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ABSTRACT: Stochastic subspace identification (SSI) is a process that linearizes the identification 
problem by utilizing singular value decomposition (SVD) and QR factorization. This technique enables 
the extraction of system matrices through linear least squares. However, the estimated systems in these 
methods are affected by the user-defined dimensions of the data space (Hankel matrix). Also, SSI does 
not explicitly minimize a cost function for estimating system matrices, making statistical analysis 
difficult. To enhance the accuracy of modal specifications obtained from SSI, especially the damping 
ratios, this research suggests using output-error methods (OEM). During OEM, the process involves 
iteratively adjusting the model parameters to match the outputs of the simulated model with those of the 
observed system. The following steps are taken to enhance the OEM for extracting structural properties: 
Firstly, the initial term is derived using the SSI to reduce the number of optimization iterations. Secondly, 
by using the Gauss-Newton approach, the nonlinearity of the objective function is reduced by treating 
the second-order derivatives as a linear system. Finally, Gradient project minimization is utilized in 
SSI to ensure the injectivity of estimated systems. The OEM was validated by analyzing the response 
of a 3-DOF excited by white noise with an SNR of 1 db.  Then, the model was then applied to seismic 
observations of Pacoima Dam during the 2001 San Fernando and 2008 Chino Hills earthquakes. The 
two main modes of the structure were extracted, and they had the least error compared to the developed 
finite element models.
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1- Introduction
Quantifying the dynamic characteristics of structures 

(frequency, damping ratio, and mode shapes) is an essential 
tool for studying their dynamic response against excitation, 
such as earthquakes, wind, and explosions [1]. This can be 
achieved through ambient and forced vibration testing. In 
flexible structures such as dams, bridges, and buildings forced 
vibration tests (FVT) are considered more reliable because 
they involve controlled vibrations that enhance the dynamic 
response of the structure. This results in better noise source 
overlap and increases the accuracy of the extracted modal 
characteristics. Additionally, these tests provide valuable 
information about the mass and rigidity of the structure, which 
can be used to update the finite element model quickly[2, 3].

One of the most popular methods for analyzing the 
results of dynamic vibration tests is the stochastic subspace 
identification (SSI) method. These methods modulate the 
vibrating structure in the state space as a Linear Time-
Invariant (LTI) system [4, 5]. These methods are based on 
arranging measured inputs and outputs in the Hankel matrix 
[6]. By solving the linear least squares (LS) problem, the 

modal properties may be determined utilizing essential linear 
algebraic techniques such as rank-querying (RQ) and singular 
value decomposition (SVD). Bypassing the nonlinear modes 
is one of the main reasons for the popularity of these methods 
[7-9]. Various algorithms have been presented for these 
methods based on how to deal with input and output noises, 
such as PI-MOESP for colored noises and PO-MOESP for 
white noises approach [10]. Other algorithms include N4SID, 
based on the least squares [11], and SI-ORT, based on the 
canonical correlation analysis [12, 13].

The output-error method (OEM) is another approach to 
analyzing FVT, the standard methodology for estimating 
aircraft parameters [14, 15]. These approaches’ foundation is 
the iterative matching of the simulated model response with 
the measured response [16-18]. The approach assumes that 
the uncertainties caused by the noises operating on the system 
are additively perturbed at the output [19-22]. It consists of 
four phases: The first phase entails parameterizing the model 
or choosing the parameters to estimate in the model. In the 
second step, the estimate of model parameters is formulated 
as an optimization problem. Step three is selecting a 
numerical method to solve the optimization issue iteratively. 
The last stage is a covariance matrix-based assessment of the 
correctness of the derived estimations. White noise with zero *Corresponding author’s email: pourgholi@iausa.ac.ir
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means is assumed as an additive error throughout these four 
stages.

As previously stated, this approach is used chiefly for 
aeronautical themes [23, 24]; nevertheless, it has lately been 
utilized to determine robot features [25]. This technique has 
recently been applied to deterministic dynamics in industrial 
processes, including temporal delays and unknown load 
disturbances [26]. However, this method’s potential has yet to 
be explored in structural problems. This study plans to employ 
OEM, which has never been used in system identification 
procedures through an ambient vibration test, to extract 
structural modal features. In the OEM approach, parameter 
estimation is carried out using a nonlinear optimization 
methodology (Gauss-Newton method). Consequently, the 
method is more computationally demanding due to its 
iterative nature. This approach was applied to the modal test 
of structures as follows:

First, the starting statement is collected from the SSI to 
limit the number of trials and mistakes and the dependency of 
the detected modal features on the initial response utilized in 
the optimization. Second, the objective function’s complexity 
is reduced by considering the second-order derivatives as a 
linear system to optimize parameters using the Gauss-Newton 
approach. Finally, due to the non-injectivity of the specified 
parameterization and similarity transformations of the state-
space systems, the objective function is updated outside the 
same transformations to prevent numerical difficulties in the 
gradient project minimization process.

