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ABSTRACT: Dam construction projects are considered complicated, large, and heavy projects 
throughout the world, requiring a high number of workers, stakeholders, equipment, cost, and time. 
Hence, their resource management and trade-off are one of the most important tasks for project managers 
and schedulers. Concerning the Building Information Modeling (BIM) method and metaheuristic 
algorithm, this study proposes a framework for resource trade-offs in dam construction project 
scheduling. Atomic Orbital Search (AOS) is employed as a newly developed metaheuristic algorithm 
based on quantum mechanics principles. First, a 3D model of the dam construction project is modeled 
using the BIM process and project management software. Regarding the minimization of time, cost, risk, 
and maximum quality, an optimization problem is formed, and the AOS’s capacity to solve this issue is 
assessed, and its outcomes are compared with different four metaheuristic algorithms. Meanwhile, all 
optimization processes were carried out. To identify the statistical measures considering a predetermined 
stopping condition, 30 separate optimization runs are carried out. The outcomes show that the AOS 
algorithm can deliver competitive and exceptional results when handling trade-offs between various 
resource alternatives in dam construction. Consequently, project managers can use the AOS optimization 
algorithm in their large and intricate construction projects in dealing with resource trade-off problems.
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1- Introduction
Several large-scale projects are often undertaken by 

contractors who utilize various resources such as money, 
equipment, knowledge, and human resources. To ensure 
efficient scheduling and reduce project time, contractors 
engage in specialized activities [1]. Resources play a crucial 
role in all construction projects, and they can be classified 
into two main groups: non-renewable and renewable. Non-
renewable resources encompass items like raw materials and 
budget, while renewable resources include human resources 
and equipment. Contractors frequently pool their resources to 
minimize costs and reduce waiting periods [2]. Consequently, 
schedulers need to perform a Time-Cost Trade-off (TCT) 
analysis to determine the most cost-effective project 
duration. Optimization algorithms have been employed to 
study TCT issues in the building and construction sector 
[3, 4]. Predictable durations and linear time-cost functions, 
assuming constant usage of discrete construction resources 
such as labor and machinery, are the fundamental and widely 
accepted assumptions in TCT analysis. Achieving the optimal 
global solution in large-scale TCT models often requires 
several iterations. To address TCT issues, evolutionary 
algorithms are considered more effective in avoiding local 
optimization, with approximately 23 optimal strategies 
believed to yield the best results [5, 6].

Time, cost, and quality are the three primary project 
criteria that all project managers continually strive to achieve 
in order to complete projects successfully with the least 
amount of time and money spent and the highest level of 
quality [7, 8]. Since TCT Problems have been explored in the 
literature of deterministic project scheduling, they serve as a 
useful model for most Time-Cost-Quality Trade-off Problems 
(TCQTP) [9]. For TCQRT issues, several optimization 
strategies have been put forward. With no restrictions on time 
or resources, the Critical Path Method (CPM) may be utilized 
as a fundamental quantitative project management approach. 
The CPM establishes the minimal time necessary to finish 
the project, assuming an optimal completion time. However, 
it is no longer used owing to drawbacks like its numerical 
complexity, particularly in significant building projects [10-
12]. However, techniques for mathematical programming 
Create mathematical models from TCQRTP and utilize linear 
programming [13]. Volkerson and Perra introduced linear 
programming (LP) as a technique for optimal outcomes 
by assuming a continuous time-cost connection shown by 
linear relationships. Nevertheless, it could be employed 
when considering a linear relationship between time and cost 
for any network activity. The network grows excessively 
complicated as the number of activities rises, and the LP 
approach demands a significant amount of computing labor 
[14-16].
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Due to the many advantages and resource savings that come 
with adopting Building Information Models (BIM) throughout 
the design, planning, and construction of new structures, 
there has been an increase in interest in this technology over 
the last several decades. Based on early computer-aided 
design (CAD) initiatives in numerous sectors, 3D modeling 
emerged in the 1970s. The building industry was restricted 
for a considerable amount of time to the conventional 2D 
design, while several industries developed integrated analytic 
tools and object-based parametric modeling [17-22]. BIM is 
a digital representation of a facility’s physical and functional 
properties, according to the National Building Information 
Modeling Standards (NBIMS) committee of the USA. When 
used as a solid foundation for choices throughout a facility’s 
life cycle, which is defined as from initial conceptualization 
through destruction, a BIM is a shared knowledge resource 
[23-26].

Additionally, besides the uses mentioned above, BIM 
is also known as computational BIM, a novel method of 
problem-solving in which users create algorithms to automate 
the collection and manipulation of building-related data for 
increased productivity [27]. Due to its ability to identify 
possible issues early on before a project is executed, BIM 
methodology has the potential to alter the AECO business. 
It plays a crucial role in design contexts. BIM can plan, 
manage, and enhance the industry’s work and production 
[28, 29]. Furthermore, regarding the parametric description 
of objects, BIM systems can distinguish between various 
building components by examining their use, structures, and 
functions as parametric features [30, 31].

Nonetheless, some research works on the role of BIM 
and optimization in tackling resource trade-off problems in 
the AEC industry have been published. For the discrete time/
resource trade-off (DTRT) problem in project scheduling, 
Ranjbar, De Reyck, and Kianfar [32] created a heuristic 
approach. In another paper, Ranjbar and Kianfar [25] used a 
genetic algorithm to solve the DTRT problem. Furthermore, 
Demeulemeester, De Reyck, and Herroelen [33] proposed 
a branch-and-bound approach for project networks’ DTRT 
problems. Hafezalkotob, Hosseinpour, Moradi, and Khalili-
Damghani [2] proposed a game theory-based model on 
cooperatives for project time/multi-resource trade-off 
problems. Nguyen, Chou, and Tran [34] put up a system in 
project scheduling, including multi-objective optimization, 
BIM, and multi-criteria decision-making to make resource 
trade-offs. According to the authors, using visual analytics 
and a uniform solutions distribution, the proposed MOFBI 
algorithm could locate result curves. Nasiri and Lu [35] 
presented a streamlined TCT optimization approach to 
construct the first-order derivative function of direct project 
cost vs. project time and to discover the number and position 
of the total project cost’s minimal solution(s). Baghalzadeh 
Shishehgarkhaneh, Moradinia, Keivani, and Azizi [36] used 
five metaheuristic algorithms to tackle the resource trade-
off problems in dam construction projects. The authors 
concluded that GAs should be regarded as one of the feasible 

algorithms in time-cost-quality-risk (TCQR) trade-offs for 
dam construction projects. The publications in BIM-based 
optimization are listed in Table 1 by year of publication. 

