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ABSTRACT: The problem of valid measurement’s associations with true targets called “data 
association” is an essential challenge in multi-target tracking. Previous works often use the nearest 
neighbor or all neighbor approaches for updating the position of the targets, which are unsuccessful in 
complex environments and real-time applications, respectively. This paper provides a novel and effective 
solution to the data association problem in multi-target tracking, offering promising advancements in 
heavily cluttered environments. The proposed method uses important measurements that are determined 
based on fuzzy membership degrees. We selected and used valid measurements with a high fuzzy 
membership degree for updating the position of the targets. In this paper, we used two approaches for 
the selection of important measurements. The first strategy selects the k measurements with the highest 
degree of membership among the valid measurements. A second strategy is to give up measurements 
with very low membership degrees. The ability to solve the data association problem for both approaches 
under different levels of selecting measurements is evaluated. The proposed method is examined under 
two scenarios: linear crossing and maneuvering targets. The results show that the proposed technique 
performs better than FNN, JPDAF, MEF-JPDAF, and Fuzzy-GA methods based on the RMSE criterion.
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1- Introduction
The aim of tracking systems is the estimation and 

prediction of the target state [1–6]to mitigate the clutter and 
jamming effect. A waveform is selected based on Cramer--
Rao lower bound (CRLB. The tracking filter, data association 
(DA) process, and gating technique are the main components 
of tracking systems. Recursive Bayesian filters are usually 
employed as tracking filters that consist of prediction and 
updating steps [7–9]for situations where the target’s physical 
size exceeds one sensor resolution cell or the transmission 
and received signals have multi-path propagations, one target 
generates multiple detections which terms the multiple-
detection problem. The multiple-detection multiple-target 
tracking algorithms usually suffered from an intractable 
computational load and could not operate in real time when 
multiple targets are closely spaced or too many detections 
are generated. In addition, automatic track initialization 
technique in cluttered environments brings in the presences 
of both true and false tracks that false track discrimination 
is required. These two terms are critical for real tracking 
systems but largely neglected by the published papers for the 
multiple-detection problem. In this paper, the authors propose 
an algorithm, called the Multiple-detection Iterative Joint 
Integrated Probabilistic Data Association (MD-iJIPDA. At the 
first step of the tracking process, the target’s state is predicted 

by the tracking filter. Next, after receiving measurements, the 
gating technique is used to determine valid measurements. 
Then, associating valid measurements with existing tracks 
is done through the DA process. Finally, the target’s state 
is updated based on associated measurements. In dense 
environments, “clutter” or false alarms exist alongside real 
measurements and cause uncertainty about measurement 
sources. So, the gating technique is employed before DA to 
eliminate false alarms and to determine valid measurements. 
In this sense, we can say that DA is highly coupled with the 
determination of valid measurement [10–13].

Generally, DA methods are divided into two groups 1) 
nearest neighbor (NN) which uses the nearest measurement 
to the predicted position of targets, and 2) all neighbors (AN) 
which uses all valid measurements for updating the position 
of targets [11, 12, 14, 15]. The quality of the DA-based NN 
approach despite its simplicity, decreases as the false alarm 
rate increases or as targets get closer and cross. In contrast, 
AN leads to the complexity of tracking systems in real-time 
applications. 

In recent decades, highly efficient DA methods were 
presented. Multi-hypothesis tracker (MHT) and joint 
probabilistic data association (JPDA) methods are efficient 
solutions for the DA problem in multi-target tracking systems 
[3, 9, 16–18]. These techniques use all valid measurements 
determined by the validation gate and work based on the 
AN approach. However, both of them have significant 
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computational complexity. An improved JPDA for tracking 
multiple maneuvering targets in cluttered environments with 
uncertain measurement noises and uncertain target dynamic 
models is developed by Fan et al. [14]. Their method has been 
combined with a fuzzy recursive least squares filter. Gorji et 
al.[18] have applied JPDA to tracking multiple mobile targets, 
which has been combined with a particle filter.

Generally, creating an optimal solution to the DA problem 
for tracking multiple targets in cluttered environments is 
usually costly [12, 19]. In consequence, soft computing-
based DA techniques have been interesting. Whereas, soft 
computing-based DA methods are a suboptimal technique 
for DA problems that are classified into 1) fuzzy logic, 2) 
artificial neural networks, and 3) evolutionary algorithms [8, 
9, 12, 20,21]. Due to the need for many neurons and training 
time, artificial neural network-based DA techniques are not 
welcome. In consequence, fuzzy-logic-based DA methods, 
especially fuzzy clustering-based DA techniques are interested 
in solving DA problems in real-time applications. In fuzzy-
clustering-based DA methods, the fuzzy membership degree 
of valid measurements is used for updating the phase of the 
tracking filter. The main difference between fuzzy clustering 
DA methods is in the determination of fuzzy membership 
degree. Fuzzy C-means (FCM) clustering, fuzzy clustering 
based on maximum entropy, and intuitionistic fuzzy clustering 
are the main approaches that are used as fuzzy clustering for 
solving DA problems [22–28].

