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ABSTRACT: The efficient operation and planning along with the security of power systems have
always occupied an important position. The power system becomes increasingly complex due to the
rapid growth in energy demand. Such a system requires a real-time approach to monitoring and control.
Therefore, State Estimation (SE) tools are necessary, especially for nonlinear power grids. Most network
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applications use the real-time data provided by the state estimator. Therefore, an optimal performance Available Online: Dec. 01, 2023

of state estimation output is the ultimate concern for the system operator. This need is particularly more

in focus today due to deregulated and congested systems and smart grid initiatives. The output of the  Keywords:

state estimator nearly represents the true state of the system. The present paper describes the general =y, 1 optimization algorithm

framework of state estimation in power networks. Also, in the present study linear state estimation method .
. . . . power system state estimation
accompanied by optimal placement for Phasor Measurement Unit (PMU) for complete observability and
artificial neural network (ANN) trained by Whale Optimization Algorithm (WOA) is employed. The

trained model can be used to estimate voltage magnitudes and phase angles as the power system states.

optimal placement of phasor meas-
uring unit

The proposed method increases accuracy and execution speed while the complication in the formulation artificial neural network
will be reduced considerably. A seasonal load profile is considered to measure the accuracy of the state

estimation and make the simulation more realistic. Finally, the minimum estimation error will be shown

for IEEE 14 and 30 buses benchmarks.

1- Introduction

The power grid has developed over time and around
the world it has become a complex system that combines
conventional and renewable energy sources, various
consumers, and an extensive transmission system. A failure
in such a system can lead to severe consequences. Therefore,
some errors should be predicted and prevented from
occurring. Therefore, the ability to monitor such a complex
system is an essential prerequisite for the stable and reliable
operation of today’s network.

When the issue of grid stability is addressed, one of the
most critical issues is determining the states of the power
system (State Variables) at any point of the grid and at a
given moment. State variables include voltage magnitudes
and relative phase angles of system buses. State estimation in
a system is the determination of the unknown state variables
of the system, which is based on the necessary measurements
and according to specific criteria. Of course, it must be
acknowledged that some measurements are incomplete and
redundant.

State estimation is based on statistical criteria in which
absolute values for state variables are estimated by minimizing
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or maximizing specific criteria. Then the estimated output
data are used in the system control centers or the dispatching
center with security restrictions. The best estimate helps to
maintain power system monitoring, security, reliability, and
proper control of the system [1].

The common acceptance criterion in this matter is to
minimize the Sum of the Square of Differences between the
estimated and measured values. The idea of state estimation
by the least square method was proposed in the 19th century
in aerospace applications [2]. Later, Static State Estimator and
Dynamic State Estimator were developed for power systems.
The initial state estimation algorithms used the measurement
of the power flow in the lines to calculate the best estimate of
the system state [3]. However, they cannot measure the state
of the system directly.

Although the concept of using phasors to describe power
system operational quantities was introduced in 1893, the
first application of phasor measurement units was presented
in the early 1980s by Dr. A.G. Phadke. The first commercially
available PMUs were developed in the early 1990s [3].

The PMU prototype used Global Positioning System
(GPS) technology to achieve time synchronization between
remote measurements. Implementing such equipment not
only provided the possibility of direct measurement of
system state variables but also provided the possibility of
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re-evolution of the state estimation method. Using PMU, the
repetitive and time-consuming process of state estimation
can be replaced with a set of linear equations, reducing the
number of calculations and increasing the refresh rate. The
continuous development and integration of PMU technology
worldwide can give system operators a better picture of the
grid and improve the quality of power grid monitoring.

Therefore, power systems require a comprehensive and
accurate monitoring system to guarantee observability of
the power system. However, additional measurements cause
problems in control, management, and cost. The problem of
optimal placement of phasor measurement units (Optimal
PMU Placement) is said to minimize the number and choose
the best place to install them in a power system and, at the
same time to maintain complete visibility of the system. This
article introduces how to analyze the observability of the
power system based on PMUs and examines the problem of
optimal PMU placement.

Nowadays, with the help of a state estimator based on an
artificial neural network, given the measurements as input, we
get direct estimates of state variables. Therefore, there is no
need to store the complex admittance matrix of the network
and include the learning data according to the load changes
and different states of the network to obtain better and faster
results than the linear state estimator used in load distribution
centers as well as smart networks.

Finally, in this research, an online PMU-based state
estimation method in the observable state of the system using
Multi-Layer Perceptron Neural Networks trained using the
Whale Optimization Algorithm to reduce errors and increase
speed and accuracy is suggested. This paper is organized
as follows. Section 2, formulation of the problem such as
linear state estimation, optimal PMU placement, and WOA-
MLP optimized for SE are discussed; Section 3, results of
simulation for two test systems have been analyzed, while the
conclusion presented in Section 4.