In the current study, the Atomic Orbital Search (AOS) 
algorithm proposed by Azizi [37] is employed for the TCQR 
trade-off in the Goocham dam project. Five miscellaneous 
resource options have been implemented for this problem. 
There is a research gap in the field of construction projects 
regarding the Time-Cost-Quality-Risk Trade-off (TCQRT) 
and the utilization of Building Information Modeling (BIM) 
procedures. While TCQRT analysis has been studied in 
construction projects, there is limited research that specifically 
addresses the trade-off concerning dam construction projects. 
Additionally, the integration of BIM processes in TCQRT 
analysis is relatively unexplored. Therefore, the research 
gap lies in the lack of focus on TCQRT and BIM in dam 
construction projects. The main contribution of this research 
is the application of the Atomic Orbital Search (AOS) 
algorithm for the TCQRT trade-off in the Goocham dam 
project. The study introduces five different resource options 
for addressing this problem. The novelty of the research 
lies in its approach to TCQRT analysis in dam construction 
projects, particularly considering the BIM procedure. By 
employing the recently proposed metaheuristic optimization 
algorithm (AOS) and integrating BIM processes, this study 
provides a new perspective on achieving optimal trade-offs 
in time, cost, quality, and risk within the context of dam 
construction projects. One of the primary justifications for 
selecting the AOS algorithm in this study is its status as one 
of the novel algorithms proposed in recent years. Its selection 
stems from the desire to assess its effectiveness in addressing 
trade-off problems. By evaluating the capabilities of the AOS 
algorithm, this research aims to shed light on its potential for 
handling trade-offs in construction projects. This research 
fills the gap by exploring the TCQRT and BIM in the specific 
domain of dam construction projects, contributing valuable 
insights and strategies for stakeholders and project teams 
involved in similar projects. 

The research focuses specifically on dam construction 
projects, which are known to be complex and unique. 
Therefore, the findings and conclusions of this study may 
have limited generalizability to other types of construction 
projects with different characteristics and requirements. It 
is important to recognize that resource trade-off challenges 
may vary across various construction sectors, and further 
research is needed to assess the applicability of the proposed 
framework and algorithm in different contexts. Furthermore, 
while the study addresses the trade-off between time, cost, 
risk, and quality in dam construction projects, it is important 
to note that there are other factors and constraints that can 
impact project performance and success. The research does 
not consider other crucial aspects such as environmental 
sustainability, social impact, and regulatory compliance. 
Future studies should aim to incorporate a broader range 
of factors into the optimization model to provide a more 
comprehensive understanding of the trade-offs involved in 
construction project management.
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The remainder of the paper is organized as follows: Section 
2 describes the AOS algorithm, the case study project, and 
the statement of the optimization problem. Section 3 presents 
the results and discussion, and offers some optimal solutions. 
Finally, conclusions and future directions are provided in 
Section 4.

2- Methodology
2- 1-  Atomic Orbital Search (AOS) Algorithm

An atomic orbital is a mathematical expression that 
depicts the wave-like behavior of one or two electrons in an 
atom based on atomic theory and quantum mechanics. The 
core concept behind the AOS algorithm is to use quantum-
based atomic theory to deal with issues like electron density 
configuration and atoms’ ability to absorb or emit energy. The 
quantum staircase analogy for electrons revolving around an 
atom’s nucleus is shown in Fig. 1(A). The AOS algorithm 
explores multiple solution possibilities (X) in the quantum-
based atomic model that represent the electrons encircling 
the nucleus. The thin, spherical, concentric layers of the 
electron cloud around the nucleus have been designated as 
the search space in this method. In the search space, each 
electron is shown by a solution candidate (

iX ), with some 
decision variables ( ijx ) also being used to define the solution 
candidates’ location. The following are the mathematical 
equations for this purpose: 
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where m  represents the number of electrons (solution 
candidates) inside the electron cloud (search space), and 
d  shows the dimension of the problem determining the 
candidate position (electrons). The starting positions of the 
electrons within the electron cloud are randomly specified 
according to the mathematical equation below:
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where ( )0j
ix  shows the solution candidates’ initial 

position; 
,
j

i maxx  and 
,
j

i minx  are the indication of the maximum and 
minimum bounds of the jth decision variables, respectively; 
and shows a randomly distributed number [0,1].

Table 1. Summary of articles by year of publication based on integrating BIM and optimizations

Table 1 - Summary of articles by year of publication based on integrating BIM and optimizations 

 

Reference 
Number 

Year  The primary purpose of the study Algorithm 

[38] 2022 Presenting time, cost, and quality trade-off model for project scheduling AHP and 
NSGA-II 

[39] 2022 Developing the trade-off among cost, time, and quality in the construction project toward 
reaching sustainability 

SOS 

[3] 2022 2tion projects considering cost, time, risk, quality, and COrucoff in const-Resource trade FHO 
[40] 2021 Integrating BIM with the Internet of Things (IoT) sensors to optimize the interior temperature.   IDW 
[41] 2021 Camera placement in interior construction monitoring is optimized using BIM. MPGA 
[42] 2019 Optimization of materials layout by integrating 4D BIM. SOS 
[43] 2019 Using BIM, determine the optimum scan locations and the ideal path.  * A 
[44] 2019 Create automated route planning and a BIM-based approach.  * A 
[45] 2015 Optimization of activity level construction schedules by integrating BIM product models and 

metaheuristics. 
PSO 

[46] 2015 BIM-based 4D model for overlapping activities' minimizing. GA 
[47] 2014 a BIM-based active simulation method for reducing the simultaneous schedule-workspace 

interference level. 
GA 

[48] 2014 Create a BIM-based construction sequencing for the installation of the project's components. GA 
[49] 2014 Proposed a novel GA employing hardware with field-programmable gate arrays GA 
[50] 2011 presented a model-based planning system that uses BIM and Object Sequencing Matrix (OSM) 

to get the best staff assignment while working with limited resources and available space. 
GA 

 
IDW: Inverse Distance Weighting; MPGA: Modified parallel genetic algorithm; SOS: Symbiotic organisms search; ACO: Ant colony 

optimization; GA: Genetic Algorithm; PSO: Particle swarm optimization; NSGA-II: Non-dominated Sorting Genetic Algorithm II; FHO: 
Fire Hawk Optimizer; SOS: Symbiotic Organism Search; 
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With lower energy levels, Electrons correspond to 
solution candidates with greater objective function values. In 
the mathematical model, those with lower objective function 
values show electrons with the highest levels of energy. The 
objective function values of several solution candidates are 
kept using the following vector equation.
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where E  represents a vector considering the objective 
function’s values, 

iE  indicates the ith solution candidate’s 
energy level, and m  shows the solution candidates’ number 
in the search space. 

In the mathematical description of the quantum-based 
atomic orbital model, a random integer (n) is created to 
represent the number of imagined spherical layers (L) around 
the nucleus. This number represents the quantum number in 
the description of atoms based on quantum mechanics. Fig. 1 
(A) elucidates a schematic representation of these elements. 
Furthermore, Fig. 1 (B) shows a schematic illustration 
using a Probability Density Function (PDF) based on a 
typical Gaussian distribution to locate solution candidates in 
imaginary layers.

