تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,194 |
تعداد دریافت فایل اصل مقاله | 4,882,936 |
On a group of the form $2^{11}:M_{24}$ | ||
AUT Journal of Mathematics and Computing | ||
مقاله 8، دوره 5، شماره 2، 2024، صفحه 167-193 اصل مقاله (527.41 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2023.22289.1151 | ||
نویسندگان | ||
Vasco Mugala* ؛ Dennis Siwila Chikopela؛ Richard Ng'ambi | ||
Mathematics Department, School of Mathematics and Natural Sciences, Copperbelt University, Zambia | ||
چکیده | ||
The Conway group $Co_{1}$ is one of the $26$ sporadic simple groups. It is the largest of the three Conway groups with order $4157776806543360000=2^{21}.3^9.5^4.7^2.11.13.23$ and has $22$ conjugacy classes of maximal subgroups. In this paper, we discuss a group of the form $\overline{G}=N\colon G$, where $N=2^{11}$ and $G=M_{24}$. This group $\overline{G}=N\colon G=2^{11}\colon M_{24}$ is a split extension of an elementary abelian group $N=2^{11}$ by a Mathieu group $G=M_{24}$. Using the computed Fischer matrices for each class representative $g$ of $G$ and ordinary character tables of the inertia factor groups of $G$, we obtain the full character table of $\overline{G}$. The complete fusion of $\overline{G}$ into its mother group $Co_1$ is also determined using the permutation character of $Co_1$. | ||
کلیدواژهها | ||
Conway group؛ Conjugacy classes؛ Fischer matrices؛ Fusions؛ Permutation character | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 294 تعداد دریافت فایل اصل مقاله: 239 |