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ABSTRACT: This study uses an obstacle map for three-dimensional radio frequency (RF) source 
localization with reflection. The received signal strength indicator (RSSI) and the angle of arrival 
(AOA) are the observation requirements for the three-dimensional localization. In the first step of the 
localization, an unmanned aerial vehicle (UAV) is used to obtain AOA and locate the three-dimensional 
reflection using a two-dimensional map. Then, the path loss function is used and the reflection angle 
alongside the distance between the receiver and RF source is estimated based on RSSI. This information 
is integrated with the information from the two-dimensional map to estimate the RF source location in the 
three-dimensional space. The possible RF source locations in three-dimensional space are obtained, and 
it is shown that the possible locations of the RF source for one reflection in the three-dimensional make 
a circle, so three reflections are required for three-dimensional RF source localization. An improved 
particle filter is used to estimate RF source location while using the Kullback-Leibler distance (KLD) 
criteria and local search to improve the method performance with proper estimation speed and accuracy. 
The simulation results show that the improved particle filter has an adequate estimation with optimal 
particle number and higher execution speed than the initial particle filter.
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1- Introduction
The ever-increasing usage of radio signal-based devices, 

such as mobile phones and Wi-Fi, creates many applications 
based on the localization of these technologies as RF sources 
such as search and rescue, creating location-based intelligent 
advertisement systems, health field applications, and others 
[1,2].

Outdoor search and rescue have received much attention 
considering that people use smartphones that can act as 
RF sources for localization [3]. Also, localization systems, 
such as ARVA [4] which has been developed for the search 
and rescue of injured people, transmit electromagnetic 
signals, and the location of injured people can be obtained 
using unmanned aerial vehicles (UAVs) [5]. Wireless 
Infrastructure over Satellite for Emergency Communication 
(WISCOM) aims to use and restore the Global System for 
Mobile Communication (GSM) for tracking rescuer teams 
and victims [6]. These works are generally designed for 
emergencies, such as avalanches and earthquakes, where 
phone networks are not valid, and localization using BTS 
towers is impossible. These methods can help the injured 
much faster. Such people who carry their phones outdoors 
and do not have access to phone networks can be localized 
in emergencies like deserts using their mobile phones. In 
these situations, UAVs are helpful for their maneuverability, 

so they have been widely used in localization to automate 
the search and rescue process. Some methods of RF source 
localization using UAVs are localization based on received 
signal strength indicator (RSSI) [7], time of arrival (TOA) 
[8], combinations of different variables such as TOA and 
angle of arrival (AOA) [9], RSSI, AOA [10], and so on.

In general, RF signals can be received by line-of-sight 
(LOS) or non-line-of-sight (NLOS) for localization in 
outdoor search and rescue operations because of the presence 
of obstacles. Obstacles have a minor effect on direct LOS 
signals, and most signals are directly received. Localization 
based on LOS signals is possible using standard signal 
propagation equations, which are used for different problems 
and applications [11]. The signal is not received directly in 
the NLOS situation because of obstacles. Using standard 
signal propagation and LOS equations in this situation leads 
to high error rates in the localization. Localization in this 
situation is generally performed using two methods. The first 
method tries to determine NLOS signals to avoid using them 
for localization, and the second method reduces the effect of 
NLOS signals by using them alongside LOS signals [12,13]. 

Finding LOS signals in large spaces with obstacles may 
take more time and search. Also, LOS signals cannot be 
found when there are too many obstacles, which necessitates 
localization with NLOS signals using specific localization and 
signal propagation equations. In Figure 1, the received signal 
is NLOS and the LOS signals are not valid.
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Some previous studies conducted outdoor localization 
using NLOS signals. Reflection from the obstacle is one of 
the significant phenomena of NLOS situations that propagate 
these signals. Therefore, research on RF source localization 
has focused on reflection. These studies have considered 
the reflection space as an unknown location determined by 
observing the time difference of arrival (TDOA) and AOA 
[14] or RSSI and AOA [15,16]. Although the use of TOA and 
TDOA to estimate the distance allows for higher localization 
accuracy, the benefits of localization using RSSI compared 
to their TOA or TDOA are its simplicity of usage and lack 
of need for extra equipment. On the other hand, using signal 
times for measuring distance requires synchronicity between 
the radio source and receivers down to nano-seconds, which 
is much harder and more expensive to implement [17-18].

