV β is expressed as:
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Utilizing a penalty function forces the candidate solution 
to be selected in the next step of the iteration when the 
defined constraints are not satisfied. In this study, the strength 
and serviceability requirements and proportioning limits of 
dimensions are defined as constraints as follows:

The constraint 1( )g β  is related to the flexural strength of 
the plate girder, defined by: 
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where uM  and nM  are factored in bending moment and 
nominal flexural strength, respectively. As stated before, nM
can be calculated using the equations proposed in Appendix 
A. In the above equation, bφ  denotes the reduction factor for 
the flexural strength. The constraint 2 ( )g β  is defined based 
on the shear strength as:
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where uV  and nV  are the factored shear force and nominal 
shear strength of the plate girder, respectively, and vφ  denote 
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the corresponding reduction factor. The serviceability 
constraints are defined as the common deflection limitations 
for floors subject to the live load alone and dead plus live 
loads as follows:
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Finally, the proportioning constraints are presented 
according to Eq. (14) which is defined based on Eq. (3):
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Based on the initial limitations defined by the user, the 
ABC algorithm is utilized to minimize the weight of the plate 
girder satisfying the minimum design requirements of the 
AISC360-16 design code. This procedure, which is called 
the first stage optimization, continues until the minimum 
weight of the beam is obtained as the critical penalty function 
approaches zero. Note that the reported dimension values 
based on the code limitations in the first stage will not 
coincide with the available market dimensions, so the results 
have to be modified for practical purposes.

5- Modifying the obtained dimensions of the plate girder
To be used in real engineering applications, it is important 

to find the lightest beam having practical plate dimensions 
while satisfying the defined constraints and initial user 
limitations. The depth of the plate girder is often limited due 
to the headroom constraints and house service requirements. 
The flange width of the beam is often limited to that of the 
column in the beam-column connection. Moreover, the 
solution space of the optimization procedure is defined as a 
continuous space, while the available plate thicknesses in the 
market are discrete values such as: 3, 4, 5, 6, 8, 10, 12, 15, 
20, 25, 30 mm, etc. In order to be compatible with the market 
dimensions, the reported thicknesses of the web and flanges 
have to be rounded up to the available values. The limitations 
on the flange width or web height of the plate girder are not 
as serious since the required dimension can be achieved by 
longitudinally cutting or welding the available plate sizes.

Such changes in the dimensions of the theoretically 
optimum plate girder yield to new penalty functions 
which most probably will not satisfy the minimum design 
requirements or will not have the optimum weight. Since 

any change in the plate thicknesses results in significant 
changes in the section properties and defined ratios, in the 
second phase of optimization, the thickness of plates is kept 
unchanged and only the width of the flanges and the height of 
the web are varied to obtain the optimum solution, resulting 
in a new optimization problem with two parameters. Three 
approaches are proposed for solving this problem. In the 
first approach, both parameters are allowed to change. ABC 
algorithm is used to solve the new optimization problem from 
which optimum values for flange width and web height will 
be obtained.  In the remaining approaches, only one of the 
two variables is allowed to change. Either the flange width 
or web height is assumed as the stochastic parameter and 
optimized through a classical approach. This is due to the fact 
that the stochastic approach is time-consuming and reducing 
the variable parameters to only one can lead to obtaining 
faster results from the ABC algorithm.

During the optimization process, the optimum and 
safe solution is obtained ( ) 0ig =β  for some 1,2,3,4i =
. Suppose that 1( ) 0g β =  is the maximum value of 
{ }1 2 3 4( ) 0, ( ) 0, ( ) 0, ( ) 0g g g gβ β β β= = = = , i.e. the flexural 
strength of the section has the critical condition. The demand 
over the capacity ratio of the beam with rounded dimensions 
can be presented as:
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where *
nM  is the nominal flexural strength of the plate 

girder after rounding dimensions. 
First, it is assumed that the height of the web is variable. 