The proposed algorithm extracts the modal characteristics 
of Pacoima Dam using its seismic data after validation with 
a numerical model of a 3DOF analytical system with closely 
spaced modes under different noise intensities.

2- Output-Error Method
In ambient vibration testing, data is collected at certain 

intervals, such as kt. By using the following set of discrete 
time equations in the state space, the dynamic behavior of the 
desired structure can be described:
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where 2. 1nx ×∈  is a discrete stochastic vector at time 
instant k , 1my ×∈  denotes the sampled outputs vector 
at the k th− time step, ( ) 1su k ×∈  is the input or control 
vector, 2. 2. n n×∈A   sows the discrete-time state matrix and 

m n×∈C   represents the output matrix, m  is the number of 
measurement points or sensors, 2. 1n

kω
×∈  and 1m

kϑ
×∈  

are measurement and computation noises, respectively [27]. 
It is important to note that the signal-generating LTI system 
can describe the vibrating structure’s dynamic response (Eq. 
2) as:
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Where k=1, 2,..., s is the total quantity of measured 
data, ( )G q  is the system’s deterministic component, and 

1 m
kv ×∈  stands for measurement noise that is statistically 

independent of the inputs ( 1su ×∈ ).
The objective of modeling in the OEM (Fig.1) is to find a 

collection of system matrices (A, B, C, D) such that the output 
( )ŷ k  approximates the system’s output ( )y k  (Eq.3). 

One frequent strategy for solving this issue is estimating a 
vector of parameters (Eq.4) based on the assumption that the 
system’s matrix entries depend on these parameters. 
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Where ( ).vec  represents the vector operator,  ACθ  is the 
set of parameters required for the system outputs, and BDθ  is 
the parameter vector of the system inputs[28]. According to 
Eqs.1a and 2b, the estimated system may be parameterized as 
follows using the parameter vector θ as follows:
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To estimate the state-space model, the following quadratic 
cost function is considered[29-32]:
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where ( )y k  is the measured output signal, ( )ˆ ,  y k θ is 
the output signal of the model, and ( )NE θ  is the prediction 
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error vector.
The cost function ( )N θJ  is a scalar function that depends 

on the parameter vector θ   in the parameter space  Ω  . The 
problem of its optimization by considering the constraints can 
be expressed as follows:
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Specifically, the following Taylor series expansion in 
( )NE θ  about i  is utilized to provide a numerical solution 

to the parameter-optimization problem[21]:
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 (8)

By defining ( )1ii iδθ θ θ+= − and marking

( ) ( )
 N

N T

E θ
θ

θ
∂

=
∂

ø  , the preceding linear least squares 

problem is solved in the way presented:
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 (9)

where ( )( )i
N θH  is the Hessian matrix and ( )( )' i

N θJ  is 
the Jacobian of objective function.

Eq.9 shows that ( )NE θ  and ( )N θø  must be determined 
for each iteration. From the set of Eq.1, we can derive the 
matrix ( ) NE θ , but to compute ( )N θø  , we need to have:
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where ( )iθ  represents the ith entry in the vector θ. It is 
straightforward to see that for every parameter ( )iθ we have
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where ( ) ( )
( )

ˆ ,
,i

x k
X k

i
θ

θ
θ

∂
=

∂
.

The two preceding equations demonstrate that the 
derivative of ( ),ŷ k θ∂  to ( )iθ   may be determined by 
simulating a linear system with state ( ),iX k θ and inputs 
( )ˆ  , x k θ  and ( )u k .

Note that the matrices
( )
( )

( )
( )

( )
( )

 , , 
i i i
θ θ θ

θ θ θ
∂ ∂ ∂
∂ ∂ ∂
A B C

, and 
( )
( )i
θ

θ
∂
∂
D

are fixed and solely rely on the specific parameterization 
used to describe the system. Our investigation leads us to the 
conclusion that determining ( )N θø  is equivalent to running 
a linear system model for each component of the θ parameter 
vector. The simulation of p+1 linear systems is required to 
calculate ( )N θø  and ( )NE θ  if θ  has p parameters.