Each imaginarily produced layer contains some solution 
candidates regarding specified specifics of determining the 
electrons’ position using PDF. So, the following mathematical 
equations represent the vectors of the placements of the 
solution candidates ( kX ) and the values of the objective 
function ( kE ) in the imaginary layers:
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Where the integer n indicates the maximum number of 
imagined levels, k

iX  shows the kth imaginary layer’s ith 
solution candidate, p  specifies the kth imaginary layer’s 
solution candidates’ overall number, d presents the dimension 
of the problem, and k

iE  is the kth imaginary layer’s the ith 
solution candidate’s objective function value. The nucleus 
layer positions the LE with the best objective function value 
among whole solution options, as shown in Fig. 1 (C).

The mathematical model determines the binding energy, 
which shows the energy required to remove an electron from 
its shell, in terms of the positions and objective function 

values of solution candidates in each layer. The mathematical 
formulas used in this situation are as follows:
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Where k
iE  and k

iX   are the kth layer’s objective function 
value and position of ith solution candidate, kBE  and kBS
are the the kth layer’s binding energy and the binding state; 
m is solutions candidates’ overall number, the binding state 
and binding energy of an atom are calculated based on the 
information given:
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Where 
iE  and 

iX   are the ith solution candidate’s objective 
function value and position in the atom; BE  and BS  are the 
atom’s binding energy and states. A uniformly distributed 
random number (Ø) ranging from 0 to 1 is produced for every 
electron to mathematically describe photons’ interaction 
with electrons surrounding the nucleus. The emission of 
photons is considered if a solution candidate’s energy level 
in a specific layer is higher than the layer’s binding energy 
( k k

iE BE> ). During this procedure, the solution candidates 
tend to release an energy-carrying photon and simultaneously 
reach the atom’s binding state (BS) and the electron state 
with the lowest energy level (LE) in the atom. The following 
mathematical equations are used in this approach to update 
the position of solution candidates:
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where BS shows the atom’s binding state; 
iα , 

iβ , and 
iγ  are vectors, including randomly produced uniformly 

distributed in the range (0,1) that are used to calculate the 
quantity of released energy; The present and forthcoming 
positions for the ith solution candidate of the kth layer are k

iX  
and 

1
k
iX +

, respectively; LE represents the candidate solution 
with the lowest atomic energy level.
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Fig. 1. Resemblance to a quantum staircase for the electrons around the atoms' nuclei (A). 

Presentation of imaginary layers surrounding the nucleus in a schematic (B). Diagrammatic 

depiction of calculating the position of potential solution candidates using PDF (C) [37]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Resemblance to a quantum staircase for the electrons around the atoms’ nuclei (A). Presentation of imaginary 
layers surrounding the nucleus in a schematic (B). Diagrammatic depiction of calculating the position of potential 

solution candidates using PDF (C) [37].

If the energy level of a proposed solution in a given layer 
is lower than the layer’s binding energy ( k k

iE BE< ), photon 
absorption is evaluated. In this process, the following equation 
describes the updating of solution candidate positions:
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where kLE  denotes the kth layer’s solution candidate 
with the lowest energy level; The present and forthcoming 
positions for the ith solution candidate of the kth layer are 

k
iX  and 

1
k
iX +

; kBS  shows the kth layer’s binding state; iα
, 

iβ , and 
iγ  demonstrate vectors, or calculate the quantity 

of absorbed energy, including evenly distributed random 
integers in the range of (0,1).

Suppose the randomly produced number (Ø) for each 
electron is less than the PR (Ø < PR). The transit of electrons 
across different layers around the nucleus relies on other 
processes, such as particle interactions or magnetic fields, 
resulting in energy absorption or emission since photons’ 
impact on electrons is implausible. The method by which 
solution candidates’ positions are updated in consideration of 

these impacts is as follows:
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where 
ir  indicates a vector, including produced numbers 

randomly in the range of (0,1); The present and forthcoming 
positions for the ith solution candidate of the kth layer are 

k
iX  and 

1
k
iX +

; Meanwhile, the AOS algorithm’s flowchart is 
represented in Fig. 2.

2- 2-  Design Examples 
This article applies time, cost, quality, and risk trade-offs 

to a project to build a dam using the Goocham storage dam in 
Iran’s Kurdistan area as a case study. Each objective function 
has been examined alone and in combination. All methods 
were carried out in MATLAB at the same time using a Core 
i7-7700 HQ 2.80 CPU and 16 GB of RAM.

To store, control, and use the water required to irrigate 
agricultural regions in the Qorveh Plain Dehgolan, the 
Goocham Dam (Fig. 3), was built. Kurdistan’s Goocham Dam 
is situated on the Cham Mirki River, near Goocham Village, 
and 18 kilometers northwest of Dehgalan City. The reservoir 
has a capacity of 64 million cubic meters and a height of 42 
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Fig. 2. The AOS's Flowchart 
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Fig. 3. Goocham Dam 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Goocham Dam

(m). Additionally, the water diversion structure consists of 2 
metal pipes with a diameter of 2 meters and a length of 328 
meters. Its overflow is constructed of free-standing concrete 
with an altitude of 135 meters. The majority of the rock at 
the Goocham Dam site is made up of light tuffs, marls, and 
brown mud amongst conglomerate sandstone, black basalt, 
and silty clay soils. The duration (4D) and cost (5D) of the top 
17 activities at Goocham Dam were calculated for the present 
research utilizing BIM using MS Project, Autodesk Revit, 
and Navisworks. As a consequence, various conflicts and 
modifications were discovered. The whole project’s design 
was split into 14 equal-length portions to achieve this goal. 

The Goocham Dam construction project in Iran involves 
a series of interdependent activities. The initial activity, 
“Materials Production and Deposition,” sets the foundation 
for the entire project. It involves the production and deposition 
of necessary construction materials, such as concrete, 
steel, and aggregates. The subsequent activities, including 
“Excavation,” “Water diversion system,” and “Instrument 
Installation,” rely on the availability of these materials. 
Excavation involves the removal of soil and rocks to prepare 
the site for further construction. The water diversion system, 
an essential component of the dam, must be established 
to redirect water flow during the construction process. 
Instrument installation, such as sensors and monitoring 
devices, is crucial for data collection and control throughout 
the project.

Once the initial groundwork is laid, several parallel 
activities can commence. Activities like “Watertight 
wall Execution,” “Clay Core Execution,” and “Upstream 
cofferdam Execution” are interconnected and can proceed 
simultaneously. The watertight wall execution ensures 
the impermeability of the dam structure, preventing water 
seepage. The clay core execution involves the placement 
of compacted clay within the dam, enhancing its stability 
and integrity. The upstream cofferdam execution creates a 
temporary barrier to divert water flow and allow construction 

in a dry environment. These activities are closely linked as 
they contribute to the fundamental structure and functionality 
of the dam. As the construction progresses, other activities, 
such as “Downstream slope Execution,” “Shell Execution,” 
and “Hydromechanical equipment Installation,” become 
prerequisites for subsequent stages. The downstream 
slope execution involves the construction of a stable slope 
downstream of the dam, ensuring erosion control and 
overall safety. The shell execution focuses on the main dam 
structure, reinforcing its integrity and strength. Finally, the 
hydromechanical equipment installation includes the setup of 
equipment necessary for the operation and management of 
the dam, such as gates, valves, and turbines. These activities 
depend on the completion of earlier tasks, as they require a 
solid foundation and proper infrastructure to be effectively 
implemented. Fig. 4 represents the project network including 
the activities and the relations between them and prerequisite 
activities.  