After changing the height of the web to achieve the optimum 
design, the stress ratio takes a new value equal to one as:
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where **
nM   is the new flexural strength of the plate girder 

after changing the height of the web. Using Equations (15) 
and (16), the relation between *

nM  and **
nM  is obtained as 

follows:
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Based on the AISC360-16 design code, the nominal 
flexural strength is a function of the modulus of the section 
( )xS , the shape factor ( )pR , and the critical stress ( )crF , but 
the effect of the two last parameters is relatively small so they 
are ignored in this study. Thus, the nominal flexural strength 
of the beam can be represented based on its section modulus 
with good accuracy as:
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where *
xS  and **

xS  are the section modulus after 
rounding and the partial change in the web height dimension, 
respectively. Differentiating the section modulus with respect 
to the height of the web yields to:
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Where 0h   is the distance between the center of the flange 
and the section centroid. xI  is the moment of inertia of the 
section about its strong axis. Based on Eq. (19), the modified 
web height, new

wh , can be derived as:
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Similarly, the web heights for other critical constraints can 
be calculated which are shown in Table 1 (second column).

Now, assume that the width of the flange, fb , is the 
variable. The new flange width can be obtained with a similar 
approach as:
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The variations of the flange width for all cases obtained 
with the same method are also shown in Table 1 (third 
column).

The values in Table 1 are based on the partial change 
of the web height or flange width. When the changes are 
relatively large, more iterations are needed to find the optimal 
solution. Based on what is mentioned above, the two-stage 
optimization procedure for the optimum design of plate 
girders can be summarized as a flowchart in Figure 1.

6- Numerical Examples
In this section, two numerical examples are examined to 

show the effectiveness of the proposed method in finding 

Table 1. Variation of the web height and flange widthTable 1. Variation of the web height and flange width 
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Fig. 1.  The proposed procedure for the optimum design of plate girders 
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the optimum weight of a plate girder satisfying the design 
requirements of the AISC360-16 design code. The first design 
example is a simply supported beam subjected to two-point 
loads and a uniformly distributed load. The other one is a 
two-span continuous beam carrying a distributed load.

Example 1: A simply supported beam as shown in Figure 
2 with a span length of 18 m is supposed for this example 
which carries two third-point concentrated factored loads 
of 45 tons (dead and live loads of 17.5 tons and 15 tons, 
respectively) and a uniformly distributed load of 5 ton/m 
(dead and live loads of 1.5 ton/m and 2 ton/m, respectively). 
Lateral supports are provided only at the ends of the beam 
length and the steel material is ST37. The practical limitations 
of the problem for the thickness and height of the web are 1 
cm and 300 cm, respectively. The thickness and width of the 
flange are also limited to 3 cm and 100 cm, respectively.

The maximum factored bending moment is calculated 
based on the load combinations for strength design (ASCE7-
16) equal to 475.25 ton.m, acting at the middle of the span 
length. The lateral-torsional buckling modification factor, bC , 
is equal to one. To optimize the girder weight, the optimization 
procedure presented in the last section is utilized with ABC 
algorithm control parameters of NP=2000, limit=500, and 
MCN=5000 for the first stage of the optimization. Figure 3 
shows the weight of the plate girder during the optimization 
cycles. The convergence approximately occurs after 1000 
trials. 

The theoretical optimum dimensions of the beam section 
are presented in the second column of Table 2. As shown in 
this table, the optimization algorithm found the best solution 
where the flexural stress limit is equal to one. The deflection 
and proportioning limits are less than one which means these 
criteria do not control the dimensions of the optimum section. 

 

 

 

 

 

 
 

Fig. 2. Simply supported beam of the first example 
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Fig. 3. Convergence of the first stage of the optimization procedure, Example 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Convergence of the first stage of the optimiza-
tion procedure, Example 1

Table 2. Results of two-stage optimization procedure- Example 1Table 2. Results of two-stage optimization procedure- Example 1 
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Total Weight (kg) 6369 7349 6697 6985 6727 

Web Height (cm) 200.57 200.50 201.50 161.5 200.5 

Web Thickness (cm) 0.59 0.60 0.60 0.60 0.60 

Flange Width (cm) 70.62 70.50 62.00 70.50 62.50 

Flange Thickness (cm) 2.06 2.50 2.50 2.50 2.50 

Flexural Stress Ratio 1.000 0.829 1.000 1.000 0.993 

Deflection Ratio (D+L) 0.172 0.145 0.160 0.226 0.161 

Deflection Ratio (L) 0.053 0.044 0.049 0.069 0.049 

Proportion Ratio 0.996 0.983 0.988 0.792 0.983 
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The total weight of the plate girder is calculated to be 6369 
kg, but the obtained thicknesses through the optimization 
procedure are not compatible with market availability, so 
the thicknesses have to be modified based on the available 
thicknesses in addition to specific limitations of this problem. 
The rounded dimensions and corresponding values are shown 
in the third column of Table 2. As expected, the weight of the 
beam increases (from 6369 kg to 7349 kg) while the critical 
ratio decreases (from 1.000 to 0.829,) which does not satisfy 
the optimum design. 