An important approach in NLOS localization is to use or 
obtain the location of the obstacle (reflection point) or a map. 
In [19], assuming the presence of a reflective obstacle in the 
environment, a moving target was localized by a reflected 
signal. The measured observations were TOA and AOA. This 
article is about obtaining the reflector location and the location 
of the moving target. Localization is based on the assumption 
of LOS between the virtual RF source and the moving target 
instead of the existence of NLOS between the target and the 
real RF source, and this method is used for moving targets. 
Also, the effect of other obstacles in the environment is not 
taken into account. In another article, localization was done 
by using phase fluctuations and TOA using the reflected 
signal. Using the geometric shape of the reflection and the 
characteristics obtained from the observations of the NLOS, 
it became a direct route and a virtual RF source, and finally, 
localization was done indoors [20].

In another paper, three-dimensional localization was 
performed indoors using reflection. The measurement was 
TDOA and AOA. It was assumed that a base station with a 
known location was available. The 3D location was estimated 
using this information, the reflected signal, and the LOS 
signal [21].

Localization using the map and reflection was conducted 

in [22] by a basic and advanced method and RSSI 
observations. The basic method had lower accuracy with a 
higher dependency on the geometric condition of reflectors 
compared to each other. At the same time, the advanced 
method used reflected signal propagation equations and 
performed its estimations using particle filters. These two 
methods were analytically compared using simulations, 
and the results showed higher localization accuracy of the 
advanced method.

These studies have considered an available 2D localization 
based on the reflected signal and map and most observations 
have been of TOA or TDOA type. This study localizes RF 
sources using a map in three-dimensional space because 
in the real scenario, the location of an RF source has three 
dimensions, so the use of 2D equations for localization in the 
3D search space will be inaccurate and erroneous. So far, no 
research has used RSSI observations based on the reflected 
signal in 3D for localization using the map. We consider a 
simple two-dimensional map that uses AOA to determine the 
three-dimensional reflection location, and this information 
is used to estimate the three-dimensional RF source location 
using particle filters with local search to improve the particle 
weight. Also, the Kullback-Leibler distance (KLD) criterion, 
which helps localize robots [23], is used in the particle filter 
considering more complex localization estimations and 
equations than the two-dimensional situation and a generally 
wider search space. This criterion reduces the search space 
criteria until the estimation accuracy reaches a specific limit, 
the particle numbers are determined adaptively, and the 
particle numbers are selected comparatively with the help 
of this criterion over the estimation to determine the number 
of particles within a suitable range of accuracy and proper 
estimation speed.

The main contributions of this article are (1) to obtain 3D 
equations of the possible locations of an RF source considering 
the effective parameters of RSSI such as reflection angle and 
distance, (2) to propose a particle filtering approach for the 
3D localization problem based on RSSI measurements from 
three reflected signals, and (3) to improve the particle filter 
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Fig.1. An illustration of the localization using NLOS Fig. 1. An illustration of the localization using NLOS
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for 3D localization in wide search space using local search 
method and KLD criteria which can improve the localization 
accuracy with an optimum number of particles.

The rest of the article is organized as follows. Section 
2 reviews the reflection signal propagation. Section 3 
describes the equations of the possible locations of the RF 
source in the 3D and improved particle filtering approach for 
estimation of the location of the RF source. The simulation 
results are presented in Section 4, and conclusions are given 
in Section 5.

2- Reflection Signal Propagation
In general, signals are received directly or indirectly. The 

indirect signal goes through obstacles while being propagated 
with reflection or diffraction [18]. The signal strength of such 
obstacle reflection in the receiver is a function of the distance 
between the receiver and the RF source through the reflection 
path. Also, the reflector partly weakens the signal strength 
based on its reflection coefficient (a value between zero and 
one) in which one means that the obstacle fully reflects the 
signal without reducing its strength while zero means that 
it fully weakens the signal. The signal strength reduction 
because of its reflection path is formulated as follows [24]:
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This equation is generally valid. Here, d is the reflection 

path length between the receiver and the RF source and θ 
is the reflection angle. The reflection angle is measured in 
three-dimensional space including the reflector, receiver, 
and RF source. This function shows that the changes in the 

signal strength reduction are caused by distance changes 
with a known rate. These changes can be used to calculate 
the distance d. On the other hand, the reflection coefficient 
(Γ) depends on the reflection angle. This coefficient is also 
dependent on the reflector surface material and ruggedness. 
In case there are reflective signals, we have considered the 
reflector as dry soil with some unevenness. Figure 2 shows 
the reflection coefficient changes based on different angles 
for the working signal of mobile phones.