System matrices in the state space are non-injective so 
a singular Hessian matrix can be generated. Consequently, 
multiple combinations of parameters provide the same value 
for the cost function ( )N θJ . Hence the  θ that minimizes 

( )N θJ  is no longer required to be unique. Here, we 
investigate an arbitrary system with matrices ( ), , , A B C D
using the transformation matrix n n×∈T   from the system
( ), , ,A B C D :

1 1 
 

    
   

   

A B T AT T B
C D CT D

          14  

 

Ι  Δn T T               15  

 

  
 0 

       
          

A B A T TA TBA B
C D C TC D

        16  

 

     vec vec XYZ Z X Y            17  

 

     
Ι

  ΔT   Δ

0

T
n n

T
n

n

vec vec   

 
    
      
  
  

A A Ι
B Ι Q T
Ι C

        18  

  

         
 

1

2

0
0 0

T

T

V 
  




  
           

Σ
Q U U

V
        19  

 

   
 

   
 Q Q  

 T T

 

      


  U U U U          20  

 

   
 

   
 Q Q  

 T T

 

      


  U U U U          21  

 

10 1 0 4 0 0
1 4 3        0 3 0        

0 3 3 0 0 2
k m

   
         
      

k M         22  

 

 (14)

A manifold is obtained in the parametric space by 
applying all the non-singular n n×∈T   in the above relation. 
To minimize the objective function, one should avoid moving 
along it because the objective function is fixed on it. A 
perturbation equal to ÄT  is applied to the identity matrix 
ÉN to determine the tangent plane on this manifold[33, 34]. 
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The following expression is a first-order approximation of 
similarly comparable systems:
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Based on the property of the vector operator (Eq.17), we 
have the following:
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where θ  and θ  are vectors of parameters derived from 
the original and similar systems, and ⊗ is the Boolean 
product operator. Eq.18 demonstrates that the columns of the 
matrix ( )θQ  traverse the tangent plane at the point è  on 
the manifold of similar systems. SVD decomposition is used 
to evaluate the perpendicular component along the tangent 
plane:
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where ( ) 0θ >∑  and ( ) p p rθ × −
⊥ ∈U  , with 

( )2p n n l m lm= + + +  and ( )( ).r rank θ= Q
The columns of the matrix ( )θU  and ( )θ⊥U  form a basis 

for the column space and the orthogonal complement of the 
column space of ( ) θQ , respectively. The parameter vector θ   
may be broken down into its components using the matrices 
( )u θ  and ( ) θ⊥U :
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Because the second part is connected to the directions that 
affect the cost function’s value, the effective direction update 
of Eq. 18 is adjusted as follows.

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
1

'T Ti i i i i
N NJθ θ θ θ θ θ θ

−

⊥ ⊥ ⊥ ⊥
 = − × 
 

U U H U U

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
1

'T Ti i i i i
N NJθ θ θ θ θ θ θ

−

⊥ ⊥ ⊥ ⊥
 = − × 
 

U U H U U
 (21)

Fig. 2 shows a flowchart depicting the OEM procedure.

3- Numerical validation for OEM method
This section provides a comprehensive evaluation of 

OEM’s performance regarding the accuracy and reliability of 
its estimates for forced vibration. The evaluation is based on a 
modal analysis of a system with two closely spaced and strong 
modes (Fig.3), where the distribution of mass and stiffness 
is irregular. The proposed method’s efficiency is tested in 
varying noise levels with prescribed signal-to-noise ratios 
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(SNR) of 1%, 5%, and 15%. The structural characteristics of 
the mentioned systems include mass and stiffness matrix as 
follows:
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where m=10 ton and k=1500 /KN m  are assumed. Also, 

Cauchy damping has been adopted for both models. The 
exact values of modal characteristics for the considered case 
studies are presented in Table 1. 

The vibration data is created by applying random white 
noise horizontally at node 1, and the acceleration data is taken 
as the output. The computed response is affected by sensor 
noise. The damped response of the system was determined 
using the fourth-order Runge-Kutta method. The system 
corresponding to 3-DOF was modeled and analyzed using the 
Modal analysis technique in the Simulink MATLAB module, 
as shown in Fig.4. The excitation time was appropriately 

 
Fig.2 Flowchart of OEM algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flowchart of OEM algorithm.

Table 1. The modal features of 3-DOF systems determined by the numerical model.Table 1 The modal features of 3-DOF systems determined by the numerical model. 
 