Liangqun et al. [22] developed the first DA method 
based on maximum entropy fuzzy clustering for tracking 
multiple targets in cluttered environments. Their approach 
reconstructs the joint association probabilities based on 
enhancement revision of maximum entropy fuzzy clustering. 
The combination of the DA technique based on maximum 
entropy Gaussian particle filter and fuzzy clustering is 
proposed by Zhang et al.[24]. In Ref. [26], a novel bearings-
only algorithm is designed for tracking multiple maneuvering 
targets. Liangqun and Wei-xin [26] have suggested a DA 
algorithm based on intuitionistic fuzzy clustering. Also, for 
handling the uncertainty of measurement, two new weight 
assignment approaches are presented. Aziz [11] has suggested 
a new DA based on FCM clustering. The proposed method is 
based on the NN approach, in which the measurements with a 
maximum degree are used for updating the phase of the tracking 
filter. A hybrid DA method based on evolutionary and FCM 
clustering is suggested by Satapathi and Srihari [12]. Their 
DA techniques used of genetic algorithm and particle swarm 
optimization to overcome the local minima problem by FCM 
clustering. However, the need for evolutionary algorithms for 
iterations leads that this method dose not unusable in real-time 
applications [12]. An intuitionistic fuzzy model was created 
by Zhang et al. [29] for data association in multi-target dense 
clutter tracking. In their approach, intuitionistic C-means 
clustering and maximum intuitionistic entropy are used for 
model training, and handling of uncertainty between targets 
and measurements, respectively. A fuzzy C-means clustering 
strategy has been proposed by Wang and Zhang [30] to 
improve target number estimation in PHD filter tracking. 

In their approach, measurement clustering compensates for 
tracking losses in situations with high noise and clutter.

As mentioned above, the DA process is highly coupled 
with gating. All techniques for solving DA problems are 
working based on either the NN approach or AN approach, 
which fails in environments with a high clutter rate and leads to 
the complexity of tracking systems in real-time applications. 
Consequently, the necessity for a data association solution is 
required that have the following conditions: 1) independent 
from the gating results and 2) solving the DA problem 
based on the new approach which uses measurements with 
the highest fuzzy membership degree. Using important 
measurements increases efficiency in environments with a 
high clutter rate and causes the simplicity of tracking systems 
in real-time applications. 

A density-based fuzzy clustering technique for solving the 
multiple targets DA problem is presented in this study, which 
works differently from the AN approach and NN approach. 
Density-based clustering is used instead of gating to satisfy 
the above first conditions. The determination of valid 
measurements based on density clustering was introduced in 
Ref. [8], which works based on the AN approach. However, the 
development of a new approach to the selection of validated 
measurements for updating the position of the targets is the 
main purpose of the present study, which satisfies the second 
condition. Two strategies are introduced for reaching this 
goal. Finally, the main contributions and significant features 
of the proposed DA technique can be summarized as follows:
•	 It does not require a gating technique for the 

determination of valid measurements.
•	 It does not require either knowledge of the false alarm or 

the detection probabilities.
•	 Important valid measurements are used and let efficiency 

in real-time and complex tracking systems.
The remaining of the paper is organized as follows. In 

section 2, the problem formulation is described. Section 3 
discusses the proposed method, i.e., fuzzy density-based data 
association filter (FDB-DAF). The simulation results and 
performance comparisons are presented in Section 4 and the 
conclusions are provided in Section 5.

2- Problem Formulation
Suppose that there are T  targets under surveillance, 

and the dynamics and measurement models of target 
{ }   1, 2, ,i i T= … , are as follows:

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 

 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 , 𝜀𝜀 = 0.000001 
(13) 
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(15) 

 

𝛽𝛽𝑖𝑖
𝑗𝑗 = { 𝑢𝑢𝑗𝑗𝑗𝑗           if 𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 𝜉𝜉,      

  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

 (1)

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 

 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 , 𝜀𝜀 = 0.000001 
(13) 
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(15) 

 

𝛽𝛽𝑖𝑖
𝑗𝑗 = { 𝑢𝑢𝑗𝑗𝑗𝑗           if 𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 𝜉𝜉,      

  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

 (2)

where ( )ix k  is an n-dimensional state vector, and 
( )iz k  is an m-dimensional measurement vector of the i

th target at time k. ( )iF k  is an n n×  state transition matrix, 
( )iG k  is an n m×   noise matrix, and ( )iH k  is an m n×  
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measurement transition matrix [21]. The process noise 
( )iv k  and measurement noise ( )iw k  are independent 

zero mean Gaussian noise vectors with known covariance 
( )iQ k  and ( ) iR k , respectively.