3- The proposed method 
We have used a GPS-equipped UAV to solve this three-

dimensional localization problem to have a reading on the 
exact location of the UAV and direct it on any path. This UAV 
is also equipped with a special antenna to determine the signal 
AOA and RSSI. On the other hand, we assume the received 
signal is a reflection with proper strength. This assumption 
requires signals that have been reflected only once because 
signals with more reflections are much weaker. Also, signals 
with near right angles will fully disperse because of the 
rugged surface, so we can ignore such angles and consider 
a small reflection angle. Figure 3 shows a reflected signal in 
three dimensions.

In Figure 3, there are two angles for AOA – one is α in the 
(x,y) plan concerning the x-axis and the other is ϕ concerning 
the z-axis. This figure shows the receiving signals at the 
origin of coordinates for ease of use, but they could be in 
any location. The reflection angle θ is on a plane that passes 
through the receiver, RF source, and reflector. Also,  is the 
distance between the reflector and the origin of the coordinate, 
and  is the distance between the reflector and the RF source.

As was previously mentioned, localization is done 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2. Reflection coefficient magnitude for dry soil   
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according to Figure 3 with a known UAV/receiver location 
alongside unknown RF source and reflector locations. If we 
have a two-dimensional map, we can easily determine the 
reflector location by AOA which is shown as ( , )obs obsx y . 
When it comes to determining a three-dimensional location, 
the reflector height is calculated using the known UAV height:
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in which 2 2( ) ( )pr obs r obs rd x x y y= − + − and prd  
are the distance between the UAV/receiver and the reflector 
location in two dimensions while ( , , )r r rx y z is the UAV/
receiver location. This equation is used to determine the 
reflector location in three dimensions but still, there are three 
unknowns (x,y,z) remaining that are related to the location of 
the RF source. If the UAV moves towards the signal line of 
the bearing, RSSI will change while the signal angle will still 
be the same.

Based on Equation 1, these RSSI variations are caused by 
the distance variation between the receiver and RF source. 
Therefore, we could estimate the distance between the UAV 
and RF source by measuring these RSSI variations caused 
by the known UAV movements. The distance between the 
RF source and the reflector is estimated using the known 
distance between the receiver and the reflector obstacle. 
This parameter alongside the reflector location shows that 
the RF source is on a sphere with the reflector as its center. 
This method could be used in situations with four reflections 
because the intersection of every two spheres creates a circle 
and these four spheres can create three circles that pinpoint 
the RF source location with their intersection.

Equation 1 can be used to create a better method that 
properly uses the current RF signal information with fewer 
reflections in three-dimensional localization when the 
reflection angle and the distance between the receiver and 
the RF source are known. This will create a cone-like shape 
for possible RF source location with the reflector in its tip 
just like Figure 4. This type of localization requires at least 
three reflections because their three-dimensional intersection 
determines the RF source location.

To obtain the possible RF source location equations which 
are mentioned above, Equation 3 can be used to determine the 
RF source location:
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which is the sphere surface. The RF source location in the 

intersection equation must match the general plane equation 
like Equation 4:
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This plane has the following normal vector:
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in which a, b, and c are the first to third entries of the 
vector. Also, a point on this plane is equal to 
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finally, p in Equation 4 can be calculated by Equation 5:
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These equations are written with a known reflector location 
and AOA (the α and ϕ). Also, estd  and θ are estimated by 
Equation 1 and RSSI observations. As is evident, the possible 
three-dimensional RF source location points require solving 
some non-linear equations. This localization problem can be 
solved using the non-linear least-squares method. These signal 
propagation and localization equations are rather complex, 
and using non-linear optimization methods such as the non-
linear least-squares method will create great dependence on 
the initial conditions. This article uses the adaptive improved 
particle filter method for estimation because it does not have 
the above estimation problems alongside the use of UAV for 
collecting RSSI and AOA samples online.