Each part was modeled using a sweeping blend form in the 
family environment of Revit 2020 before being transferred 
to the project environment. Therefore, the materials and 
other necessary data were taken from Revit’s material take-
off. The project’s schedule was made in MS Project using 
the information provided, giving the duration and cost of 
the project regarding the BIM. Finally, Navisworks created 
an animation of the building process; consequently, certain 
conflicts with the integrated model were found. The 11th 
segment of the Goocham dam is shown in Fig. 5 as a Revit 
model. 

In the context of the BIM process, Navisworks played 
a crucial role as a coordination and visualization tool. Its 
primary purpose was to integrate diverse multidisciplinary 
models generated by different teams or disciplines involved 
in the construction project. By combining these models, 
Navisworks provided a comprehensive and unified view of 
the entire project.
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Fig. 4. The project network including the activities and the relations between them and 

prerequisite activities. 

 

 

 

 

 

Fig. 4. The project network including the activities and the relations between them and prerequisite activities.

One of the key functions of Navisworks was clash 
detection. It meticulously examined the overlapping elements 
from various models and identified clashes or conflicts 
that could arise during construction. This clash detection 
feature helped in pinpointing potential clashes early on, 
allowing for timely resolution and mitigation of conflicts. 
By identifying clashes beforehand, Navisworks contributed 
to smoother construction processes, reduced rework, and 
improved coordination among different building elements. 
Dynamo, on the other hand, served as a valuable parametric 
modeling and scripting tool within the BIM workflow. It 
offered the capability to automate repetitive tasks, thereby 
boosting the efficiency of the BIM process. With Dynamo, 

custom scripts and workflows could be created to streamline 
various aspects of the project. Parametric modeling was a 
significant advantage of Dynamo. It enabled the generation 
of complex geometric forms and structures, providing greater 
design flexibility and innovation. By defining parameters and 
relationships, designers and engineers could explore different 
design iterations, test alternative scenarios, and quickly adapt 
the models to changing requirements. Moreover, Dynamo 
facilitated the manipulation of BIM data, allowing for data 
extraction, transformation, and analysis. This capability 
proved valuable in extracting specific information from the 
BIM models, generating reports, and conducting data-driven 
analyses for decision-making purposes.
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The integration of Navisworks and Dynamo within the 
BIM process empowered project teams to achieve enhanced 
coordination, collaboration, and efficiency. Navisworks 
ensured the seamless integration of multidisciplinary models 
and the detection of clashes, while Dynamo automated 
repetitive tasks, empowered parametric modeling, and 
facilitated advanced data manipulation. Together, these 
tools played a pivotal role in optimizing the BIM workflow, 
resulting in improved project outcomes.

Since the real construction time is reported as 1154 days 
and BIM reached 690.13, the BIM is capable of reducing the 
time of the projects by up to 40%. For cost item, the BIM can 
reach 46046055812 which is 7% lower than the reported cost 
for the real construction scenario as 49730044381.

2- 3-  Statement of the optimization problem
The present research uses the BIM model to import all 

of the project’s data for the 17 activities listed in Table 1A. 
There are several ways to carry out each operation, and each 
has its own time, cost, quality, and risk parameters depending 
on the number of resources, equipment, and technology used. 
By selecting the appropriate course of action for each activity, 
the TCRQC trade-off issue optimization technique seeks to 
maximize project quality while minimizing project time, 
cost, and risk. As a result, the first objective function in Eq. 
12 is to shorten the project’s duration:
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Where iD  displays the time spent on every activity; iST  
and iFT  represents the activity’s start and end timings; M 
shows the overall number of nodes for the project schedule 
[33]. Moreover, indirect costs (IC), direct costs (DC), and 
delay charges (DCs) are included in a project’s overall cost. 
There are numerous methods for identifying a project’s 
overall cost; however, this research takes into account direct 
expenses, indirect costs, and delay costs for theoretical 
reasons. As shown in Eq. 13, the next objective function is to 
reduce the project’s cost:
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Where  is the total cost of the construction project;  and  
represent the direct and indirect costs, respectively, associated 
with the jth execution mode of the ith activity; j

iC  elucidates 
the cost in conjunction with jth mode of ith activity; 

i

j
CD  

and 
i

j
CI  are the direct and indirect costs in conjunction with 

jth execution mode of ith activity, respectively; DCs  is the 
delay charges; 0T  elucidates the project’s planned execution 
time; 1 C  shows a reward for early work completion, and T  is 
the overall project execution time [51, 52]. The quality of the 
whole project is the average quality of the project activities 
since project resources may comprise a variety of materials, 
tools, and labor. The quality will increase as the activities are 
extended, but going beyond a certain point will result in a 
decline in quality. Therefore, the quality performance index 
(QPIi) given in Eq. 17 denotes the level of each activity’s 
quality [52]. 
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Where it  shows the activity ith’s duration; ia , ib , and 
ic  is the clarification of coefficients determined by the 

quadratic function in relation to BD (Fig. 6). The longest, 
best, and shortest durations are LD, BD, and SD, respectively. 
BD is nonetheless determined using Equation 18. Finally, 
the objective function for quality is expressed as follows in 
Equation 20:
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The real project risk is defined mainly through the 
project’s conditions, contract terms, and delivery systems. 
A “risk value” is a function that includes the following 2 
sections: (i) the project’s total float; and (ii) the volatility of 
resources. When non-critical procedures have a significant 
level of temporal uncertainty, the use of float may raise project 
risk and schedule overruns. Consequently, construction and 
project managers must implement schedule modifications 
to prevent unanticipated resource use changes during the 
project’s execution. Floating non-critical activities may 
improve resource utilization [53-55]. Therefore, the fourth 
objective function for risk can be expressed as Equation 20:
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Where maxTF  and  cTF are the project’s total flexible 
scheduling float and total current float; R  is uniform 
resource level; tR  is the resource needed on day t, and wi 
demonstrates the weight.