Damping (%) Frequency (Hz) Mode 

2.00 0.83 1 
3.00 3.00 2 
4.00 3.25 3 
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adjusted for the 30-second recording by the 100 Hz sampling 
rate, as depicted in Fig.5. For instance, the output record for 
mass1 is displayed in Fig.6.

4- OEM method in extracting modal characteristics
At first, Modal properties of the structure were detected 

using the PO-MOESP algorithm to evaluate the effectiveness 
of the suggested algorithm compared to other identification 
techniques. To express the estimated error of predicted 
models in SSI, the variance account for (VAF), an alternative 
formulation of Eq.6, is employed as follows:
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where y m j
k

×∈  and ŷ m j
k

×∈  are the measured data 
and estimated values, respectively. The closer this criterion 
to 100, the lower the prediction error and the higher the 
accuracy of the model.

 The VAF diagrams of the model is shown in Fig.7.As 
demonstrated when SNR decreases, the inaccuracy of the 
obtained feature grows, bringing the VAF rate from 98% at 
SNR=5% and SNR=15% to less than 60% at SNR=1dB. One 
of the known limitations of SSI is that the derived modal 
properties rely on the Hankel matrix dimensions. Here, we will 
extract the modal features using the OEM, with the estimated 
error of the system’s response as the objective function. The 
OEM, defined as the SSI in the state space, will provide the 
matrices ( ), , ,A B C D . The objective function values have 
been normalized to 100% based on the maximum value that 
often occurs in the first step, so the optimization rate can be 
checked more quickly and readily in both cases. According 
to Eq.8, the initial point is the most critical limitation a user 

 
 

Fig.3 The simulated 3-DOF system 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The simulated 3-DOF system

 
Fig.4. Simulink model of motion differential equations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Simulink model of motion differential equations
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Fig.5 . Random white noise applied in the horizontal direction at mass 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Random white noise applied in the horizontal direction at mass 1

 
Fig.6. Acceleration records of the 3-DOF system at mass 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Acceleration records of the 3-DOF system at mass 1 

 

 
 

Fig.7. Variance accounting for (VAF) of analytical 3-DoF system obtained 
from PO-MOESP. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Variance accounting for (VAF) of analytical 3-DoF system obtained from PO-MOESP.
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may decide. To make the algorithm’s outputs independent of 
the initial point, more than 30 simulations with initial points 
with VAFs between 30% and 90% were conducted for each 
case study. The findings show that adopting predicted models 
with VAFs between 85 and 90% of the final VAF of the ideal 
SSI model yields more optimal outcomes, particularly for 
damping ratios. The explanation is that using phrases with 
significant estimate errors results in unstable local optimum 
points. However, the use of starting sentences with very high 
accuracy in OEM, owing to the optimal character of SSI, 
yields the same outcomes as SSI. The minimum number of 
optimization steps is NP=20, and the maximum relative error 
allowed for optimization stages is 0.1%. The algorithm will 
terminate if any of these requirements are met before the other. 
The numerical tests were conducted using MATLAB 2019b on 
a computer with an Intel CoreTM i5-2410 2.30 GHz CPU.

4- 1- Extracting modal frequencies and damping ratios of 
3-DOF systems with different SNRs

This section analyzes the system identification procedure 
for the 3-DOF system, which features two closely spaced 
modes while considering various noise levels. The model’s 
objective function is displayed in Fig. 8 as SNR is altered. 
As shown in the figure, as the noise level increases (SNR 
decreases), the objective function converges more slowly for 
both models. It can be observed that the objective function 
reaches 90% for SNR=1%, which indicates that model 
complexity has a significant impact. The VAF diagram in Fig. 
7 explains why the optimization process takes longer when the 
SNR increases. As depicted in the figure, the estimation error 
also increases with SNR. At an SNR of 15, the estimation 
error is only 1%, but it surges to over 60% at an SNR of 1%.  
Fig.9a shows that the first mode 

experienced the most significant frequency changes, 

and its optimal value was achieved after 11 iterations. The 
complexity of the model affected the estimation errors of all 
three-modal damping ratios at 1% and 5% SNRs (Fig.9b). 
As an SNR of 15% was reached, and the noise intensity 
decreased, the estimation error for the starting point of the 
second and third modes was also reduced. However, the 
modal properties, especially the damping, were successfully 
optimized for a model with extremely high precision using 
the proposed algorithm. The optimal values for all three 
damping ratios are shown in Table 2. This approach reduced 
the average estimation error for the first and second models in 
the PO-MOESP from 4.77% and 6.11% to 1%. These findings 
demonstrate that the proposed algorithm can optimize the 
modal properties with high accuracy.