3- 1- Improved Particle Filter for Outdoor Three-Dimensional 
Estimation

The particle filter is used to estimate the RF source 
location. The state or particle variable is the RF source 
location and the i-th particle is ( , , )i i i iX x y z= . The 
particle filter has the following steps:

• Particle initialization:
The initial  particle value is determined by the highest and 

lowest search location dimensions in uniform distribution.

• Predicting the next phase and creating multiple particles 
for each particle:

We assume that the UAV flies on a specific path in a 
known direction and manner. A small random value is added 
to the particle because the RF source location is estimated 
and it is not mobile. Furthermore, the hill-climbing algorithm 
is used to increase the estimation accuracy, so Equation 6 is 
used to create a neighborhood for each particle:
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 (6)

	
in which dn is the random variable for randomly creating 

a neighbor for the previous particle.
• Updating particle weight:
In general, the particle weight is updated based on RSSI. 

RSSI is a Gaussian variable. Therefore, the path loss can also 
be Gaussian. Also, the path loss could be formulated using 
state variables. Therefore, the observation model is written 
based on the state variables as with Equation 7.

These equations are written for one observation, but three 
RSSI observations require three reflected signals.
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in which ( )msrPL t is the observed path loss based on 

RSSI and [ ] ( )i
calPL t  is the calculated path loss based on each 

particle location. This calculated value for each particle is 
based on Equation 8:
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Fig. 4. The RF source locus in 3D is a circle Fig. 4. The RF source locus in 3D is a circle
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in which x, y, and z are the estimated RF source location, 

, , and  are the reflector location,  is the distance between 
the receiver and reflector that is determined considering the 
map and reflector location, and θ is the reflection angle that 
is calculated by Equation 9 using the RF location, reflection 
location, and receiver location based on the law of cosines.
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The value of θ can be calculated for every x, y, and z of 

the RF source location or the dimensions of each particle 
considering the known UAV location () and obstacle location. 
Then, this θ value is put in Equation 8, which allows the path 
loss to be only dependent on the RF location coordinates 
or the dimensions of each particle. On the other hand, the 
path loss function is considered a Gaussian distribution 
function, so the particle weight is updated using Equation 10 
considering Equations 6-8:
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 The particle weight for location estimation in three 

dimensions is the result of three reflections and their observed 
weights, which are calculated based on Equation 11:
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This operation of weight updating from Equations 6 to 

11 is calculated multiple times to execute the hill-climbing 
algorithm and improve the particle. The new particle weight 
replaces the older one if it is larger than it. This operation 
searches the particle’s surrounding space to increase its 
weight.

• Re-Sampling:
There is another sampling after particle weight updating. 

This is performed using a threshold, which leads to re-
sampling if the number of effective particles is lower than it. 
The normal particle filter calculates the inverse of the total 
squares of the particle weights as the threshold.

The above particle filter algorithm requires many particles 
from the beginning for its estimation because of the vast 
search space and its three-dimensional estimation. This study 
improves the particle filter algorithm using the KLD criteria, 
which has been optimized using the bin size to improve the 
efficiency by which the above problem is estimated.

3- 2- Improving particle filter efficiency in estimating RF 
source location using the KLD criteria and optimized bin size

This criterion is used in different measurements or the 
distance between two possible distributions just like Equation 
12 [25]:
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If the probability distributions of p and q are equal, K will 

be equal to zero; otherwise, it will be a positive number that is 
not a metric distance and does not have triangular properties.

This criterion requires sample estimation because we do 
not possess true posterior distribution. The particle filter with 
KLD can configure the maximum likelihood estimation in a 
proper range considering the true posterior distribution. In 
other words, this ML estimation error of sampling method 
and desired distribution with the probability of 1-δ is lower 
than ε if the number of particles is equal to or higher than . 
Equation 13 is to make sure we have this number of particles:
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Equation 13 is known as Wilson’s theorem and uses a chi-
square estimation to obtain the conditions mentioned in KLD. 
Here, k is the number of bins and z is the highest quantile of 
the Gaussian distribution. The standard Gaussian distribution 
tables present this value based on different δs. The value of  
is easily calculated by knowing these values. The number 
of bins is determined by the prior distribution and bin sizes. 
We do not have the prior distribution, so we can consider the 
number of non-empty bins as the number of k because each 
particle is allocated to one bin.