Eq. 21 is used to assess the capacity of the AOS algorithm 
to concurrently optimize the time-cost-quality-risk (All) 
trade-off:
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In this research, all algorithms have been established and 
executed with precise parameters, as indicated in Table 2. The 
simulated annealing algorithm emulates the gradual cooling 
of metals to optimize a process. It imitates the reduction of 
atomic movements and the decrease in lattice defects’ density, 
mirroring the behavior of metals as they cool. This iterative 
approach aims to reach the state with the lowest energy [56]. 
The Black Widow Optimization Algorithm (BWO) draws 
inspiration from the distinctive mating behavior of black 
widow spiders. It incorporates a distinct phase known as 
cannibalism, where individuals with inadequate fitness are 
eliminated from the population, promoting early convergence 
[57]. Furthermore, the Battle Royale Optimization (BRO) 
algorithm is a population-based approach where each 
individual is symbolized as a soldier or player seeking to 
navigate towards the safest and most advantageous position to 
maximize their chances of survival. The algorithm incorporates 
an interesting mechanism where the death of players results 
in their departure from local optima, and their subsequent 

Table 2 . Optimization algorithms’ specific setting parameters Table 2 - Optimization algorithms' specific setting parameters  

Algorithms 

 

Number of 
Population 

(npop) 

Maximum 
Iterations 

Crossover 
Probability 

(pc) 

Mutation 
Probability 

(pm) 

Initial 
Temperature 

Temp. 
reduction 

Rate 

Rate of 
Cannibalism 

Maximum 
Fault 

SA 50 1000 - - 0.025 0.99 - - 
BWO 50 1000 0.8 0.4 - - 0.5 - 
BRO 50 1000 - - - - - 4 
BHM 50 1000 - - - - - - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The quality performance index (QPIi) used in this study 
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respawn in random areas facilitates exploration within the 
search space [58]. Finally, the Black Hole Mechanics (BHM) 
algorithm consists of two main components: a mathematical 
kernel and a physical simulation. The mathematical kernel 
calculates the optimal direction for each variable based on the 
given cost function. It then transfers the generated data to the 
identified path. Meanwhile, the physical simulation manages 
both the exploration and exploitation stages. This simulation 
is built upon the principles derived from the mechanics of 
black holes [59]. 

3- Results and Discussion
According to Table 1A (Appendix), the basis of this 

research, there are five resource options for each of the main 
activities of the Goocham Storage Dam. To complete this table, 
the insights of several exceptional individuals and specialists 
in this industry were used. The cost and duration of executive 
mode NO.1 show the contractor’s first proposals, NO.3 is 
derived from BIM, and NO.5 is the actual cost and time of the 
project derived from the final construction status. Moreover, 
two alternative executive modes were explored based on the 
views of experts in this sector. Undoubtedly, contractors’ 
early proposals are often nonsensical and fantastical to catch 
employers’ attention; hence, most projects fail. Since the 
majority of contractors do not account for rework, conflicts, 
non-payment by employers, extreme weather conditions, etc., 
each activity is randomly assigned three quality indicators with 
different percentages. The quality of each line is determined 
by calculating the proportion of the cumulative influence of 
these three quality modes. Finally, for each action, the risk 
percentage is determined randomly concerning the opinions 
of eminent academics and specialists in the area.

According to Table 1(A), the overall project duration 
based on contractor bids, BIM, and actual duration is 790, 906, 
and 1489 days, respectively. According to the 2010 project 
contracts, the overall cost of the project regarding suggestions, 
BIM, and actual costs is 35,825,939.56, 44,670,213.59, and 
48,244,124.9 dollars, respectively. BIM might drastically 
decrease the cost and time required to construct the Goocham 
dam by detecting conflicts and facilitating communication 
and collaboration between stakeholders and the project team. 

However, based on the BIM and optimization process using 
metaheuristic algorithms, contractors and organizations might 
make rational resource-based proposals to employers. As 
balancing the project’s time, cost, quality, and risk within the 
project’s scope has become a crucial criterion for determining 
a project’s success, stakeholders and project teams are more 
concerned with finding a TCQRT. 

 The convergence curves for the first phase (time) 
employing various techniques are shown in Fig. 7(a). It is 
noted that the AOS method converges to the optimum value 
of 521.30 days in the first iterations, whereas other algorithms 
converge more slowly. During this phase of optimization, Fig. 
7(b) represents the status of the optimization variables or the 
genotype space. As shown in the aforementioned figures, the 
stage’s chosen algorithms gravitated toward mode number 
1, which stands for the contractor’s offerings. The statistics 
make it clear that, in light of the algorithm’s findings, the 
contractors recommended a perfect and almost ideal period 
throughout the project’s first phase. They did not, however, 
consider risks and uncertainties. Time overrun, which is seen 
as a project failure, might be caused by the project’s need for 
reworks and by contractors and owners failing to cooperate 
and communicate. However, using BIM techniques across the 
whole life cycle could reduce the overall project execution 
time, which was reduced by an exponential amount in the 
Goocham Dam, from 1489 to 906 days.

Table 3 presents the optimization results using different 
algorithms for the first phase (time). The AOS algorithm is 
ranked first among meta-heuristic algorithms, while BHM is 
ranked second; hence, the AOS algorithm balances exploration 
and exploitation processes. Also, the SA algorithm has the 
largest error rate, at roughly 4.81 percent, while the BHM 
algorithm has the lowest error rate, at 0.92 percent. Therefore, 
the AOS method should be judged suitable for the Goocham 
dam project’s time optimization.

Furthermore, Table 3 presents the statistical findings of the 
optimal time for the AOS and various optimization strategies 
based on 30 separate runs. To compare and study algorithms, 
the value of Nfe (number of function evaluations) is assumed 
to remain constant throughout all algorithms. Overall, it is 
noteworthy that the AOS optimization method outperforms 

Table 3.Statistical outcomes for algorithms regarding 30 independent runs in time optimizationTable 3 - Statistical outcomes for algorithms regarding 30 independent runs in time optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithms Best Mean Worst Std. feN CT (s) percentage 
error 

SA 546.73 566.60 610.31 19.16 50000 2.41 4.87 

BHM 526.14 529.67 533.67 1.68 50000 1.80 0.92 

BRO 526.90 529.35 532.67 1.53 50000 4.86 1.07 

BWO 530.75 532.01 535.42 1.082 50000 13.85 1.81 

AOS  521.30 521.30 521.30 5.24E-08 50000 1.75 0 
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Fig. 6. Best optimization runs of the AOS and different methods' convergence histories for 
time (a). The genotype of the best AOS and other methods for time optimization runs (b). 

 

 

 

a 

b 

Fig. 7. Best optimization runs of the AOS and different methods’ convergence histories for time 
(a). The genotype of the best AOS and other methods for time optimization runs (b).
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other algorithms in terms of the Goocham dam’s time 
optimization. It has been shown that the BWO optimization 
methods’ computing time (CT) is much higher than that of 
other optimization techniques. In contrast, the AOS algorithm 
provided the lowest CT, and the second-lowest CT among 
optimization algorithms was given by the BHM algorithms, 
1.80 (s).