4- 2- Extracting shape mode of 3-DOF systems with different 
SNRs

In contrast to damping ratios and modal frequency, form 
modes are vectors. They cannot be validated using metrics 
such as variance or relative errors across estimates from 
different model orders. Thus, other indications, such as the 
Modal Assurance Criterion (MAC), are often utilized to 
verify their integrity. The degree of collinearity between two 
mode shape vectors is represented by the MAC value, which 
is a real scalar between zero and one. The computation of 
MAC between two complex-valued mode shapes vectors( 

1mψ ×∈  ) and estimated at model order n ( 1mφ ×∈ ) is as 
follows[35]:
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where the symbol ( .H ) stands for the Hermitian transpose.

 

 
 

Fig.8. Objective function value evolution process of OEM algorithm.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Objective function value evolution process of OEM algorithm¬. 
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Fig.9. System identification process of the 3-DOF analytical model for different noise levels. 
 

 

 

 

 

 

 

Fig. 9. System identification process of the 3-DOF analytical model for different noise levels.
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The MAC can only provide evidence of continuity; it 
cannot prove validity or orthogonality. The MAC does not 
define the existence of identical mistakes in all estimates 
of modal vectors, whether they are stochastic or biased. 
Commonly, this kind of possible mistake stems from faulty 
assumptions. Here, additional criteria derived from the 
assumption that structures are proportionately dampened are 
applied to verify the form modes. As a result, the mode-shape 
components lie in a straight line in the complex plane. Modal 
Complexity Factor (MCF) is one of the modal indicators that 
aid in defining the complexity of mode shapes[36, 37]. The 
MCF can be calculated by:
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where { }rRe Φ  and { }rIm Φ  are the real and imaginary 
parts of the mode shape vector ( 1m

r
×Φ ∈ ), respectively. 

The mode is real if its complexity is close to zero percent, 
which strongly indicates a natural mode. Complexity levels 
close to 100% reflect that the mode is complex. 

After eigenvalue extraction, the first channel was used 
as a reference, and all values were scaled accordingly. Mode 

shapes are only validated for SNR=1dB because, in low-
noise models (SNR=5 and 15dB), the eigenvectors are real 
values (MCF=0%), and the extracted mode shapes likewise 
show a 100% correlation with the numerical model. The 
predicted mode shapes, the MAC, and MCF values are 
shown in Figs.10, and 11, respectively. Fig.11 shows a strong 
agreement between the mode shapes retrieved by the 3-DOF 
and the numerical model. In PO-MOESP, the first mode has 
a MAC value 96.5% (Fig.11a). Nonetheless, the correlation 
between these two shape modes has grown to 98.9% due to 
OEM’s optimization process. In Fig.11b, the MCF values 
of the model show that OEM has improved mode shape 
complexity such that the first mode has achieved 0.43% from 
1.45%, respectively. The OEM approach has also decreased 
the complexity of the second and third-mode shapes by over 
80%.

5- System identification of Pacoima Dam using earthquake 
records

The Pacoima Dam (Fig.12) is a concrete arch dam in the 
San Gabriel Mountains, 5 miles north of San Fernando, near 
Los Angeles, in Southern California. It was completed in 1982 
and stands at a height of 113 meters with a crest length of 
180 meters. The dam body varies in thickness from 3 meters 
at the crest to 30 meters at the bottom and is considered 
relatively thick for an arch dam. However, it is only designed 
to withstand static loads and does not consider earthquake 
forces[38, 39].  Despite experiencing two earthquakes with 

gA g>  (San Fernando 1971 and Northridge 1994), the 
structure has also faced several low-intensity earthquakes. 
As there have been no reports of cracks in the dam body 
after these low-intensity earthquakes, it is assumed that 
the dam’s behavior during these events is linear. After the 

Table 2. Comparison between estimated frequencies and damping ratios of analytical 3-DoF system the 
reference case (REF). In italic the relative errors in % compared to the FEM case.

Table 2. Comparison between estimated frequencies and damping ratios of analytical 3-DoF system the reference  
     case (REF). In italic the relative errors in % compared to the FEM case. 
 

