1. Keyvanpour, MR., Khanbani, N., Aliniya, Z. (2021). Detection of individual activities in video sequences based on fast interference discovery and semi-supervised method. Multimedia Tools and Applications, 80, 13879-13910.
- Kharati, E., Khalily-Dermany, M., & Kermajani, H. (2019). Increasing the Value of Collected Data and Reducing Energy Consumption using Network Coding and Mobile Sinks in Wireless Sensor Networks. AUT Journal of Modeling and Simulation, 51(1), 3-14.
- Ezatzadeh, S., Keyvanpour, M. R., & Shojaedini, S. V. (2021). A human fall detection framework based on multi-camera fusion. Journal of Experimental & Theoretical Artificial Intelligence, 1-20.
- Serpush, F., Menhaj, M. B., Masoumi, B., & Karasfi, B. (2022). Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System. Computational Intelligence and Neuroscience, 2022.
- Hassan, M. M., Huda, S., Uddin, M. Z., Almogren, A., & Alrubaian, M. (2018). Human activity recognition from body sensor data using deep learning. Journal of medical systems, 42(6), 1-8.
- Xu, S., Zhang, L., Huang, W., Wu, H., & Song, A. (2022). Deformable Convolutional Networks for Multimodal Human Activity Recognition Using Wearable Sensors. IEEE Transactions on Instrumentation and Measurement, 71, 1-14.
- Qi, W., Su, H., Yang, C., Ferrigno, G., De Momi, E., & Aliverti, A. (2019). A fast and robust deep convolutional neural networks for complex human activity recognition using smartphone. Sensors, 19(17), 3731.
- Kuncan, F., Kaya, Y., Tekin, R., & Kuncan, M. (2022). A new approach for physical human activity recognition based on co-occurrence matrices. The Journal of Supercomputing, 78(1), 1048-1070.
- Ahad, M. A. R., Antar, A. D., & Ahmed, M. (2021). Deep learning for sensor-based activity recognition: recent trends. IoT Sensor-Based Activity Recognition, 149-173.
- Razzaq, M. A., Cleland, I., Nugent, C., & Lee, S. (2020). SemImput: Bridging Semantic Imputation with Deep Learning for Complex Human Activity Recognition. Sensors, 20(10), 2771.
- Suto, J., Oniga, S., Lung, C., & Orha, I. (2020). Comparison of offline and real-time human activity recognition results using machine learning techniques. Neural computing and applications, 32(20), 15673-15686.
- Miranda, L., Viterbo, J., & Bernardini, F. (2022). A survey on the use of machine learning methods in context-aware middlewares for human activity recognition. Artificial Intelligence Review, 55(4), 3369-3400.
- Sun, J., Fu, Y., Li, S., He, J., Xu, C., & Tan, L. (2018). Sequential human activity recognition based on deep convolutional network and extreme learning machine using wearable sensors. Journal of Sensors, 2018.
- de la Concepción, M. Á. Á., Morillo, L. M. S., García, J. A. Á., & González-Abril, L. (2017). Mobile activity recognition and fall detection system for elderly people using Ameva algorithm. Pervasive and Mobile Computing, 34, 3-13.
- Alemdar, H., Van Kasteren, T. L. M., & Ersoy, C. (2017). Active learning with uncertainty sampling for large scale activity recognition in smart homes. Journal of Ambient Intelligence and Smart Environments, 9(2), 209-223.
- Kerdjidj, O., Ramzan, N., Ghanem, K., Amira, A., & Chouireb, F. (2020). Fall detection and human activity classification using wearable sensors and compressed sensing. Journal of Ambient Intelligence and Humanized Computing, 11(1), 349-361.
- Inoue, M., Inoue, S., & Nishida, T. (2018). Deep recurrent neural network for mobile human activity recognition with high throughput. Artificial Life and Robotics, 23(2), 173-185.
- Serpush, F., & Rezaei, M. (2021). Complex human action recognition using a hierarchical feature reduction and deep learning-based method. SN Computer Science, 2(2), 1-15.
- Rajabi, M., & Khaloozadeh, H. (2020). Long-term prediction in Tehran stock market using a new architecture of Deep neural networks. AUT Journal of Modeling and Simulation, 52(2), 4-4.
- Mukherjee, D., Mondal, R., Singh, P. K., Sarkar, R., & Bhattacharjee, D. (2020). EnsemConvNet: a deep learning approach for human activity recognition using smartphone sensors for healthcare applications. Multimedia Tools and Applications, 79(41), 31663-31690.
- Hassan, M. M., Ullah, S., Hossain, M. S., & Alelaiwi, A. (2021). An end-to-end deep learning model for human activity recognition from highly sparse body sensor data in internet of medical things environment. The Journal of Supercomputing, 77(3), 2237-2250.
- Thakur, D., & Biswas, S. (2021). Feature fusion using deep learning for smartphone based human activity recognition. International Journal of Information Technology, 13(4), 1615-1624.