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 

 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 , 𝜀𝜀 = 0.000001 
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(15) 

 

𝛽𝛽𝑖𝑖
𝑗𝑗 = { 𝑢𝑢𝑗𝑗𝑗𝑗           if 𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 𝜉𝜉,      

  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

 (3)

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1
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𝑗𝑗 = { 𝑢𝑢𝑗𝑗𝑗𝑗           if 𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 𝜉𝜉,      

  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

 (4)

If the measurements do not contain any clutter or ECM 
(noise-free environment), the simple Kalman filter is used to 
predict and update tracks [9, 10].

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 
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 , 𝜀𝜀 = 0.000001 
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𝑗𝑗 = { 𝑢𝑢𝑗𝑗𝑗𝑗           if 𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 𝜉𝜉,      

  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

 (5)

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 
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(15) 

 

𝛽𝛽𝑖𝑖
𝑗𝑗 = { 𝑢𝑢𝑗𝑗𝑗𝑗           if 𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 𝜉𝜉,      

  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

 (6)

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 

 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 , 𝜀𝜀 = 0.000001 
(13) 
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(15) 

 

𝛽𝛽𝑖𝑖
𝑗𝑗 = { 𝑢𝑢𝑗𝑗𝑗𝑗           if 𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 𝜉𝜉,      

  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

 (7)

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 

 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 , 𝜀𝜀 = 0.000001 
(13) 

 

 
     if  be owned by k

measurements with the highest degree , 1, ,  

 0                       otherwise  

i

j

ji j

k
i

u u
j N





 



 
 

(15) 

 

𝛽𝛽𝑖𝑖
𝑗𝑗 = { 𝑢𝑢𝑗𝑗𝑗𝑗           if 𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 𝜉𝜉,      

  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

 (8)

where ( )  iz k is the sum of all weighted innovations 
and ( )  iK k  is denotes the gain of the Kalman filter that its 
formula is as follows :

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 

 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 , 𝜀𝜀 = 0.000001 
(13) 
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(15) 

 

𝛽𝛽𝑖𝑖
𝑗𝑗 = { 𝑢𝑢𝑗𝑗𝑗𝑗           if 𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 𝜉𝜉,      

  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

 (9)

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 

 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 , 𝜀𝜀 = 0.000001 
(13) 
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(15) 
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 (10)

The innovation covariance matrix is given by

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1
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𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
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 , 𝜀𝜀 = 0.000001 
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 (11)

3- Fuzzy density-based data association filter
Suppose a measurement set { }z ,  j 1, ,  j kM= … is related 

to the target set { },  1, ,it i T= …  at time k. Measurements 
clustering,  determining the membership degree of clustered 
(valid)  measurements, and selection of important valid 
measurements  are respectively the stages of the proposed 
DA approaches. The method requires the MinPts  and the 

Eps  parameters for the clustering phase, which are the 
minimum number of points in the cluster and the maximum 
radius of the neighborhood, respectively. The proposed 
method starts with ( )ˆ 1|ix k k+  and take into account all 

_Eps neighborhood  (measurements with the maximum 
Eps  distance) of this point and considers them as cluster 
members (valid measurements of target i th). Then, the
 _Eps neighborhood  of all cluster member measurements 
with least  MinPts  points are taken into account and added 
to the cluster. Also, the  _Eps neighborhood  of new members 
with the least  MinPts  points are taken into account and 
added to the cluster. The above process is repeated for all 
targets ( ( )ˆ 1|ix k k+ ). Finally, the clustered measurements 
are considered as valid measurements and the number of 
created clusters will be the same as the number of targets. 

In the second part of the proposed data association method, 
the fuzzy membership degrees of clustered measurements 
were determined for the current targets based on the principle 
of maximum entropy as follows:

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 

 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 , 𝜀𝜀 = 0.000001 
(13) 
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 (12)

where ( )( )jd z , ˆ 1|ix k k+  represents the Euclidean 
distance between the measurement jz  and the predicted 
position of the target ( )ˆ 1|ix k k+ . Predicting the position 
of targets is considered as the cluster’s center in the fuzzy 
membership degree determination process. optα  is known 
as a discriminating factor, and its optimal is calculated as 
follows [14, 15, 27]:

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 

 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 , 𝜀𝜀 = 0.000001 
(13) 
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 (13)

As mentioned above, this study suggested a new approach 
to the DA process, which is based on using important 
measurements for updating the position of the targets. Two 
strategies for the selection of important measurements can be 
applied. In the first strategy, k measurements with the highest 
degree of membership from valid measurements are selected. 
Selection of k measurements performed separately for each 
cluster (target) as follows:

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1
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𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
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𝛽𝛽𝑖𝑖
𝑗𝑗 = { 𝑢𝑢𝑗𝑗𝑗𝑗           if 𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 𝜉𝜉,      

  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1
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  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

 (14)
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where kN  is the number of valid (clustered) measurements 
and j

iβ  indicates the distance between the measurement z j  
and the ith target.