OEM PO-MOESP Mode 
No. SNR (dB) 

Damping (%) Frequency (Hz) Damping (%) Frequency 
(Hz) 

2. 02 (1.00) 0.803 (0.00) 2.21 (10.5) 0.812 (1.20) I 
1 3.07 (2.33) 3.00 (0.00) 3.178 (5.93) 3.17 (5.70) II 

5.05 (1.00) 3.20 (0.00) 4.9 (2.00) 3.48 (3.00) II 
2.01 (0.50) 0.803 (0.00) 2.02 (1.00) 0.803 (0.00) I 

5 3.01 (0.33) 3.00 (0.00) 2.99 (0.00) 3.1(3.33) II 
5.05 (1.00) 3.26 (0.00) 5.04 (0.80) 3.24 (0.03) II 
2.00 (0.00) 0.803 (0.00) 1.98 (1.00) 0.803 (0.00) I 

15 3.00 (0.00) 3.00 (0.00) 3.00 (0.00) 3.00 (0.00) II 
5.00 (0.00) 3.26 (0.00) 5.00 (0.00) 3.25 (0.00) II 
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1994 earthquake, the dam was equipped with more than 17 
accelerometers in different directions, such as tangential, 
radial, and vertical, as shown in Fig.12. 

The 2001 San Fernando earthquake, which had a 
magnitude of 4.2 on the Richter scale and was located 7.1 km 
away from the dam, is one of the best-documented cases of 
low-intensity earthquakes. Numerous researchers, including 
Alves, have analyzed these records to determine the dam’s 
modal characteristics. In addition to identifying the

 characteristics of the dam using data from San Fernando, 
Alves conducted a forced vibration test in 2002 and developed 
a finite element model based on it. The results of this test are 
summarized in Table 3. Another earthquake hit the dam in 
Chino Hill in 2008. Despite having a magnitude of 5.5, the 
epicenter was 71 km away from the dam, causing a much 
lower acceleration of 0.0043g compared to the San Fernando 
earthquake of 2001, which had an acceleration of 0.164g. 
The downward acceleration made it possible to assume 

 
Fig.10: Comparison between mode shapes calculated by FE method and predicted by OEM and PO-MOESP models 
for SNR=1dB for 3-DOF system with irregular distribution of mass and stiffness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Comparison between mode shapes calculated by FE method and predicted by OEM and PO-
MOESP models for SNR=1dB for 3-DOF system with irregular distribution of mass and stiffness. 

 
 
Fig.11: MAC and MCF values between mode shapes calculated by FE method and predicted by OEM and PO-MOESP 
models for SNR=1Db. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. MAC and MCF values between mode shapes calculated by FE method and predicted by 
OEM and PO-MOESP models for SNR=1Db.



M. Pourgholi1and M. Koohdaragh, AUT J. Civil Eng., 7(1) (2023) 49-66, DOI: 10.22060/ajce.2023.22525.5834

60

the dam’s linear behavior more confidently. Therefore, this 
study examines the seismic data of Chino Hills, which is less 
studied (table 3), after identifying the dynamic characteristics 
of the dam using the data from San Fernando in 2001[43].

5- 1- Identification of the dam system using the seismic data
The main objective of OEM is to minimize the calculation 

error of predicted results compared to the actual measured 
data. Previous research has revealed two types of bending 
modes, symmetric and antisymmetric, in this dam. Therefore, 
the output data is collected from channels located at the crown 

level and 80% of the dam height in the radial direction, which 
includes channels 1, 2, 5, 6, 7, and 8. Additionally, observation 
channels located in the foundation, including channels 9, 12, 
and 15, are also considered output. It is important to note that 
channel 5 data was not recorded properly during the Chino 
Hills earthquake and, therefore, was not included in system 
identification. Fig.13 shows the seismic data of channels 5 
and 9 in both earthquakes as input and output, respectively. 
The San Fernando and Chino Hills earthquakes lasted 40 and 
60 seconds, respectively, and were sampled at 200 Hz.  

 It is important to note that the proposed optimization 

 

 

a) View of the right abutment b) Layout of the 17 acceleration sensors 
Fig.12. Pacoima arch dam and the layout of the 17 acceleration sensors[40]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Pacoima arch dam and the layout of the 17 acceleration sensors[40].

Table 3. Modal Characteristics of Pacoima Arch Dam Obtained from San Fernando 2002 and Chino 
Hills 2008 Earthquake Records.

Table3. Modal Characteristics of Pacoima Arch Dam Obtained from San Fernando 2002 and Chino Hills 2008 
Earthquake Records. 
 