- Hammerla, N. Y., Halloran, S., & Plötz, T. (2016, July). Deep, convolutional, and recurrent models for human activity recognition using wearables. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence(pp. 1533-1540).
- Ronao, C. A., & Cho, S. B. (2016). Human activity recognition with smartphone sensors using deep learning neural networks. Expert systems with applications, 59, 235-244.
- De Vita, A., Russo, A., Pau, D., Di Benedetto, L., Rubino, A., & Licciardo, G. D. (2020). A partially binarized hybrid neural network system for low-power and resource constrained human activity recognition. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(11), 3893-3904.
- Guan, Y., & Plötz, T. (2017). Ensembles of deep lstm learners for activity recognition using wearables. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(2), 1-28.
- Wang, L. (2016). Recognition of human activities using continuous autoencoders with wearable sensors. Sensors, 16(2), 189.
- Munoz-Organero, M., & Ruiz-Blazquez, R. (2017). Time-elastic generative model for acceleration time series in human activity recognition. Sensors, 17(2), 319.
- Semwal, V. B., Gupta, A., & Lalwani, P. (2021). An optimized hybrid deep learning model using ensemble learning approach for human walking activities recognition. The Journal of Supercomputing, 77(11), 12256-12279.
- Paraschiakos, S., Cachucho, R., Moed, M., van Heemst, D., Mooijaart, S., Slagboom, E. P., ... & Beekman, M. (2020). Activity recognition using wearable sensors for tracking the elderly. User Modeling and User-Adapted Interaction, 30(3), 567-605.
- Hassan, M. M., Uddin, M. Z., Mohamed, A., & Almogren, A. (2018). A robust human activity recognition system using smartphone sensors and deep learning. Future Generation Computer Systems, 81, 307-313.
- Zhao, Y., Yang, R., Chevalier, G., Xu, X., & Zhang, Z. (2018). Deep residual bidir-LSTM for human activity recognition using wearable sensors. Mathematical Problems in Engineering, 2018.
- Kim, E. (2020). Interpretable and accurate convolutional neural networks for human activity recognition. IEEE Transactions on Industrial Informatics, 16(11), 7190-7198.
- Ordóñez, F. J., & Roggen, D. (2016). Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors, 16(1), 115.
- Jiang, Y., Hernandez, V., Venture, G., Kulić, D., & K. Chen, B. (2021). A data-driven approach to predict fatigue in exercise based on motion data from wearable sensors or force plate. Sensors, 21(4), 1499.
- Lee, S. M., Yoon, S. M., & Cho, H. (2017, February). Human activity recognition from accelerometer data using Convolutional Neural Network. In 2017 ieee international conference on big data and smart computing (bigcomp)(pp. 131-134). IEEE.
- Ronao, C. A., & Cho, S. B. (2015, November). Deep convolutional neural networks for human activity recognition with smartphone sensors. In International Conference on Neural Information Processing(pp. 46-53). Springer, Cham.
- Wu, D., Wang, Z., Chen, Y., & Zhao, H. (2016). Mixed-kernel based weighted extreme learning machine for inertial sensor based human activity recognition with imbalanced dataset. Neurocomputing, 190, 35-49.
- Hassani, S. A., Mobaraki, H., Bayat, M., & Mafimoradi, S. (2013). Right place of human resource management in the reform of health sector. Iranian journal of public health, 42(1), 56.
- Davila, J. C., Cretu, A. M., & Zaremba, M. (2017). Wearable sensor data classification for human activity recognition based on an iterative learning framework. Sensors, 17(6), 1287.
- Bazgir, O., Habibi, S. A. H., Palma, L., Pierleoni, P., & Nafees, S. (2018). A classification system for assessment and home monitoring of tremor in patients with Parkinson's disease. Journal of medical signals and sensors, 8(2), 65.
- Nazari, J., Fathi, P. S., Sharahi, N., Taheri, M., Amini, P., & Almasi-Hashiani, A. (2022). Evaluating Measles Incidence Rates Using Machine Learning and Time Series Methods in the Center of Iran, 1997–2020. Iranian Journal of Public Health, 51(4), 904.
- Muzammal, M., Talat, R., Sodhro, A. H., & Pirbhulal, S. (2020). A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Information Fusion, 53, 155-164.
- Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., & Liu, Y. (2021). Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities. ACM Computing Surveys (CSUR), 54(4), 1-40.
- Peng, L., Chen, L., Ye, Z., & Zhang, Y. (2018). Aroma: A deep multi-task learning based simple and complex human activity recognition method using wearable sensors. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(2), 1-16.
- Davila, J. C., Cretu, A. M., & Zaremba, M. (2017). Wearable sensor data classification for human activity recognition based on an iterative learning framework. Sensors, 17(6), 1287.
- Yao, R., Lin, G., Shi, Q., & Ranasinghe, D. C. (2018). Efficient dense labelling of human activity sequences from wearables using fully convolutional networks. Pattern Recognition, 78, 252-266.