2- Formulation of the Problem
2- 1- Linear State Estimation using PMU

Conventional measurements are generally asynchronous.
Also, these meters, also called SCADA meters, have a
slow sampling rate (typically 4-5 seconds), and due to the
asynchronous nature of the measurements, it isn’t easy
to obtain a broad, real-time view of the power system
[4]. Currently, most measurements in power systems are
conventional asynchronous measurements. Although phasor
measurement units are increasingly installed in different parts
of the world, a measurement system with only PMUs is not
yet possible due to economic and technical reasons. The state
estimation problem becomes a nonlinear estimation problem
only in the presence of conventional measurements or a
combination of conventional measurements and PMU [5,6].
Typically, estimators based on the weighted least square
method (WLS) are used to find the optimal states of the system
based on such a set of measurements. However, processing
the measurements in a time window and performing the state
estimation process with several iterations takes considerable
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time (3-5 minutes). Therefore, this method is not suitable for
real-time decision-making.

With the ability of PMUs to directly measure system state,
using phasor measurements for state estimation increases the
speed and accuracy of the process. Unlike the classical state
estimation method that deals with the iterative solution of
nonlinear equations, PMU measurements are linear functions
of the state variables. Therefore, the calculation process can
be significantly simplified.

The linear estimator can be described as an efficient tool
that uses only PMU measurements to estimate system states.
The measurements are formulated as equation (1):

z=hx)+ ¢ (1

Where z is the vector of measurements, h(x) is
the vector of nonlinear functions (relationship between
measurement and state vector x ), and & is the measurement
error vector. The objective function to be minimized,
according to equation (2), is:

JG) =y, B @

Or in matrix form in equation (3):
J&x) = [z = h()]"R™[z — h(x)] A3)

The only difference is that the measurement functions
h (x) are linear. Therefore, equation (1) can be expressed
as equation (4):

z=h(x)+ e=Bx+ ¢ 4)

Where B is the system matrix.
Therefore, the state vector X can be calculated by having
the equation (5):

x = [BTR™B]™'BTR 1z = Mz Q)

Where R , according to equation (6), is the diagonal
covariance matrix related to the errors of the measuring
devices.

of
R= I ] (6)
L
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Fig. 1. m equivalent circuit of a transmission line

Where m is the total number of measurements.

The matrix M is constant as long as the structure and
parameters of the system do not change. It can be calculated
oftline once and stored for use at another time.

To implement state estimation in a network, the =«
equivalent circuit of a transmission line is shown in Figure
(1).

According to Figure 1, V; and V', are the measured
complex voltages in bus 7 and j, respectively. Current
flows from bus i to bus j and vice versa are [ ; and I,
respectively. Assuming the state vector according to equation
(7), we have:

Vi
+=y] @
equation (8) is the measurement vector:
[
_ 1%l
lzi . J (8)
Then equation (4) is expressed as equation (9) [3]:
Vi 1 0
V; 0 1 v
].]. =y, L=y [Vl] ©)
ij yl] + Vi yl] J
Iji _yl] yl] + Yi

1 0
o[ 1 q_| o 1
h [}’A + ys] Vi tyi Vi (10)
—Yij Yij+ Y

In equation (10), we have:

y is the branch series admittance diagonal matrix, 4 is
the junction matrix of the measuring currents unit, and y is
the parallel admittance matrix, whose rows and columns refer
to the meters and buses, respectively.

Finally, the measurement function is expressed according
to equation (11):

[VPMU

IPMU] - [}’AI‘{‘ YS] v an

Where V p,,, and I, are the vectors of the measured
complex voltages and currents, and V' is the state vector of
the system’s complex voltages.

2- 2- Formulation of Optimal PMU Placement

The observability analysis of the power system is
performed before performing the state estimation. If a system
is determined to be unobservable, additional gauges must
be placed in specific locations to make the system visible.
System observability analysis identifies visible islands and
unobservable bifurcations, and gauges placement locations to
make informed decisions.

Placing PMUs on all buses of a power system measures
the system states directly, so state estimation is no longer
needed. However, such a solution can be pretty expensive.

On the other hand, the measurement of line currents can
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PMUI

Fig. 2. An example of a complete observable 9-bus system [3]

extend the voltage measurement to buses where the PMU
is not installed. Therefore, a minimum number of PMUs
can be installed to measure all bus voltages in the system
indirectly. Finding this number of PMUs and their location
in the network has brought optimization algorithms to this
topic. An overview of the methods to solve this problem is
discussed in [7].

As mentioned above, a PMU can indirectly view the lines
connected to the installed bus and all the buses connected to
the lines. Figure 2 describes a system that is fully observed by
two PMUs marked with large circles. Smaller circles indicate
buses that are indirectly visible by the line connected to the
bus having the PMU [3].