Next, the second optimization procedure is performed 
which can be done in three different approaches as described 
previously. In the first approach, both flange width and 
web height are considered  variables. Utilizing the setting 
parameters of the ABC algorithm as NP=2000, limit=500, 
and MCN=5000, the results of approach 1 are obtained which 
are shown in column 4 in Table 2. With fewer variables, the 
convergence of the second optimization occurs faster than 
the previous optimization stage having four variables. In this 
approach, the total weight of the beam is obtained as 6697 kg, 
which is greater than the theoretical optimum, but less than 
the one corresponding to the rounded values. Meanwhile, the 
critical ratio, which is related to flexural stress, is equal to 
one. This means that the proposed method has been able to 
efficiently find the minimum weight of the beam. In the second 
approach, the web height is selected as a variable, while the 
flange width obtained after rounding values is kept constant. 
As it is evident from Table 2, the constraint 1g  which is related 
to the flexural strength controls the optimization procedure, 
so the web height of the beam can be calculated using the 
closed form equation: ( )

2
* 2

1 0( ) 0.25
2 2 2

x
x w w f f

Id dg S t h b t hβ    + −  
   

. 
The results of this approach are shown in column 5 of Table 
2. The total weight is 6985 kg (about 4.5 % heavier than the 
first approach). A similar procedure can be utilized to find 
the optimum weight of the beam using the third approach 
where the web height is kept equal to the rounded value 
while the flange width is modified according to the closed-
form equations in Table 1. The optimum weight of the beam 
resulting from this approach is 6727 kg (6th column of Table 
2) which is 0.4 % greater than the first approach. Similar to 
other approaches, the maximum ratio in this approach is also 
equal to one.

Considering the results of the three mentioned approaches 
in the second stage, the best solution is obtained using the first 
approach. As expected, when two parameters are optimized 
simultaneously, a better solution can be obtained compared to 
using just one variable parameter. Although the first approach 
demonstrated a good performance in finding the minimum 
weight of the plate girder, the two remaining ones may be 
preferred because of their convenience in usage and higher 
convergence speed. 

To validate the calculations presented in Table 2, the 
obtained optimum dimensions of the plate girder are used 
to calculate the flexural and shear strengths, deflection, and 
proportioning limit and finally the total weight of the beam to 
be compared with the existing data. 

The dimensions of the plate girder obtained from the first 

stage of the optimization procedure are bf=70.62 cm, tf=2.06 
cm, hw=200.57 cm, and tw=0.59 cm. Hence, the slenderness 
ratios of the doubly symmetric I-shaped member bent 
about its major axis are calculated as: λw=339.4>λrw=166.2, 
λpf=11.08<λf=17.14<λrf=19.58. The web and flanges are 
classified as slender and noncompact, respectively. The 
flexural strength of the section can be calculated based on the 
three mentioned limit states. The nominal flexural strength 
is 543.89 tons. m governed by the lateral-torsional buckling 
limit state. To satisfy the shear strength requirement, 20 
pairs of transverse stiffeners are needed between the support 
and the point load at both ends of the beam. In addition, the 
bearing stiffeners are required at supports and under-point 
loads. The weight of the plate girder is accounted for as a 
uniform distributed load of the weight added to the external 
load, therefore, the maximum factored bending moment, 
Mu, is obtained as 489.68 ton.m. Based on the service load 
combinations in ASCE7-16, the deflection ratio under the 
dead plus live loads and the live load alone is 0.172  and 
0.053, respectively. 

Example 2: A continuous beam with two equal spans of 
12 m is considered in this example subjected to uniformly 
distributed dead and live loads equal to 2.5 ton/m and 1.25 
ton/m, respectively (Figure 4.) The steel material is ST37 and 
the compression flange is assumed to be fully braced along 
the beam length. The maximum factored bending moment is 
calculated at the middle support as:

2 ( ) 1u

v n
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V
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   (15) 

 

3

1
240

( )
1

360

D L

L

L
g

L






  
 


 (16) 

 

4

1, 1.5
12

( ) 1, 1.5
0.4

1,
260

w

y

w

y

w

a h
E F

g a h
E F

Unstiffned girder








  

  


 


 (17) 

 

*
1( ) 1u b nM M g    (18) 

 

** 1u b nM M   (19) 
 

 ** *
1( ) 1n nM g M   (20) 

 