- Kautz, T., Groh, B. H., Hannink, J., Jensen, U., Strubberg, H., & Eskofier, B. M. (2017). Activity recognition in beach volleyball using a deep convolutional neural network. Data Mining and Knowledge Discovery, 31(6), 1678-1705.
- Suto, J., & Oniga, S. (2018). Efficiency investigation of artificial neural networks in human activity recognition. Journal of Ambient Intelligence and Humanized Computing, 9(4), 1049-1060.
- Liu, H., & Wang, L. (2018). Gesture recognition for human-robot collaboration: A review. International Journal of Industrial Ergonomics, 68, 355-367.
- Kang, J., Kim, J., Lee, S., & Sohn, M. (2020). Transition activity recognition using fuzzy logic and overlapped sliding window-based convolutional neural networks. The Journal of Supercomputing, 76(10), 8003-8020.
- Abedini, F., Menhaj, M. B., & Keyvanpour, M. R. (2019). An MLP-based representation of neural tensor networks for the RDF data models. Neural Computing and Applications, 31(2), 1135-1144.
- Shu, X., Zhang, L., Sun, Y., & Tang, J. (2020). Host–parasite: Graph LSTM-in-LSTM for group activity recognition. IEEE transactions on neural networks and learning systems, 32(2), 663-674.
- Reining, C., Niemann, F., Moya Rueda, F., Fink, G. A., & ten Hompel, M. (2019). Human activity recognition for production and logistics—a systematic literature review. Information, 10(8), 245.
- Taha, Z., Musa, R. M., Majeed, A. P. A., Alim, M. M., & Abdullah, M. R. (2018). The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach. Human movement science, 57, 184-193.
- Serpush, F., & Keyvanpour, M. (2014). QEA: a new systematic and comprehensive classification of query expansion approaches. Journal of Computer & Robotics, 7(1), 1-17.
- Chen, Z., Zhu, Q., Soh, Y. C., & Zhang, L. (2017). Robust human activity recognition using smartphone sensors via CT-PCA and online SVM. IEEE transactions on industrial informatics, 13(6), 3070-3080.
- Erdaş, Ç. B., & Güney, S. (2021). Human activity recognition by using different deep learning approaches for wearable sensors. Neural Processing Letters, 53(3), 1795-1809.
- Tran, D. N., & Phan, D. D. (2016, January). Human activities recognition in android smartphone using support vector machine. In 2016 7th international conference on intelligent systems, modelling and simulation (isms)(pp. 64-68). IEEE.
- Chavarriaga, R., Sagha, H., Calatroni, A., Digumarti, S. T., Tröster, G., Millán, J. D. R., & Roggen, D. (2013). The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognition Letters, 34(15), 2033-2042.
- Li, F., Shirahama, K., Nisar, M. A., Köping, L., & Grzegorzek, M. (2018). Comparison of feature learning methods for human activity recognition using wearable sensors. Sensors, 18(2), 679.
- Tuncer, T., & Ertam, F. (2021). Novel tent pooling based human activity recognition approach. Multimedia Tools and Applications, 80(3), 4639-4653.
- Zebin, T., Scully, P. J., Peek, N., Casson, A. J., & Ozanyan, K. B. (2019). Design and implementation of a convolutional neural network on an edge computing smartphone for human activity recognition. IEEE Access, 7, 133509-133520.
- Yao, R., Lin, G., Shi, Q., & Ranasinghe, D. C. (2018). Efficient dense labelling of human activity sequences from wearables using fully convolutional networks. Pattern Recognition, 78, 252-266.
- Esmaeili, V., Mohassel Feghhi, M., & Shahdi, S. O. (2022). Automatic Micro-Expression Recognition using LBP-SIPl and FR-CNN. AUT Journal of Modeling and Simulation, 54(1), 5-5.
- Shojaedini, S. V., Morabbi, S., & Keyvanpour, M. (2018). A new method for detecting p300 signals by using deep learning: hyperparameter tuning in high-dimensional space by minimizing nonconvex error function. Journal of medical signals and sensors, 8(4), 205.
- Wang, L., & Liu, R. (2020). Human activity recognition based on wearable sensor using hierarchical deep LSTM networks. Circuits, Systems, and Signal Processing, 39(2), 837-856.
- Keyvanpour, M., & Serpush, F. (2019). ESLMT: a new clustering method for biomedical document retrieval. Biomedical Engineering/Biomedizinische Technik, 64(6), 729-741.
- Zeng, M., Nguyen, L. T., Yu, B., Mengshoel, O. J., Zhu, J., Wu, P., & Zhang, J. (2014, November). Convolutional neural networks for human activity recognition using mobile sensors. In 6th international conference on mobile computing, applications and services(pp. 197-205). IEEE.
- Guo, Y., Wu, Z., & Ji, Y. (2017, August). A hybrid deep representation learning model for time series classification and prediction. In 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM)(pp. 226-231). IEEE.
|