The length of each bin in any dimension must be 
determined because the first figure uses this length as a fixed 
value during its estimation and the usage of improper lengths 
can affect the convergence and the estimation accuracy. The 
length of each bin in any dimension can be determined based 
on the number of particles according to Equation 14:
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Equation 14 estimates the number of bins considering 

the number of particles and estimation accuracy. The known 
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range of each particle dimension allows for determining 
the bin dimensions based on the length of each dimension 
in which the particles are distributed. This is done using 
Equation 15.
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Equation 13 and its parameters have been added to the 

particle filter considering the large searching space and the 
need for a high number of particles to obtain an accurate 
search. The particle number is set at the initial number and 
their number changes based on Equation 14 during the 
particle filter iterations to decrease the previous distribution 
estimation accuracy from ε with the possibility of 1-δ, 
which improves the localization accuracy. Also, the bin size 
is determined based on Equation 15, which improves the 
performance of the particle filter and reduces the calculation 
complexities using adaptive bin size.

4- Simulation and Results
This section simulates the RF source localization in three 

dimensions with maps. The signal is assumed to be received 
using reflection. The UAV moves alongside the signal path 
to improve the signal-receiving angle measurement. The 
localization is done in three dimensions based on the map, the 
known UAV location, and the obstacle location in the signal 
path. The simulation estimates the RF source location using 
the map alongside the reflection coefficient, RSSI data, and 

known reflector location. Also, it is assumed that the UAV 
receives three reflected signals while moving along a path for 
search and rescue. The situation of the reflectors compared 
to each other and the location of these signals can affect the 
localization accuracy. The localization has been done in four 
different conditions, and the results are presented here.

The particle filter using the KLD method with an initial 
minimum of 1500 is distributed evenly considering the large 
search area to estimate the RF source location. Also, the KLD 
particle filter has , , and bin length dimensions of 200 meters 
for x and y alongside 3 meters for the z-axis. These values 
for the adaptive particle filter change over time based on 
Equation 14 and each simulation undergoes 200 iterations. In 
each iteration, the local search is used for each particle five 
times to improve the localization.

To compare the proposed approach to another approach, 
because three-dimension localization using RSSI observations 
and reflection and map was not found in other researches, the 
advanced approach in the [22] is selected.  This approach is 
localization in 2D using map and reflection in which a simple 
particle filter is used for estimation and observation is RSSI. 
2D localization error is obtained in the 3D environment and 
it is compared to the error of the localization in 3D with 
the approach which is proposed in this paper. For a simple 
particle filter number of particles is constant and equal to 500 
which is equal to the mean of particle number in adaptive 
particle filter.  

Figure 5 has three reflectors, allowing the UAV to 
receive three signals. Multiple geometrical conditions were 
compared in these simulations. Different values were added 
to the reflector location dimensions to create new geometrical 
conditions. Monte-Carlo simulation is run with an average of 
100 consecutive runs whose results are presented in Tables 1-4.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. The locations of the reflectors and receiving point on the simulation 

environment 

Fig. 5. The locations of the reflectors and receiving point on the simulation environment
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Condition 1: Location of Reflector 1 (3500,5700,35), 
Location of Reflector 3 (6200,3100,73), and Location of 
Reflector 2 (2100,3100,170)

Condition 2: Location of Reflector 1 (3200,5800,35), 
Location of Reflector 3 (4500,3100,73), and Location of 
Reflector 2 (2100,3100,170)

Condition 3: Location of Reflector 1 (3000,5700,35), 
Location of Reflector 3 (3500,3100,73), and Location of 
Reflector 2(2100,3100,170)

Condition 4: Location of Reflector 1 (2800,5400,35), 
Location of Reflector 3 (3000,3100,73), and Location of 