The second strategy, abandon measurements with very 
small jiu . For reconstruction of the association probability 
matrix, a new rule is developed as follows:

𝑥𝑥𝑖𝑖(𝑘𝑘) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘 − 1) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) (1) 

𝑧𝑧𝑖𝑖(𝑘𝑘) =  𝐻𝐻𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 𝑤𝑤𝑖𝑖(𝑘𝑘) (2) 
 

𝑄𝑄𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶( 𝑣𝑣𝑖𝑖(𝑘𝑘)) (3) 

𝑅𝑅𝑖𝑖(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑤𝑤𝑖𝑖(𝑘𝑘)) (4) 
 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑗𝑗𝑥𝑥𝑖𝑖(𝑘𝑘|𝑘𝑘) (5) 

𝑃𝑃𝑖𝑖 (𝑘𝑘 + 1|𝑘𝑘) =  𝐹𝐹𝑖𝑖 𝑃𝑃𝑖𝑖 (𝑘𝑘|𝑘𝑘)𝐹𝐹𝑗𝑗
𝑇𝑇 + 𝑄𝑄𝑖𝑖 (𝑘𝑘) (6) 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) + 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝑧̃𝑧𝑖𝑖(𝑘𝑘 + 1) 

(7) 

𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘 + 1) = 
 [I − 𝐾𝐾𝑖𝑖(𝑘𝑘 + 1)𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)]𝑃𝑃𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 

(8) 

 

𝑧̃𝑧𝑖𝑖(𝑘𝑘) = 𝑧𝑧𝑖𝑖(𝑘𝑘 + 1) − 𝐻𝐻𝑖𝑖(𝑘𝑘 + 1)𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) (9) 

𝐾𝐾𝑖𝑖(𝑘𝑘) = 𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1) 
𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇[𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘)]−1 

(10) 

 

𝑆𝑆𝑖𝑖(𝑘𝑘) = 𝐻𝐻𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖(𝑘𝑘|𝑘𝑘 − 1)𝐻𝐻𝑖𝑖(𝑘𝑘)𝑇𝑇 + 𝑅𝑅𝑖𝑖(𝑘𝑘) (11) 
 

𝑢𝑢𝑗𝑗𝑗𝑗 = 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑖𝑖(𝑘𝑘+1|𝑘𝑘))

∑ 𝑒𝑒−𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜𝑑𝑑(𝑧𝑧𝑗𝑗,𝑥̂𝑥𝑡𝑡(𝑘𝑘+1|𝑘𝑘))𝑇𝑇
t=1

 
(12) 

 

𝛼𝛼𝑜𝑜𝑜𝑜𝑜𝑜 = − 𝑙𝑙𝑙𝑙 𝜀𝜀
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

 , 𝜀𝜀 = 0.000001 
(13) 
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𝛽𝛽𝑖𝑖
𝑗𝑗 = { 𝑢𝑢𝑗𝑗𝑗𝑗           if 𝑢𝑢𝑗𝑗𝑗𝑗 ≥ 𝜉𝜉,      

  0              otherwise      , 𝑗𝑗 = 1, … , 𝑁𝑁𝑘𝑘  (16) 
 

 (15)

where ξ  is the threshold value. Eventually, the probability 
matrix must be normalized as follows:

 
 

𝛽𝛽 =

[
 
 
 
 
 
 𝛽𝛽1

1
𝑁𝑁1

⁄ 𝛽𝛽1
2

𝑁𝑁1
⁄ ⋯ 𝛽𝛽1

𝑁𝑁𝑘𝑘

𝑁𝑁1
⁄

𝛽𝛽2
1

𝑁𝑁2
⁄ 𝛽𝛽2

2
𝑁𝑁2

⁄ ⋯ 𝛽𝛽2
𝑁𝑁𝑘𝑘

𝑁𝑁2
⁄

⋮
𝛽𝛽1

T
𝑁𝑁𝑇𝑇

⁄
⋮

𝛽𝛽T
2

𝑁𝑁𝑇𝑇
⁄

⋱
⋯

⋮
𝛽𝛽T

𝑁𝑁𝑘𝑘

𝑁𝑁𝑇𝑇
⁄ ]

 
 
 
 
 
 

, 

 