 ** *
1( ) 1x xS g S   (21) 
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2

** * 2
00.25
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x

x x x w w f f w
Id ddS S S t h b t h dh


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 (22) 

 

 
2

* 2
1 0( ) 0.25

2 2 2
new x
w w x w w f f

Id dh h g S t h b t h        
   

 (23) 

 

 * 3 2
1 0( ) 6 2

2
new
f f x f f

db b g S t t h    (24) 

 

 max 1.4 ,1.2 1.6u D D Lq q q q  , 
2 8 90 .u uM q L ton m    

(25) 

 

 (22)

The practical limitations on the web and flange dimensions 
are defined as follows: the maximum height and thickness of 
the web are 80 cm and 2 cm, respectively; The maximum 
width and thickness of the flanges are assumed to be 40 cm 
and 2 cm, respectively; The minimum practical thickness of 
the web and flanges is 0.5 cm based on the market availability. 
The setting parameters of the optimization algorithm are 
assumed to be the same as in the previous example. 

The convergence of the first stage of optimization 
happens after about 1100 iterations ([Figure 5) and its results 
are shown in the second column of Table 3. In this example, 

 

 

 

 

 

 

 

 
 

Fig. 4. Two spans continuous beam loaded with distributed load 
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the governing criterion is the deflection ratio of the beam 
under the dead plus live loads. For the optimum beam, the 
deflection ratio is equal to one while other ratios are less than 
one. This means that the deflection limit controls the design 
dimension. In this stage, the total weight of the beam is 1606 
kg. Again, although the obtained dimension values in the 
first step are theoretically the optimum ones, the calculated 
thickness values have to be rounded up because of the market 
availability of plate thicknesses or due to practical limitations. 
The new rounded dimensions are shown in the column 3 of 
Table 3. As expected, the strength of the section increases 
while the critical ratio decreases. Now, the weight of the 
beam is increased to 1699 kg and the deflection ratio is 0.829, 
which does not satisfy the expected target.  In the optimum 
condition, this ratio should be equal to one, so the second 
stage of the optimization is performed. In this example, 
the results of the three proposed approaches are the same. 
The first approach is carried out considering two variables, 

flange width and web height, and two constant parameters, 
flange and web thicknesses. Utilizing the ABC algorithm, the 
optimum solution is obtained which is shown in column 4 of 
Table 3. The total weight in the second stage of optimization 
is 1658 kg, which is about 2.5 % less than the weight of the 
beam with rounded dimensions. Here, the second and third 
approaches yield similar results with the first approach, but 
with less computational effort and all proposed approaches 
can satisfy the serviceability and economic criteria as shown 
in columns 4 to 6 of Table 3.

7- Conclusion
In this study, a two-stage procedure for finding the 

optimum design of doubly symmetric I-shaped plate girders 
was proposed. The design procedure was defined as an 
optimization problem with four parameters: width and 
thickness of flanges and height and thickness of the web. In 
the first stage, the theoretical dimensions of the plate girder 

 

 

 

 

 

 

 

 

 
 

Fig. 5. Convergence of the first stage of the optimization procedure, Example 2 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Convergence of the first stage of the optimization procedure, Example 2

Table 3. Results of two-stage optimization procedure- Example 2Table 3. Results of two-stage optimization procedure- Example 2 
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Total Weight (kg) 1606 1699 1658 1658 1658 