Regarding the Standard Deviation (Std.), the AOS 
algorithms had the lowest value of Std., which is almost 
negligible. Still, the SA algorithm had the maximum weight of 
Std., indicating that the data are more dispersed. It is clear that 
the Std values are influenced by the substantial discrepancy 
between the “best” and “worst” values. The most significant 
Std value demonstrates that the algorithm was unable to 
produce a consistent result because it was always trapped in 
the local results, especially for high-dimensional problems. 
The Std value measures how close the results obtained from 
the 30 different trials were to its average value (mean value). 
The SA optimization algorithms computed the maximum 
worst value for the worst cost determined by algorithms, 
showing the SA algorithm’s uncertainty in a single run.

Since the non-optimized BIM-based time of the Ghocham 
dam’s construction project is 690.13 days which is the 
summation of the times for different activities in Table 1A, 
the optimized BIM scheme by AOS is capable of providing 
a total time of 521.30 days which is 24% lower than the non-
optimized procedure.

The convergence curves for the second phase (cost) 
employing various techniques are shown in Fig. 8(a). It has 
been noted that the AOS method converges to the optimum 
value of 35625940.19 $ rapidly in the first iterations, while 
other algorithms converge more slowly. The genotype space 
throughout this phase’s optimization procedure is described in 
Fig. 8(b). Similar to the first phase, the contractors had almost 
enough surveying and estimating done at the beginning of 
the project. However, when conflicts and reworks grew, a 
lack of efficient cost and budget management and the waste 
of materials might cause a cost overrun. In terms of BIM, it 
tremendously dropped the project’s cost from 48,244,124 $ to 
44,670,213 $, a 7.40 % reduction.

The optimization outcomes for the second phase (cost) 
utilizing various techniques are shown in Table 4. The 
percentage of changes or rate of error relative to the best 
response provided by the best algorithms—in this case, the 
AOS—is shown in the current table. One of the most important 
characteristics of meta-heuristic algorithms, a correct balance 
between the phases of exploration and exploitation, is 
provided by the AOS algorithm. When compared to other 
experimental algorithms, particularly SA, the aforementioned 
method may provide exceptional results. In terms of results, 
the SA optimization method fails to decrease the cost of the 
Goocham dam. Additionally, the SA algorithm is associated 
with the largest error rate (1.79%), while the AOS algorithm 
is associated with the lowest error percentage.

The statistical findings of the optimal cost of the Goocham 
dam for various optimization techniques based on 30 
separate runs are shown in Table 4. Overall, the second phase 
objective function value provided by the BWO algorithm was 
the best. The BWO optimization method required more time 
to compute than the other algorithms (14.05 sec), similar to 
the first phase, and was followed by the BWO optimization 
algorithm with roughly 4.57 seconds (s). In contrast, the AOS 
algorithm showed the superior and lowest value of CT in 
all optimization techniques, recorded at only 1.77. (s). The 
SA optimization methods computed the worst value with 
the greatest worst value, indicating that they are not suitable 
algorithms for a single run of cost optimization. The BRO 
optimization algorithm’s Std, on the other hand, shows how 
near the outcomes from the 30 separate runs are to its mean 
value at its lowest value.

Regarding the fact that the non-optimized BIM-based cost 
of the Ghocham dam’s construction project is 44,670,213 $ 
which is the summation of the times for different activities in 
Table 1A, the optimized BIM scheme by AOS is capable of 
providing a total cost of 35625940.19 $ which is 20% lower 
than the non-optimized procedure.

The convergence curves for the third phase (quality) 
employing various techniques are shown in Fig. 9(a). In the 
first iterations, it is shown that the BWO algorithm converges 
swiftly to the optimum value of 79.24, followed by the 

Table 4. Statistical findings of algorithms regarding 30 independent runs in cost optimizationTable 4 - Statistical findings of algorithms regarding 30 independent runs in cost optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithms Best Mean Worst Std. feN CT (s) Percentage 
error 

SA 36266567.61 101.49×10 114.05×10 111.13×10 50000 2.45 1.79 

BHM 36119823.65 112.31×10 113.75×10 119.47×10 50000 1.81 1.38 

BRO 35999010.06 111.95×10 113.76×10 109.01×10 50000 4.57 1.04 

BWO 35670839.86 111.47×10 113.74×10 101.03×10 50000 14.05 0.12 

AOS 35625940.19 112.79×10 113.69×10 111.54×10 50000 1.77 0 
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Fig. 7. Best optimization runs of the AOS and different methods' convergence histories for cost 
(a). The genotype of the best AOS and other methods for cost optimization runs (b). 
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Fig. 8. Best optimization runs of the AOS and different methods’ convergence histories for cost (a). 
The genotype of the best AOS and other methods for cost optimization runs (b).
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Fig. 8. Best optimization runs of the AOS and different methods' convergence histories for 
quality (a). The genotype of the best AOS and other methods for quality optimization runs (b). 
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Fig. 9. Best optimization runs of the AOS and different methods’ convergence histories for quality (a). 
The genotype of the best AOS and other methods for quality optimization runs (b). 
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BRO method (79.23). In comparison, some algorithms’ 
convergence rates are slower. The quality values that the BHM 
and BRO optimization algorithms provide, nevertheless, are 
quite competitive. The genotype space throughout the third 
phase’s optimization procedure is shown in Fig. 9(b). It is 
clear that using BIM for dam construction management may 
provide enterprises with possible value.

Table 5 displays the outcomes of optimization for the third 
phase (quality) utilizing various techniques. The proportion 
of alterations or errors to the best answer supplied by the 
best algorithms is shown in this table. However, the BWO 
algorithm outperforms other metaheuristic algorithms, with 
a score of 79.24, followed by the BRO optimization method. 
Furthermore, the SA algorithm is responsible for the lowest 
Std of about 0.002, while the AOS algorithm is responsible 
for the lowest error of 1.09%.

Based on 30 independent runs, Table 5 presents the 
statistical findings of the optimal quality of the Goocham 
dam for various optimization strategies. Overall, the BWO 
and BRO optimization algorithms provided the highest 
objective function value for the third phase of the Goocham 
dam construction. Additionally, compared to the other 
methods, the BWO optimization approach required greater 
computing time, lasting around 14.35 seconds (s). The AOS 
optimization algorithm’s Std, on the other hand, shows how 
near the outcomes from the 30 separate runs are to their mean 
value at their lowest value. In the study, the BRO optimization 
method was unable to provide a reliable result. Overall, based 
on the outcomes, the BWO optimization methods showed 
a satisfactory performance in the Goocham dam’s quality 
optimization.

The convergence curves for the fourth phase (risk) 
employing various techniques are shown in Fig. 10(a). In 
the first iterations, the AOS algorithm is shown to swiftly 
converge to the optimum value of 0.29. In comparison, some 
algorithms’ convergence rates are slower. The genotype space 
throughout the risk phase optimization procedure is shown in 
Fig. 10(b).

The optimization outcomes for the fourth phase (risk) using 
various techniques are shown in Table 6. The AOS algorithm, 

the best algorithm, reports its proportion of alterations or 
errors to the best solution in this table. Additionally, the SA 
algorithm is associated with the most error, which is around 
8.43 percentage points, and the BRO algorithm is associated 
with the lowest error, which is 2.02 percent.