 𝑁𝑁𝑡𝑡 = ∑ 𝛽𝛽𝑡𝑡
𝑖𝑖

𝑁𝑁𝑘𝑘

𝑖𝑖
   𝑡𝑡 = 1,… , 𝑇𝑇 

(17) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 = √
1

𝑁𝑁𝑀𝑀𝑀𝑀
∑(𝑥̂𝑥𝑛𝑛(𝑘𝑘) − 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑛𝑛 (𝑘𝑘))2
𝑁𝑁𝑀𝑀𝑀𝑀

𝑛𝑛=1
+

(𝑦̂𝑦𝑛𝑛(𝑘𝑘) − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛 (𝑘𝑘))2 + (𝑧̂𝑧𝑛𝑛(𝑘𝑘) − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑛𝑛 (𝑘𝑘))2

 

 

(18) 

 

F = (
1 δ 0 0
0 1 0 0
0
0

0
0

1
0

δ
1
) 

(19) 

G = (δ 2⁄ 1 0 0
0 0 δ 2⁄ 1)

T
 

(20) 

 

H = (1 0 0 0
0 0 1 0) (21) 

 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 
 
 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑢𝑢𝑖𝑖(𝑘𝑘) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) 
 

(22) 

 

 (16)

Figure 3 illustrates the proposed algorithm for data 
association problems.

4- Simulation Results
This section presents two scenarios, 1) the linear crossing 

targets and 2) maneuvering targets to evaluate the proposed 
method compared to fuzzy nearest neighbor (FNN) [11], 
joint probabilistic data association filter(JPDAF)[10, 31, 32],  
maximum entropy fuzzy joint probabilistic data association 
filter( MEF-JPDAF) [22], and fuzzy genetic algorithm 
(Fuzzy-GA)[12]. Both scenarios were studied in two different 
levels of clutter that it is considered spatially distributed with 
Poisson distribution with parameter λ  (the number of false 
measurements per unit of volume ( )2 km ). Root mean square 
error (RMSE) is used as evaluation criteria. It was calculated 
based on 100 runs of Monte Carlo simulation.
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⁄
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1
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∑(𝑥̂𝑥𝑛𝑛(𝑘𝑘) − 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑛𝑛 (𝑘𝑘))2
𝑁𝑁𝑀𝑀𝑀𝑀

𝑛𝑛=1
+

(𝑦̂𝑦𝑛𝑛(𝑘𝑘) − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛 (𝑘𝑘))2 + (𝑧̂𝑧𝑛𝑛(𝑘𝑘) − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑛𝑛 (𝑘𝑘))2

 

 

(18) 

 

F = (
1 δ 0 0
0 1 0 0
0
0

0
0

1
0

δ
1
) 

(19) 

G = (δ 2⁄ 1 0 0
0 0 δ 2⁄ 1)

T
 

(20) 

 

H = (1 0 0 0
0 0 1 0) (21) 

 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 
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where ( ( )ˆ nx k , ( ) ˆ ny k , ( ) ˆ nz k ) and ( ( )n
truex k ,

( ) n
truey k , ( ) n

truez k ) denote the estimated and true target 
positions at time k at the nth Monte Carlo (MC) simulation 
run, MCN  is the total number of independent MC runs.

The proposed DA technique has two parameters (MinPts 
and Eps) for measurement clustering that an investigation 
phase of trials and errors has been accomplished to set the 

right values of these parameters. Eventually, 3  and  0.55C  
were considered for MinPts and Eps, respectively. Also, 
C  represents the volume of m-dimensional hypersphere 
validation gate units. 

4- 1- Linear Crossing Targets
In this scenario, three crossing targets with initial state vectors 

( ) [ ]T1x 0 1km 0.25km / s 9.3km  0.1km / s= − , ( ) [ ]T2x 0 1km 0.25km / s  4.3km 0.1km / s=  
( ) [ ]T2x 0 1km 0.25km / s  4.3km 0.1km / s=

 
and ( ) [ ]T3 x 0 1km 0.25km / s 1 1.3km 0.1km / s= −  

are considered[5, 24]. The actual and estimated track of 
targets for this scenario is shown in Figure 2. The models of 
motion and measurement of targets are defined by (1) and (2). 
The measurement matric H and the state transition matrices F 
and G are defined as [2, 33]:
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where δ  is the sampling interval. The covariance 
matrices 2 2Q ×  and 2 2R ×  are the system noise and measurement 
noise, which are assumed to be 2 2

iiQ (0.02 ) km= and
( ) 2

ii R 0. 0225  km=  ( )ij ijR Q 0,  for i j= = ≠ , respectively. 
Table 1 clarifies the RMSE of the target position for FNN, 