The placement problem for complete power system
observability starts with finding a minimal set of PMUs such
that each bus is observed at least once by a PMU [8]. The
formulation of the optimal placement problem for the N-bus
system is described by equations (12) to (14):

min PINE
subject to TpyyX = bpyy
X =[x xy]” (12)
kxl-e {0,1}
Lifi=j
Tomyij = { 1,if i and j are connected (13)
0,0.w.
bpyy = [1 ... 1Hx1v (14)
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By wusing optimization algorithms, the topological
observability of the network can be fully assured. Moreover,
some optimization methods do not guarantee that they can
always find the optimal solution for OPP problems. The
reasons that lead to incorrect results are also different. Some
algorithms may get stuck in local minima and thus not reach
the global optimal solution. In this research, Integer Linear
Programming (ILP) implemented in MATLAB software
using the CPLEX toolbox is used for the optimal placement
of PMU.

2- 3- Artificial Neural Network

An artificial neural network is an information processing
system that tries to imitate the characteristics of the human
nervous system and create a computer model through which
patterns in data can be found, and correlations between
variables can be obtained. Practically, the neural network is
used in state estimation due to its high efficiency in signal
processing and fast and accurate prediction of the output. A
neural network model often consists of two layers (the first
layer for input data and another layer for output results) or
multiple layers. There are many algorithms for training
neural networks. One of the common methods is the Back
Propagation (BP) learning method, which can model
nonlinear data if the network structure is chosen correctly.
Figure 3 shows a neural network with one neuron.

The connecting lines W and b represent weights and
biases. The output of a neuron can be expressed as equation

(15):
Vpred = Z?:lxiwi +b (15)

In which the sum of inputs X ; is multiplied by the weights
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Fig. 3. Neural network architecture

w, and finally added to the bias b [9]. In BP learning using
equation (16), the weights are updated in each iteration until
the errors reach a level equal to or less than the specified
minimum value.

Wnew = Woia + a(yactual - ymeaured)

(16)

where ¢ is the learning rate which is set to a small
value. Reducing the amount of network error and achieving a
network with minimum error is the goal of a training process
that is achieved by an optimization algorithm and by adjusting
the weights and biases of the network.

The error backpropagation algorithm may converge to
local minimum points in the parameter space. However,
when this algorithm converges, it cannot be sure that it has
reached an optimal solution. Therefore, for better learning
performance, the best output can be predicted by optimizing
the weights and biases of the neural network.

2-3- 1- Optimization of Neural Network using Whale
Algorithm

The whale meta-heuristic algorithm was proposed as
one of the newest population-based optimization algorithms
in 2016 by Mirjalili and Lewis [10]. Inspired by the nature
and social behavior of whales, this algorithm uses the bubble
network hunting strategy for exploration and exploitation.
By avoiding local optimal points, it can achieve the optimal
solution with less computational time wasted with an
integrated adaptive technique. The most exciting thing about
hunting whales is their unique method of hunting prey, which
is known as a bubble net. In the bubble net method, the
whales circle around a group of fish and produce distinctive
bubbles that trap the fish and cause the fish to escape to the
sea’s surface. Then they approach the fishe and hunt them.

Bait encirclement is the first stage of prey hunting in the
best situation. Whales look at prey for the correct position
and choose their positions based on an optimal solution for
hunting fish. This solution can be expressed by equations (17)
and (18):

D= |CX (@) - X*(t)| (17)

Xt+1)=X@t)— AxD (18)

Where X and X~ are two position vectors and X
represents the optimal solution obtained at each moment and
¢t represents the current iteration. In addition, A and D are
coefficient vectors defined by equations (19) and (20):

A=2dx7—d (19)
¢ =27 (20)

Where a is a linear decreasing variable and 7 is a vector
containing random values between 0 and 1.

In the next step, the whales attack the prey, and in this
phase, the encirclement of the prey becomes smaller, and
based on this mechanism, @ and 4 in the previous two
relationships are reduced. The vector A4 contains random
values in the interval [—a,a] and decreases from the value
of 2 to 0. The new position can be obtained using the optimal
and current positions. Next, the spiral position is updated.
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Fig. 4. Steps of learning and state estimation in the proposed algorithm

In the process of multi-layer perceptron neural network
training by the Whale algorithm, tried to adjust the weights
in each iteration of the learning algorithm so that the
approximation error is minimized. Accordingly, first, the
population of the algorithm is randomly initialized, and the
error rate is calculated using the training data.