Based on 30 independent runs, Table 6 presents the 
statistical findings for the Goocham dam’s optimal risk for 
several optimization techniques. For the fourth phase of the 
Goocham dam, the AOS optimization method provided the 
best objective function value overall. The SA optimization 
methods delivered the poorest value, indicating their low 
dependability for a single trial run of risk optimization. 
Despite taking roughly 13.04 (s) longer to compute than the 
other algorithms, the BWO optimization method had the 
lowest risk value when compared to the SA optimization 
strategy. However, the AOS algorithm’s CT is 1.47, higher 
than SA’s. 

The Std, which measures how closely the outcomes 
from the 30 separate runs match their mean value, was also 
produced using the AOS optimization method with the lowest 
value. In striking contrast, the SA optimization algorithm 
was unable to provide a reliable analytical result owing to 
the larger value of Std than other methods. However, based 
on the outcomes, the AOS optimization method-  played a 
crucial part in the Goocham Dam’s risk optimization.

The convergence curves for the fifth phase (all) 
employing various techniques are shown in Fig. 11(a). In the 
first iterations, it is shown that the AOS algorithm could fast 
converge to the optimum value of 1.92. On the other hand, 
some algorithms’ convergence rates are slower. The current 
state of the genotype space or optimization variables during 
this phase is shown in Fig. 11(b). As can be observed, the 
algorithms used for this phase tended to favor the first mode, 
which reflects the contractor’s bids, over other executive 
modes, such as modes number 3 and 5, which have lower 
values in the majority of situations. The algorithms also 
tended to favor modes 2 and 4 in certain circumstances, 
which necessitates paying more attention to the interpolation 
procedure.

Table 5. Statistical findings for algorithms concerning 30 independent runs in quality optimization. Table 5 - Statistical findings for algorithms concerning 30 independent runs in quality optimization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithms Best Mean Worst Std. feN CT (s) Percentage 
error 

SA 79.03 77.10 76.10 0.78 50000 2.46 0.26 

BHM 78.29 77.60 76.65 0.35 50000 1.97 1.19 

BRO 79.23 76.01 73.49 1.40 50000 4.69 0.01 

BWO 79.24 75.39 73.78 1.24 50000 14.35 0 

AOS 75.81 74.83 73.84 0.00275 50000 1.68 4.32 
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Fig. 9. Best optimization runs of the AOS and different methods' convergence histories for risk 
(a). The genotype of the best AOS and other methods for risk optimization runs (b). 
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Fig. 10. Best optimization runs of the AOS and different methods’ convergence histories for risk (a). The geno-
type of the best AOS and other methods for risk optimization runs (b). 
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Fig. 10. Best optimization runs of the AOS and different methods' convergence histories for 
all (a). The genotype of the best AOS and other methods for all optimization runs (b). 
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Fig. 11. Best optimization runs of the AOS and different methods’ convergence histories for all (a). The genotype of 
the best AOS and other methods for all optimization runs (b).
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The optimization outcomes for each method for the fifth 
phase are shown in Table 7. The best algorithms—in this 
phase, the GA algorithm—report the percentage of changes 
or rate of the error to the optimal solution. As a result, the GA 
algorithm may be regarded as the best method for addressing 
TCQRT issues in the more complicated hydropower project. 
Additionally, the SA algorithm has the largest error rate, at 
83.14 percent. The TSO algorithm has the lowest error, with 
a percentage error of 22.08214.

The Time-Cost-Quality-Risk Trade-off of the Goocham 
dam using the AOS algorithm and other optimization methods 
is shown statistically in Table 7 below, based on 30 separate 
runs. All things considered, the objective function for the 
fifth phase of the Goocham dam was best served by the AOS 
optimization algorithm, meaning that the AOS algorithm 
yielded adequate results for the TCQRT of the Goocham 
dam. The SA optimization methods returned the poorest 
result, demonstrating their low dependability after only one 
try at all optimization. The BWO optimization algorithm has 
the longest CT of all the steps, at about 12.57 (s). However, 
the AOS algorithm’s CT is 1.54 times higher than SA’s. 

The Std, which measures how closely the outcomes 
from the 30 separate runs match their mean value, was also 
produced using the AOS optimization method with the lowest 
value. However, the SA optimization method was unable to 
provide a consistent outcome in the study due to the larger 

value of Std than other algorithms. But according to the 
findings, only the AOS optimization method effectively 
supported the TCQRT in the Goocham dam.

3- 1- Optimum Solutions
In the pursuit of constructing the Goocham Storage Dam, 

a critical infrastructure project, the need for optimizing 
the project’s time, cost, quality, and risk has emerged as a 
crucial criterion for success. Based on the insights derived 
from contractors’ proposals, Building Information Modeling 
(BIM) techniques, and the actual project execution, it is 
evident that there is a considerable disparity in terms of 
duration and cost. While contractors’ initial proposals often 
lack practicality and fail to account for various factors, such as 
rework, conflicts, and extreme weather conditions, BIM has 
shown promising potential in reducing costs and streamlining 
communication and collaboration among stakeholders. To 
bridge the gap between contractors’ offerings and the actual 
execution, it becomes imperative to explore rational resource-
based proposals and incorporate effective risk management 
strategies. By leveraging these optimization solutions, along 
with enhanced collaboration and continuous monitoring, the 
construction process for the Goocham Storage Dam can be 
significantly improved, leading to a successful and efficient 
project outcome. The following are the optimum solutions 
regarding infrastructure construction projects:

Table 6. Statistical outcomes for algorithms based on 30 independent runs in risk optimizationTable 6 - Statistical outcomes for algorithms based on 30 independent runs in risk optimization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithms Best Mean Worst Std. feN CT (s) Percentage 
error 

SA 0.3194 0.3436 0.3996 0.0221 50000 2.46 8.43 

BHM 0.3023 0.3051 0.3100 0.0019 50000 1.92 2.65 

BRO 0.3005 0.3060 0.3112 0.0027 50000 4.33 2.02 

BWO 0.3071 0.3082 0.3103 0.0008 50000 13.04 4.27 

AOS 0.2945 0.2945 0.2945 3.22E-10 50000 1.67 0 

Table 7. Statistical findings for algorithms concerning 30 independent runs in all optimization
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Algorithms Best Mean Worst Std. feN CT (s) Percentage 
error 

SA 3.52 4.03 4.48 0.2517 50000 2.43 50.01 

BHM 3.08 3.20 3.27 0.0406 50000 2.08 31.09 

BRO 3.12 3.25 3.38 0.0581 50000 4.56 33.09 

BWO 2.53 2.64 3.03 0.0910 50000 12.56 7.93 

AOS 2.35 2.35 2.35 4.44089E-16 50000 1.57 0 
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1.Utilize BIM (Building Information Modeling): BIM is 
a powerful tool for streamlining the construction process. It 
allows stakeholders to create a digital representation of the 
project, including its physical and functional characteristics. 
By implementing BIM techniques across the entire project 
lifecycle, you can benefit from improved coordination, clash 
detection, and visualization, which can significantly reduce 
conflicts and enhance communication among the project 
team. Additionally, BIM can facilitate the collaboration 
of multiple disciplines, such as architects, engineers, and 
contractors, leading to better decision-making and more 
efficient workflows. By leveraging BIM, you have already 
achieved a reduction in the project’s execution time from 
1489 to 906 days, highlighting its effectiveness in expediting 
construction.