JPDAF, and Fuzzy-GA. Comparing the RMSE of targets 
shows that the tracks of target 3 have the highest RMSE while 
the tracks of targets 1 and 2 have  almost the same RMSE. 
Also, DNN and Fuzzy-GA, have respectively the highest 
and lowest RMSE in between compared techniques. Further, 
the value of RMSE increases by increasing the clutter level, 
which is less for Fuzzy-GA than the other methods. Table 
2 shows the average RMSE for different k  and ξ  levels 
for the proposed approach. The results depict with increase 
k  let to a decrease in RMSE values of targets. Against this, 
there is an increase in the RMSE values with an increase in 
threshold levels. For k=1, the proposed method solves the 
DA problem based on the NN approach, whereas its results 
are better than the FNN method. Moreover, the proposed 
DA approach based on the use of all valid measurements 
has the best results compared to other techniques. Finally, in 
comparison to the proposed strategies, the second strategy 
has better results. However, the selection of strategy and its 
level is dependent on application.
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Input: 𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) and received measurements  

Output:  the measurements with the highest degree of membership 

1. 𝐷𝐷𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = receive measurements 
2. 𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0 
3. 𝐅𝐅𝐅𝐅𝐅𝐅  i=1 to T do 
4.           𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +  1 
5. 𝐸𝐸𝐸𝐸𝐸𝐸_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑜𝑜𝑜𝑜𝑜𝑜  𝑖𝑖𝑖𝑖 𝐷𝐷 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖(𝑘𝑘 + 1|𝑘𝑘) 
6.          For 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑞𝑞 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐸𝐸𝐸𝐸𝐸𝐸_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠 do 
7.                          𝐷𝐷𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝐷𝐷𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − {𝑞𝑞}            
8.                          {𝑞𝑞} 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
9.                          add all 𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑜𝑜𝑜𝑜𝑜𝑜 q  to 𝐸𝐸𝐸𝐸𝐸𝐸_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑜𝑜𝑜𝑜𝑜𝑜_𝑠𝑠𝑠𝑠𝑠𝑠 
10.         End For 
11. End For 
12. For  j=1 to 𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  do  
13.         For  i=1 to 𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 do 
14.                  membership 𝑢𝑢𝑖𝑖𝑖𝑖 is calculated via Equation (12)  
15.         End For 
16. End For 
17. For  i=1 to 𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 do 
18.          reconstruct the association probability matrix via Equation (15) Or (16) 
19. End For 

*/The remaining measurements in 𝐷𝐷𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  are invalid measurements/* 
*/ 𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = ∑ |𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘|𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑘𝑘=1 /∗ 

 

Fig. 1: Fuzzy density-based data association filter algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Fuzzy density-based data association filter algorithm.

 

Fig. 2: Actual and estimated tracks by FDB-DAF in the first scenario. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Actual and estimated tracks by FDB-DAF in the first scenario.
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Table 1. The RMSE position for compared methods in the first scenario.TABLE 1: The RMSE position for compared methods in the first scenario. 
 

Methods Clutter density (𝝀𝝀) Target-1 Target-2 Target-3 

FNN 
𝜆𝜆 = 1 38.31 38.07 52.94 

𝜆𝜆 = 2 41.20 37.89 54.14 

JPDAF 
𝜆𝜆 = 1 26.43 25.68 37.41 

𝜆𝜆 = 2 28.18 26.93 39.03 

MEF-JPDAF 
𝜆𝜆 = 1 28.67 26.24 42.69 

𝜆𝜆 = 2 30.15 27.86 45.94 

Fuzzy-GA 
𝜆𝜆 = 1 17.81 17.28 30.73 

𝜆𝜆 = 2 18.62 18.45 34.83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The RMSE position for FDB-DAF in the first scenario.TABLE 2: The RMSE position for FDB-DAF in the first scenario. 
 

Proposed approach Target-1 Target-2 Target-3 

Fi
rs

t s
tr

at
eg

y 

𝑘𝑘 = 1 34.72 33.19 43.07 

𝑘𝑘 = 2 32.28 31.11 40.48 

𝑘𝑘 = 3 29.60 28.22 38.55 

𝑘𝑘 = 4 25.59 24.42 37.24 

𝑘𝑘 = 5 21.86 20.84 35.41 

Se
co

nd
 s

tr
at

eg
y 

𝜉𝜉 = 0.10 18.16 17.81 31.08 

𝜉𝜉 = 0.25 19.44 18.98 33.16 

𝜉𝜉 = 0.50 21.90 20.56 37.64 

𝜉𝜉 = 1.00 24.34 23.71 41.95 

𝜉𝜉 = 1.50 29.08 28.49 45.76 

All measurements 17.32 17.14 31.52 
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4- 2- Maneuvering targets
For a deeper analysis of FD-JPDAF performance, a 

scenario of maneuvering crossing targets is considered. The 
acceleration is considered by additive term in the maneuvering 
model, which is given by[2, 34] as follows:

 
 

𝛽𝛽 =

[
 
 
 
 
 