Web Height (cm) 80.00 80.00 80.00 80.00 80.00 

Web Thickness (cm) 0.51 0.60 0.60 0.60 0.60 

Flange Width (cm) 28.67 29.00 28.00 28.00 28.00 

Flange Thickness (cm) 1.99 2.00 2.00 2.00 2.00 

Flexural Stress Ratio 0.834 0.780 0.803 0.803 0.803 

Deflection Ratio (D+L) 1.000 0.969 1.000 1.000 1.000 

Deflection Ratio (L) 0.322 0.311 0.321 0.321 0.321 

Proportion Ratio 0.459 0.392 0.393 0.393 0.393 
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were calculated using the ABC algorithm. The critical ratio of 
the designing procedure was obtained equal to one, which is 
the ideal design. To account for the discrete values for plate 
thickness, the obtained thicknesses of the web and flanges 
were rounded up to the available market dimensions. Since 
this modification affects the economic aspect of the design, 
a second stage of optimization was utilized to find the new 
optimum dimensions using three different approaches. In 
this stage, the web height and flange width were defined as 
variables while the obtained thicknesses were considered as 
the given data. In the first approach using the ABC algorithm, 
the web height and flange width were optimized. In the 
other two approaches, just one of the two parameters was 
considered as a variable to achieve faster convergence. Finally, 
two examples were studied to show the effectiveness of the 
proposed technique. The results show that the dimension of 
the plate girder calculated by the proposed approach is more 
economical and practical than that obtained by the traditional 
trial and error techniques. The proposed procedure can be 
used for any beam design problem with different design 
codes and practical limitations. 
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Appendix A. 
Nominal flexural strength of I-shaped members bent about their major axis shall be calculated 
according to the limit states of yielding 

1
( )nM , lateral-torsional buckling 

2
( )nM  and compression 

flange local buckling
3

( )nM . 
 
The general parameters used in equation are defined as: 

 / 2f f fb t  , 0.38 /pf yE F  , 0.95 /rf c Lk E F  , 0.50.35 4 / 0.76c wk    , 0.7x xt xc L yS S S F F      
/w w wh t  , 3.76pw yE F  , 5.70rw yE F  , 2

ts y w xr I C S , 12 2t f wr b a  w w fa A A  
 
A-1: The section with compact webs and compact flanges. 

1 2
( , )n n nM M M   

Yielding: 
1n p yM M ZF    

Lateral-torsional buckling: 
2 1b p n nL L M M     

    
2

0.7p b r n b p p x y b p r p pL L L M C M M S F L L L L M            

2b r n x cr pL L M S F M      
 
The used parameters in above equations are defined as: 

1.76p y yL r E F        22
0 01.95 0.7 6.76 0.7r ts y x x yL r E F J S h J S h F E         

      2 22
01 0.078cr b b ts b ts xF C E L r J L r S h    

 
A-2: The section with compact webs and noncompact or slender flanges. 

1 2 3
min( , , )n n n nM M M M  

The values of 
1nM   and 

2nM  are the same as calculated in section A-1. 
Compression flange local buckling: 

3 1f pf n nM M      

    
3

0.7pf f rf n p p x y f pf rf pf pM M M S F M               

3

2, 0.9f rf n x cr p cr c fM S F M F Ek          
 
B-1: The section which have noncompact webs and compact flanges: 

1 2
min( , )n n nM M M   

Yielding: 
1n p y p x yM R M R S F   

Lateral-torsional buckling: 
2 1b p n nL L M M    

    
2

0.7p b r n b p y p y x y b p r p p yL L L M C R M R M S F L L L L R M            

2b r n x cr p yL L M S F R M    ,       2 22
01 0.078cr b b t b ts xF C E L r J L r S h    

 
B-2: The section which have noncompact webs and noncompact or slender flanges: 
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1 2 3
min( , , )n n n nM M M M The values of 

1nM  and 
2nM  are the same as calculated in section B-1. 

Compression flange local buckling: 
3 1f pf n nM M      

    
3

0.7pf f rf n p y p y x y f pf rf pf p yM R M R M S F R M               

3

2, 0.9f rf n x cr p cr c fM S F M F Ek         
 
The used parameters in above equations are defined as: 

    1p p y p y w pw rw pw p yR M M M M M M        ,  
3

min 1.6 ,n x y x yM S F Z F  

       22
0 01.95 0.7 6.76 0.7r t y x x yL r E F J S h J S h F E        , 1.1p t yL r E F  

 
C-1: The section with slender webs and compact flanges: 

1 2
min( , )n n nM M M  

Yielding: 
1n pg y pg x yM R M R S F   

Lateral-torsional buckling: 
2 1b p n nL L M M    

2p b r n pg x crL L L M R S F       0.3cr b y y b p r p yF C F F L L L L F        

2b r n pg x crL L M R S F   ,  22
cr b b t yF C E L r F    

 
C-2: The section with slender webs and noncompact or slender flanges: 

1 2 3
min( , , )n n n nM M M M   

The values of 
1nM  and 

2nM  are the same as calculated in section C-1. 
Compression flange local buckling: 

3 1f pf n nM M      

3pf f rf n pg x crM R S F       ,    0.3cr y y f pf rf pf yF F F F        

3f rf n pg x crM R S F     , 20.9cr c f yF Ek F    
 
The used parameters in above equations are defined as: 

  1 1200 300 1pg w w rw wR a a      , 10wa  , 1.1p t yL r E F ,  0.7r t yL r E F   
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