Reflector 2 (2100,3100,170)
The estimation accuracy of these four estimations was 

based on the localization error of those two particle filters 
and the approach in [22]. The adaptive particle filter with 
the proper bin size has a better performance and higher 
estimation speed than the initial KLD particle filter. Also, the 
locations of two reflectors (Reflectors 1 and 3) were changed 
in these simulations, and they got closer to each other. This 
brings the two spheres, which are the geometric locations of 
the reflectors, closer to one another and increases their noise 
error compared to when they were more distant from each 
other. Also, the proposed approach in [22] has more errors 

Table 1. The RF source localization error in Condition 1 in metersTable 1: The RF source localization error in Condition 1 in meters 

Condition 1 
Noise standard deviation based on dB 

1 2 3 4 5 

RMSE of localization with 
adaptive KLD PF Filter 105 117 144 168 192 

RMSE of localization with 
KLD PF 121 128 139 174 208 

RMSE of localization with 
the approach in[22] 198 221 278 345 365 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The RF source localization error in Condition 2 in meters

 

 

Table 2: The RF source localization error in Condition 2 in meters 

Condition 2 
Noise standard deviation based on dB 

1 2 3 4 5 

RMSE of localization with 
Adaptive KLD PF 113 136 164 198 221 

RMSE of localization with 
KLD PF 125 140 189 216 231 

RMSE of localization with 
the approach in[22] 185 215 288 320 349 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. The RF source location error in Condition 3 in meters

 

Table 3: The RF source location error in Condition 3 in meters 

Condition 3 
Noise standard deviation based on dB 

1 2 3 4 5 

RMSE of localization with 
Adaptive KLD PF 109 128 195 265 291 

RMSE of localization with 
KLD PF 101 134 199 281 311 

RMSE of localization with 
the approach in[22] 256 279 304 367 445 
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related to the other method because of using 2D localization 
equations in 3D environment.

 For more investigation, the number of particles for each 
iteration is shown in Figures 6 and 7. In these figures, it is 
shown that the length of the bin in each dimension can change 
the number of particles, and the adaptive bin size can adjust 
the number of particles for effective estimation. It is hard 
and time- consuming to determine the bin size in the simple 
KLD particle filters in three dimensions, and KLD PF for 3D 
estimation has low performance.

In Figure 6, it is shown that the number of particles for 
estimation in the KLD PF is low because the size of the bins 
is not suitable. Also, in Figure 7, the number of particles for 

the KLD PF is high but estimation has low accuracy because 
they are not effective.

Based on the above simulations in different locations 
of the receiving points of reflection, it is shown that 
localization with particle filter in three dimensions using 
particle filter is possible and the locations of receiving the 
reflections have a slight effect on the estimation. Also, the 
adaptive KLD particle filter has higher accuracy in a large 
search space using enough particles than the KLD particle 
filter and the proposed approach in [22] has more errors 
related to the proposed method of this paper because 2D 
localization equations are used for 3D environment by a 
simple particle filter.

Table 4. The RF source localization error in Condition 4 in meters

 

 

Table 4: The RF source localization error in Condition 4 in meters 

Condition 4 
Noise standard deviation based on dB 

1 2 3 4 5 

RMSE of localization with 
Adaptive KLD PF 113 132 201 289 341 

RMSE of localization with 
KLD PF 122 138 194 287 339 

RMSE of localization with 
the approach in [22] 271 315 350 425 496 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. The number of particles for initial bin dimensions x=150, y=150, z= 1 meter Fig. 6. The number of particles for initial bin dimensions x=150, y=150, z= 1 meter
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5- Conclusion
This study performed three-dimensional localization based 

on signals reflected on obstacles in an outdoor environment. 
The geometrical location of each reflection based on the 
estimation information was shown to be a circle in a three-
dimensional environment. It was shown analytically and in 
the simulations that the cross-section of three circles, which 
were the results of reflected signals, determined the unique 
RF source location. The KLD criterion and local search 
were used to improve the particle filter performance for 
location estimation in 3D. This criterion adaptively selected 
the number of particles and introduced the bin size as a 
value based on interval length and the maximum number of 
particles, which increased the estimation speed and accuracy. 
The simulation results showed that the adaptive particle filter 
had a proper speed and accuracy.
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