 𝛽𝛽1

1
𝑁𝑁1

⁄ 𝛽𝛽1
2

𝑁𝑁1
⁄ ⋯ 𝛽𝛽1

𝑁𝑁𝑘𝑘

𝑁𝑁1
⁄

𝛽𝛽2
1

𝑁𝑁2
⁄ 𝛽𝛽2

2
𝑁𝑁2

⁄ ⋯ 𝛽𝛽2
𝑁𝑁𝑘𝑘

𝑁𝑁2
⁄

⋮
𝛽𝛽1

T
𝑁𝑁𝑇𝑇

⁄
⋮

𝛽𝛽T
2

𝑁𝑁𝑇𝑇
⁄

⋱
⋯

⋮
𝛽𝛽T

𝑁𝑁𝑘𝑘

𝑁𝑁𝑇𝑇
⁄ ]

 
 
 
 
 
 

, 

 

 𝑁𝑁𝑡𝑡 = ∑ 𝛽𝛽𝑡𝑡
𝑖𝑖

𝑁𝑁𝑘𝑘

𝑖𝑖
   𝑡𝑡 = 1,… , 𝑇𝑇 

(17) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑘𝑘 = √
1

𝑁𝑁𝑀𝑀𝑀𝑀
∑(𝑥̂𝑥𝑛𝑛(𝑘𝑘) − 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑛𝑛 (𝑘𝑘))2
𝑁𝑁𝑀𝑀𝑀𝑀

𝑛𝑛=1
+

(𝑦̂𝑦𝑛𝑛(𝑘𝑘) − 𝑦𝑦𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛 (𝑘𝑘))2 + (𝑧̂𝑧𝑛𝑛(𝑘𝑘) − 𝑧𝑧𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑛𝑛 (𝑘𝑘))2

 

 

(18) 

 

F = (
1 δ 0 0
0 1 0 0
0
0

0
0

1
0

δ
1
) 

(19) 

G = (δ 2⁄ 1 0 0
0 0 δ 2⁄ 1)

T
 

(20) 

 

H = (1 0 0 0
0 0 1 0) (21) 

 

𝑥𝑥𝑖𝑖(𝑘𝑘 + 1) =  𝐹𝐹𝑖𝑖(𝑘𝑘)𝑥𝑥𝑖𝑖(𝑘𝑘) + 
 
 𝐶𝐶𝑖𝑖(𝑘𝑘)𝑢𝑢𝑖𝑖(𝑘𝑘) + 𝐺𝐺𝑖𝑖(𝑘𝑘)𝑣𝑣𝑖𝑖(𝑘𝑘) 
 

(22) 

 

 (21)

where ( ) ( ) ( )  
T

i x yu k a k a k =   is the acceleration input 

vector. By adding the acceleration term to the state equation, 
FDB-DAF was changed based on the MIE [31] by considering 
the acceleration term in the state equation. The state transition 
matrices F  and  G , and the measurement matrix  H are 
similar to the previous example ((19) to (21)), and the new 
matrix C in (19) is the same as G. The covariance matrices 

2 2Q ×  and  2 2R ×  are the system noise and measurement 
noise, which are assumed to be 1iiQ =  and ( )2 2 60iiR m=  
( )0,   ij ijR Q for i j= = ≠ , respectively. Table 3 shows the 
acceleration vector parameters and initial state vector for this 
scenario. Figure 3 presents the actual target tracks and tracks 
estimated by FDB-DAF.

Table 3. Simulation parameters in maneuvering crossing targets.TABLE 3: Simulation parameters in maneuvering crossing targets. 
 

Target 2 Target 1  

(100,400) (100,1000) Initial Position(m) 

(80,100) (80,-100) Initial Velocity(m/s) 

(0,0) (0,0) 0-20s 

Ac
ce

le
ra

tio
n 

(𝒎𝒎
/𝒔𝒔

𝟐𝟐 )
 (5,10) (5,-10) 21-40s 

(0,-20) (3,19) 41-73s 

(10,7) (5,-15) 74-85s 

(10,19) (0,-20) 86-117s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Actual and estimated tracks by FDB-DAF in the second scenario. 

 

 

 

 

 

 

 

 

Fig. 3. Actual and estimated tracks by FDB-DAF in the second scenario.
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The RMSE of targets’ positions for compared techniques 
are demonstrated in Table 4. By comparing results, it is 
evident that Fuzzy-GA average position RMSE is improved 
compared to other techniques. Multiple simulations with 
different clutter densities are considered to evaluate the 
performance of compared methods. The model parameters, 
process noise, and measurement noise are assumed fixed. As 
seen in Table 4, increasing clutter density caused a decrease 
in the algorithm’s performance. 