Next, the constants of the model or the regulatory
characteristics affecting the mapping of the input data are
updated, and this process continues until the termination
conditions are reached, or the minimum allowable error is
obtained. Therefore, it is necessary to determine appropriate
values for these parameters based on the complexity and
dimensions of the problem so that the algorithm finds the
optimal answer to the problem efficiently. The general steps
of the WOA-MLP and SE approach are depicted in Figure 4.
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3- Simulation Results

All the implementation steps and conclusions in this
section have been done using a system with the specifications
of Intel® Xeon® Silver 4214 CPU@2.2GHz, 16GB RAM.

To analyze the data with the help of an artificial neural
network first, the data obtained from the linear state estimation
with PMU by changing the local load in each bus, taking into
account the characteristics of the summer seasonal load, was
done hypothetically for a period of 24 hours with two peaks,
day and night. Here, a conventionally distributed swing with
standard mean power of IEEE network loads in 14 and 30
bus systems (Figures 5 and 6) and with standard deviation is
shown in Figures 7 and 8, respectively.

The power factor and reactive power of the system load
are assumed to be constant during the simulation.
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The data obtained from Linear-SE includes the PMU
measurements as input and the resulting state estimates as
the output of the neural network. State estimation has been
done 24 hours a day with time intervals every 10 minutes
in different network loads according to Figures 7 and 8, and
the Gaussian noise resulting from the measurement has been
assumed with a tolerance of 15%. In addition, the optimal
placement of PMUs in the state of complete visibility of the

358

power system is shown in Table 1.

The data obtained from the simulation includes 83100
samples, 80% of which are for the training samples and
20% of which are randomly divided for the test samples.
The population size is 100. Then feature selection was made
by the Whale optimization algorithm (WOA) using two
mathematical models of encirclement and bubble net attack.

According to data classification by the WOA algorithm
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Table 1. Optimal PMU placement in test systems for complete network observability

Test System

Optimal PMU Placement (#Bus)

IEEE 14 Bus
IEEE 30 Bus

2,8,10,13

1,5,8,10,11,12,19,23,26,29

Table 2. The error obtained from the neural network test with two BP and WOA learning
algorithms of the IEEE 14-bus system

Results RSE MAE MSE RMSE
BP-MLPNN 1.0507 0.0497 33e4  0.0559
WOA-MLPNN 0.0749 0.0146  2.77e-5 0.018

Table 3. The error obtained from the neural network test with two BP and WOA learning
algorithms of the IEEE 30-bus system

Results RSE MAE MSE RMSE
BP-MLPNN 1.009 0.172 0.0018 0.199
WOA-MLPNN 0.0508 0.0382 9.58e-5 0.0484

(Figure 4), they were trained in a three-layer perceptron
artificial neural network. These three layers include the input
layer consisting of measurement data, the hidden layer, and
the output layer consisting of system states. To achieve the
best classification, different architectures were used for the
neural network from 5 to 40 neurons in the hidden layer and
weight optimization through WOA in 100 Epochs. Finally,
the number of states of each system was chosen as the number
of hidden layer neurons.

The Root Mean Square Error (RMSE) index was used as a
performance calculation index, and in the first iterations with
WOA learning, a noticeable reduction in error was obtained
from 1.115 to 0.995 for the 14-bus system and from 2.11 to
1.45 for the 30-bus system, and finally the lowest The amount
of error based on the methods of Root Square Error (RSE),
Mean Absolute Error (MAE), Mean Square Error (MSE) and
RMSE, obtained for the neural network test for training with
BP and WOA algorithms in the best condition was obtained
according to Tables 2 and 3.

Figures 9 and 10 show the fitting of the curve of the actual
values of the state estimation against the output values of the
neural network trained with two algorithms for the two parts
of training and testing.

According to Figures 11 to 14, to better examine the
simulation, the state estimation of the power system for two
systems of 14 and 30 buses has been performed every 10
minutes, 24 hours a day. Due to the network load changes and
its inverse relationship with the voltage profile, the accuracy
of the state estimator is of particular importance for the
network operator. According to equation (2), the value of the
objective function for the three WOA-MLPNN, Linear-SE,
and BP-MLPNN estimators, respectively, is 0.036, 4.12 and
12 for the 14-bus system and 0.013, 3.1 and 10 for the 30-bus
system. the results indicate the effectiveness of the WOA-
MLPNN state estimator and the importance of proper and
intelligent learning of neural networks using optimization
algorithms.
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4- Conclusion

In this article, firstly, the development process of
power system state estimation, the optimal placement of
phasor measurement units, and the advantages of linear
state estimation were discussed. Due to the importance
of accuracy and speed for real-time decision-making and
reaction by the power grid operator, the best option for
performing state estimation was the artificial neural network.
One of the advantages of the neural network is that it does
not rely on relationships and complex calculations. Neural
network training is one of its main pillars, and by optimally
determining its weights, the best output can be expected from
it. The results of state estimation using a neural network
optimized with a Whale optimization algorithm show that its
performance is verified and its error is more suitable than the
conventional neural network training method.
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