Forced Vibration (2002)  FEM  Chino Hills (2008)  San Fernando (2001) 
mode  

Dam. (%) Freq. (Hz) Freq. (Hz) Dam. (%) Freq. 
(Hz) Dam. (%) Freq. (Hz) 

4-7 5.3.5-5.45 4.82 - - 6.6~7.3 4.73-4.83 1 
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4.5-5.5 5.75 5.02 - - 6.02 5.06 2 
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method is sensitive to the starting point. Therefore, to achieve 
better results, it is recommended to have a stable starting 
point and always control the extracted models’ stability 
conditions during optimization. According to Verhaegen’s 
recommendation[21], the first sentence’s order was 2-3 
times the actual order. In this research, the first sentence 
was considered 8 for both events. Based on the conditions 
mentioned, the first sentences suitable for both earthquakes 
are selected, with initial VAF values in Fig.14. After running 
the algorithm, San Fernando’s data converged after 26 
attempts and Chino Hills is after 20 attempts, as shown in 

Fig. 15. Furthermore, the optimum values of VAF (Fig.14) 
indicates that the estimation error decreased from 7% to 
2% for Chino Hills and 5% to 1% for San Fernando. In the 
following, the modal specifications that were extracted will 
be verified.

In Fig.16a, the initial modal frequencies for the San 
Fernando seismic data are 4 and 5 Hz with damping of 9 and 
12, respectively. The convergence of both mode characteristics 
began at iteration 11 for modal frequencies, with their values 
remaining constant. The optimization continued until the 
convergence of the second mode damping at step 15. After 
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 San Fernando 2001 Chino Hills 2008 

Fig.13. Recorded earthquake responses of observation channels 5 and 9 in the radial direction of Pacoima Dam. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Recorded earthquake responses of observation channels 5 and 9 in the radial direction of Pacoima Dam.

 
Fig.14. Variance accounting for (VAF) of Pacoima Dam based on San Fernando and Chino Hills seismic 

monitoring. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Variance accounting for (VAF) of Pacoima Dam based on San Fernando and Chino Hills 
seismic monitoring.
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the convergence of all four mode characteristics from the 15th 
iteration, the objective function (Fig.15) and VAF (Fig.14) 
also reached convergence.

The data optimization process for Chino Hills (as seen in 
Fig. 15) took longer than the process for San Fernando. As a 
result, the optimization can be divided into two parts. Before 
the 10th iteration, the damping ratios did not have appropriate 
values despite the modal frequencies starting to converge. In 
the second part, starting from the 11th iteration, the modal 
frequencies converged to their optimal values, followed by 
the damping ratios converging to their optimal values. This 
convergence was accompanied by decreased changes in 
the objective function (as shown in Fig.15). The final VAF 
value for Chino Hills data, as shown in Fig. 14, was 98%, 
1.5% less than the absolute value for San Fernando data. 

This difference can be attributed to the unused fifth channel 
data, as it was in the center of the dam crest. The summary 
of system identification results for both events can be found 
in Table 4.

The modal characteristics obtained from the San Fernando 
data, particularly the modal frequencies, align with the 
results from previous research. For example, the first mode 
frequency falls within the 4.73 to 4.83 Hz range, consistent 
with Alves’s findings. The second frequency differs from 
Alves’s results by only 1.17%. The damping ratios obtained 
in this study are consistent with Alves’s findings[39] but 
differ from Tarinejad’s results[44]. This discrepancy may 
be because subspace methods cannot be utilized to analyze 
extracted features statistically.

The previous seismic data analysis of Chino Hills showed 

 
Fig.15. Objective function value evolution process of OEM algorithm based on San Fernando and Chino Hills 

seismic monitoring. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Objective function value evolution process of OEM algorithm based on San Fernando and 
Chino Hills seismic monitoring.

 

  

a) Frequency (Hz) b) Daming (%) 

Fig.16. System identification process of Pacoima Dam using OEM algorithm based on San Fernando seismic 
monitoring in 2001. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16. System identification process of Pacoima Dam using OEM algorithm based on San Fernando 
seismic monitoring in 2001.
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that the modal frequencies fell within the same range as 
the forced vibration test results from 2002. This is likely 
due to the damage caused by previous earthquakes to the 
dam’s structure. Studies suggest that the upper left abutment 
of the dam is the primary source of the dam’s stiffness 
reduction compared to the dam body. During the Chino Hills 
earthquake, the structure experienced weak acceleration due 
to its epicenter from the dam being 71 km away. This resulted 
in a weak excitation to the foundation system of the dam, 
which can be compared to the forced vibration test.

