تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,192 |
تعداد دریافت فایل اصل مقاله | 4,882,935 |
Almost Ricci soliton in $Q^{m^{\ast}}$ | ||
AUT Journal of Mathematics and Computing | ||
دوره 5، شماره 3، 2024، صفحه 245-256 اصل مقاله (409.1 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2023.22115.1134 | ||
نویسندگان | ||
Hamed Faraji؛ Shahroud Azami* | ||
Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran | ||
چکیده | ||
In this paper, we will focus our attention on the structure of $h$-almost Ricci solitons on complex hyperbolic quadric. We will prove non-existence a contact real hypersurface in the complex hyperbolic quadric $Q^{m^*}, m\geq 3$, admitting the gradient almost Ricci soliton. Moreover, the gradient almost Ricci soliton function $f$ is trivial. | ||
کلیدواژهها | ||
Riemannian geometry؛ Complex hyperbolic quadric؛ Almost Ricci soliton | ||
مراجع | ||
[1] J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex quadrics, Internat. J. Math., 24 (2013), pp. 1350050, 18. [2] J. Berndt and Y. J. Suh, Contact hypersurfaces in K¨ahler manifolds, Proc. Amer. Math. Soc., 143 (2015), pp. 2637–2649. [3] H.-D. Cao, Recent progress on Ricci solitons, in Recent advances in geometric analysis, vol. 11 of Adv. Lect. Math. (ALM), Int. Press, Somerville, MA, 2010, pp. 1–38. [4] B.-Y. Chen, Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. With a foreword by Leopold Verstraelen. [5] S. Deshmukh, Almost Ricci solitons isometric to spheres, Int. J. Geom. Methods Mod. Phys., 16 (2019), pp. 1950073, 9. [6] S. Deshmukh and H. Al-Sodais, A note on almost Ricci solitons, Anal. Math. Phys., 10 (2020), pp. Paper No. 76, 11. [7] H. Faraji, S. Azami, and G. Fasihi-Ramandi, h-almost Ricci solitons with concurrent potential fields, AIMS Math., 5 (2020), pp. 4220–4228. [8] J. Gasqui and H. Goldschmidt, On the geometry of the complex quadric, Hokkaido Math. J., 20 (1991), pp. 279–312. [9] J. N. Gomes, Q. Wang, and C. Xia, On the h-almost Ricci soliton, J. Geom. Phys., 114 (2017), pp. 216–222. [10] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry, 17 (1982), pp. 255– 306. [11] , The Ricci flow on surfaces, in Mathematics and general relativity (Santa Cruz, CA, 1986), vol. 71 of Contemp. Math., Amer. Math. Soc., Providence, RI, 1988, pp. 237–262. [12] , The formation of singularities in the Ricci flow, in Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, Cambridge, MA, 1995, pp. 7–136. [13] S. K. Hui and D. Chakraborty, Ricci almost solitons on concircular Ricci pseudosymmetric β-Kenmotsu manifolds, Hacet. J. Math. Stat., 47 (2018), pp. 579–587. [14] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996. Reprint of the 1969 original, A Wiley-Interscience Publication. [15] N. Sesum, Convergence of the Ricci flow toward a soliton, Comm. Anal. Geom., 14 (2006), pp. 283–343. [16] Y. J. Suh, Hypersurfaces with isometric Reeb flow in complex hyperbolic two-plane Grassmannians, Adv. in Appl. Math., 50 (2013), pp. 645–659. [17] , Real hypersurfaces in the complex hyperbolic quadrics with isometric Reeb flow, Commun. Contemp. Math., 20 (2018), pp. 1750031, 20. [18] , Pseudo-anti commuting Ricci tensor for real hypersurfaces in the complex hyperbolic quadric, Sci. China Math., 62 (2019), pp. 679–698. [19] , Real hypersurfaces in the complex quadric with Reeb parallel Ricci tensor, J. Geom. Anal., 29 (2019), pp. 3248–3269. [20] , Ricci soliton and pseudo-Einstein real hypersurfaces in the complex hyperbolic quadric, J. Geom. Phys., 162 (2021), pp. Paper No. 103888, 16. [21] , Ricci-Bourguignon solitons on real hypersurfaces in the complex hyperbolic quadric, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 116 (2022), pp. Paper No. 110, 23. | ||
آمار تعداد مشاهده مقاله: 303 تعداد دریافت فایل اصل مقاله: 337 |