2.Consider rational resource-based proposals: In the 
optimization process, metaheuristic algorithms can be 
employed to generate rational resource-based proposals. 
These algorithms use computational techniques inspired by 
natural phenomena, such as genetic algorithms or simulated 
annealing, to search for optimal solutions. By incorporating 
the insights derived from BIM and employing metaheuristic 
algorithms, contractors and organizations can propose 
resource plans that are more realistic, efficient, and aligned 
with the project’s goals. This approach helps balance the 
project’s time, cost, quality, and risk factors, leading to 
improved project outcomes.

3.Incorporate risk management: While risk percentages 
have been determined randomly based on expert opinions, 
it is essential to conduct a comprehensive risk assessment 
to identify specific risks associated with each activity. This 
assessment should consider factors such as rework, conflicts, 
non-payment by employers, extreme weather conditions, 
and other potential sources of uncertainty. Once the risks are 
identified, develop a robust risk management strategy that 
includes risk mitigation plans and contingency measures. 
This proactive approach will enable you to minimize the 
impact of risks, optimize resource allocation, and ensure the 
project stays on track.

4.Enhance collaboration and communication: Time 
overrun and project failures can often be traced back to a lack of 
cooperation and communication among contractors, owners, 
and other stakeholders. To address this, emphasize effective 
collaboration and communication channels throughout the 
project lifecycle. Encourage regular project meetings, utilize 
collaborative software platforms, and establish clear lines 
of communication to foster a collaborative environment. 
Additionally, promotes transparency and information sharing 
to ensure that all stakeholders have access to the necessary 
project data and can make informed decisions. By fostering 
strong collaboration and communication, you can prevent 
delays, resolve issues promptly, and keep all parties aligned 
toward project success.

5.Continuously monitor and evaluate: Regular 
monitoring and evaluation of the project’s progress, cost, and 
quality indicators are crucial for identifying any deviations 
from the plan. Implement a robust monitoring system that 

tracks key performance metrics, such as project milestones, 
resource utilization, and quality benchmarks. Compare the 
actual project performance against the established baselines 
and identify areas that require attention or improvement. 
This proactive approach allows you to take timely corrective 
actions, address issues promptly, and maintain project 
success.

The efficiency and effectiveness of the construction 
process for the Goocham Storage Dam project can be 
enhanced by implementing these solutions. However, it 
should be noted that these recommendations are based on the 
information provided.

Since the optimization procedure in each algorithm 
provided a globe best solution candidate as the best agent thah 
satisfies the considered objective function adequately, this 
solution should be verified using the table of activities which 
have been done in this project at the end of each optimization 
process. This validation was conducted by using the design 
variables related to the global best solution in each algorithm 
so the results of the optimization process have been verified 
by finding the related activities in the table and finding the 
objective function utilizing the mentioned formulas.

4- CONCLUSION
The gathered results show that project management is 

practicable when used to plan, direct, and manage resources 
to achieve specific goals in other development projects while 
taking time, cost, quality, and risk indicators into account. 
This research uses the Goocham dam in Iran as a case study to 
examine the usage of BIM, the Atomic Orbital Search (AOS) 
algorithm, and other alternative metaheuristic algorithms in 
managing the construction of dams. A TCQR trade-off was 
then examined. The findings clearly show that, although not 
offering the best time and cost, the BIM implementation 
method may reduce the time and cost of dam construction 
projects. The BIM technique may also be used by the project 
team and contractors to ensure that their dam projects are of 
the highest possible quality. These findings demonstrate that 
the AOS optimization algorithms have produced more suitable 
optimum solutions, with the following broad conclusions:

I.There was a cost and time decrease of 7% and 40%, 
respectively, as a result of the application of BIM in the 
construction management of the Goocham dam. 

II. When compared to the BIM process and the actual 
execution time of the Goocham dam project, the application 
of the AOS optimization algorithms shortens the project’s 
execution time and cost by around 24% and 20%, respectively. 
In addition, when compared to other algorithms, the AOS 
optimization method had the lowest computing time for time 
optimization.

III. The AOS algorithm performs the best in terms of 
lowering project expenses, while other algorithms charge 
higher prices and are thus less cost-effective. The best and 
shortest computing time (CT), accounting for 1.79 seconds 
was provided by the AOS optimization technique.

IV. The only algorithms that perform optimally in the 
third phase (quality) are BWO and BRO. The AOS algorithm 
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computed the lowest quality, unlike other algorithms that 
perform well. 

V. Only the AOS optimization method offered the lowest 
risk index, showing that it performed well in Goocham dam 
risk optimization. 

VI. Of all the phases, the BWO optimization technique 
had the longest computing time (CT). 

Only the AOS algorithm in the TCQRT quickly converges 
to the ideal value in the first iterations. The other algorithms’ 
rates of convergence, in comparison, are slower. 

VII. Future research should concentrate on evaluating 
and contrasting the performance of various innovative 
metaheuristic optimization algorithms with conventional 
algorithms like GAs. Additionally, they may evaluate how 
well the metaheuristic algorithms utilized in this work perform 
in other infrastructure projects when it comes to maximizing 
the survival pyramid’s component efficiency. Finally, future 
research works can consider the following fields:

•	 Machine Learning for Predictive Analytics: ML 
algorithms can be utilized to analyze historical 
project data and patterns, enabling the development of 
predictive models for various aspects of construction 
projects. This can include predicting project durations, 
identifying potential risks, optimizing resource 
allocation, and estimating costs. By leveraging ML 
techniques, construction managers can make more 
accurate forecasts and proactive decisions.

•	 Virtual Reality for Design Visualization and 
Stakeholder Collaboration: VR technology can be 
leveraged to create immersive virtual environments 
that allow stakeholders to visualize and experience 
construction designs before they are built. This can 
facilitate better communication, collaboration, and 
decision-making among project teams, clients, and 
other stakeholders. VR simulations can also be used 
for safety training and identifying potential hazards 
in construction sites.

•	 Augmented Reality for On-site Construction 
Assistance: AR applications can provide real-
time, context-aware information and guidance to 
construction workers on-site. By overlaying digital 
information onto the physical environment, AR 
can assist with tasks such as accurate positioning 
of building components, providing step-by-step 
instructions, and displaying relevant project data. 
This technology can enhance worker productivity, 
reduce errors, and improve overall construction 
quality. 
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