The first structural frequency was 5.05 Hz, a 6% decrease 
compared to the FVT results. The second frequency was also 
extracted, with a 3% difference from the previous results. This 
difference and calculation errors are likely due to the decrease 
in the dam system’s stiffness over the past six years. The 
damping ratio of the first mode falls within the range of the 
results obtained from the forced vibration test, ranging from 

4% to 7%. However, the damping ratio of the second mode 
is 9% higher than the previous results. To summarize, the 
proposed method effectively filters the effects of foundation 
excitation from the seismic data of the dam, and the modal 
characteristics were extracted with less uncertainty. In the 
following, the shape modes will be evaluated to determine 
the reliability of the modal specifications.

The extracted modal shapes from both events are presented 
in Fig.18. It can be observed that the first and second modes 
are symmetric and antisymmetric, respectively, which is 
consistent with the previous findings. Upon analyzing the 
complexity of the modal shapes (Fig.19), it is observed that 
the first mode has the minimum MCF in both earthquakes, 
indicating that the extracted models are highly reliable. The 
relatively high MCF of the second mode of the Chino-Hills 
model may be attributed to a calculation error due to the fifth 
channel’s lack of measurement.

  

a)San fernando 2001 b) Chino Hills 2008 

Fig.17. System identification process of Pacoima Dam using OEM algorithm based on Chino Hills seismic 
monitoring in 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. System identification process of Pacoima Dam using OEM algorithm based on Chino Hills 
seismic monitoring in 2008.

Table 4. Modal identification results of the identified frequency and damping using OEM algorithm based all 
seismic monitoring channel data of the dam body, dam foundation of 2001 Fernando and 2008 Chino Hills 

seismic monitoring.

Table 4. Modal identification results of the identified frequency and damping using OEM algorithm based all seismic 
monitoring channel data of the dam body, dam foundation of 2001 Fernando and 2008 Chino Hills seismic monitoring. 
 

Chino Hiss 2008 San Fernando 2001 Mode 
No. 

Damping (%) Frequency (Hz) Damping (%) Frequency 
(Hz) 

6.23 5.05 6.35 4.75  I 

5.93 5.62 6.05 5.12 II 
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6- CONCLUSION
This study emphasizes the challenges associated with 

using SSI methods. These methods rely heavily on Hankel 
matrix dimensions and require explicit objective function 
optimization. The OEM method is suggested for the first 
time to address these concerns. The process iterates model 
parameters until the outputs of the simulated model match 
those of the observed system. The SSI method generates 
the initial term to reduce the number of optimization steps. 
However, concurrently, a gradient project minimization must 
be performed to counteract the state-space consequences of 
the extracted models’ non-injectivity. The method was tested 
by analyzing a system with a 3-DOF with two closely spaced 
modes excited by white noise at different noise levels (SNR) 
of 1, 5, and 15 dB to account for the impact of measurement 

noise. After analyzing the system, the modal characteristics 
of the Pacoima Dam were extracted using the 2001 San 
Fernando and 2008 Chino Hills seismic observations.

The system identification results for the 3-DOF system 
were almost identical and error-free when predicting low-
noise systems with SNR of 5-15dB. However, the damping 
ratio of the first mode had a more substantial estimated error 
in the model with SNR=1dB. OEM has worked to reduce the 
maximum estimation error for the damping ratio from 10% 
to less than 2%, which has resulted in an improvement in 
the quality of shape modes by decreasing their complexity 
by over 75%. The modal characteristics determined from the 
seismic observations in San Fernando in 2001 were consistent 
with previous research and the developed finite element 
model. Additionally, the modal frequencies of Chino Hills 

 
 

a) San fernando 2001 b) Chino Hills 2008 

Fig.18.Shape modes determined using OEM algorithm based on the earthquake responses of San Fernando 2001 and 

Chino Hills 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Shape modes determined using OEM algorithm based on the earthquake responses of San 
Fernando 2001 and Chino Hills 2008.

 

Fig.19. The MCF of identified Mode Shapes using OEM algorithm based on all seismic monitoring channel data of 

the dam body, dam foundation of 2001 Fernando, and 2008 Chino Hills seismic monitoring. 

 

 

Fig. 19. The MCF of identified Mode Shapes using OEM algorithm based on all seismic monitoring channel 
data of the dam body, dam foundation of 2001 Fernando, and 2008 Chino Hills seismic monitoring.
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from 2008 differed by an average of 4.5% from the results of 
FVT2002. This difference can be attributed to the decrease in 
the stiffness of the dam over the past six years of the test, as 
well as any computational errors.

Overall, when OEM and SSI are combined, the model 
convergence is quicker, and the estimated models are of 
higher quality. Moreover, due to the optimization’s nature, 
the suggested approach can be used with minimal settings for 
automatic or semi-automatic identification in the structure.
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