Table 5 shows the average RMSE for different k  and 
î  levels of the FDB-DAF. In this scenario, the proposed is 
evaluated with two different clutter densities. By comparing 
results, it is evident that FDB-DAF efficiency is comparable 
to the compared methods. Also, same previous scenario, the 
proposed technique performance is improved by increasing 
k and decreasing î  for the first and second strategies, 
respectively. Moreover, results show a decrease in the 
accuracy of FDB-DAF in the case of clutter increasing to 
6%. However, the most effective increases in clutter density 
were found for FNN, JPDAF, and followed by MEF-JPDAF. 
However, FDB-DAF with all measurements and Fuzzy-GA, 
has a similar effect due to clutter density increasing.

4- 3- Computational complexity
The execution time of the developed DA approach (based 

on all measurements) and other compared techniques for two 
scenarios are illustrated in Table 6. The programs were run 
on a computer with Intel(R) Core(TM) i7-6500 CPU 2.50 
GHz, 8 GB RAM, and 100 Monte-Carlo runs. As seen in 
Table 6, FDB-DAF has the least execution time than the other 
algorithms. The reason is that FDB-DAF uses of density 

clustering approach to obtain valid measurements and does 
not require a gating technique. The clustering phase has a 
time order proportional to ( )kO T M× . It can be observed 
that 1) determining the membership degreases of valid 
measurements and 2) determining the membership degree of 
abandoned measurements with very small fuzzy membership 
degrees have a time order of to ( )O T  and ( )2

kO N T× , 
respectively. The time order of the developed DA technique 
is equal to ( )2 kO N T× . However, Fuzzy-GA has the most 
execution time due to the need to cross over, mutations, and 
selection for each chromosome. 

5- Conclusion 
In this paper, a robust fuzzy density clustering technique 

for solving DA problems in multiple tracking systems 
has been developed. It has employed jointly the density-
based clustering and maximum entropy approach for valid 
measurement determination and their fuzzy membership 
degree. At the same time, two strategies have been introduced 
for the selection of important measurements. The advantage 
of the proposed technique is that it does not need gating to 
eliminate invalid measurements. Also, the execution time of 
the proposed method has been better in comparison with the 
other techniques. Furthermore, the clustering phase of the 
proposed approach has been able to be integrated with other 
DA approaches as a valid measurement detection process. 
Moreover, the efficiency and effectiveness of the developed 
technique have been considered based on simulation data. 
Using tree-based structures to expedite the computational 
cost of the proposed method has been under study as future 
research.

Table 4. The RMSE position for compared methods in the second scenario.

 

TABLE 4: The RMSE position for compared methods in the second scenario. 
 

Methods Clutter density (𝝀𝝀) Target-1 Target-2 

FNN 
𝜆𝜆 = 1 581.68 577.40 

𝜆𝜆 = 2 635.02 629.75 

JPDAF 
𝜆𝜆 = 1 361.67 355.83 

𝜆𝜆 = 2 390.46 385.92 

MEF-JPDAF 
𝜆𝜆 = 1 348.91 342.05 

𝜆𝜆 = 2 376.28 368.11 

Fuzzy-GA 
𝜆𝜆 = 1 312.72 308.45 

𝜆𝜆 = 2 338.59 332.96 
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Table 5. The RMSE position for the proposed approach in the second scenario.TABLE 5: The RMSE position for the proposed approach in the second scenario. 
 

Proposed approach 

𝜆𝜆 = 1 𝜆𝜆 = 2 

Target-1 Target-2 Target-1 Target-2 

Fi
rs

t s
tr

at
eg

y 

𝑘𝑘 = 1 529.47 517.63 578.60 515.53 

𝑘𝑘 = 2 482.11 469.81 521.37 507.46 

𝑘𝑘 = 3 413.05 396.90 446.82 425.74 

𝑘𝑘 = 4 338.27 324.07 364.41 350.38 

𝑘𝑘 = 5 326.70 313.73 348.72 336.06 

Se
co

nd
 S

tr
at

eg
y 

𝜉𝜉 = 0.1 311.96 308.07 332.50 330.98 

𝜉𝜉 = 0.25 324.83 320.41 347.28 342.66 

𝜉𝜉 = 0.5 389.54 375.77 415.18 401.34 

𝜉𝜉 = 1 427.06 410.25 459.46 443.92 

𝜉𝜉 = 1.5 473.94 461.47 510.85 499.04 

All measurements 296.43 274.99 317.02 296.37 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Comparison of execution time in seconds.TABLE 6: Comparison of execution time in seconds. 
 

Methods Linear Crossing 
Targets 

Maneuvering 
Targets 

FNN 0.34 7.82 

JPDAF 1.41 27.91 

MEF-JPDAF 0.82 25.59 

Fuzzy-GA 4.79 113.84 

FDB-DAF 0.63 12.42 
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