تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,209 |
تعداد دریافت فایل اصل مقاله | 4,882,946 |
کنترل تغییرشکل دینامیکی قاب بتن آرمه تحت بار زلزله با استفاده از لایه پیزوالکتریک | ||
نشریه مهندسی عمران امیرکبیر | ||
مقاله 6، دوره 56، شماره 2، 1403، صفحه 229-252 اصل مقاله (2.46 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/ceej.2024.22858.8058 | ||
نویسندگان | ||
محمود ربانی بیدگلی* 1؛ مسعود کارگر2؛ حمید مظاهری2 | ||
1گروه مهندسی عمران، واحد خمین، دانشگاه آزاد اسلامی، خمین، ایران - گروه مهندسی عمران، واحد جاسب، دانشگاه آزاد اسلامی، جاسب، ایران | ||
2گروه مهندسی عمران، واحد خمین، دانشگاه آزاد اسلامی، خمین، ایران | ||
چکیده | ||
مواد پیزوالکتریک نوعی از مصالح هوشمند میباشند که به دلیل خصوصیات فوقالعاده همانند تبدیل انرژی مکانیکی به الکتریکی و بالعکس مورد توجه پژوهشگران زیادی در علوم مهندسی مختلف قرار دارند. امروزه استفاده از این مصالح، برای کنترل تغییر شکل، کاهش نوسان و کنترل فعال سازه ها در صنعت ساختمان رو به افزایش میباشد. در این مقاله، به تعیین و کنترل تغییرشکل دینامیکی یک قاب بتنی یک دهانه با پوشش لایه پیزوالکتریک روی تیر و ستونها تحت بار لرزهای پرداخته میشود. به منظور کنترل تغییرشکل دینامیکی قاب بتنی، از یک کنترلکننده تناسبی- مشتقی استفاده شده است بدین شکل که یک لایه پیزوالکتریک در نقش محرک و یک لایه در نقش سنسور درنظر گرفته میشود. معادلات حاکم بر اجزا تیر و ستون قاب بتنی با استفاده از تئوری برشی مرتبه بالا ، محاسبه روابط انرژی، اعمال اصل همیلتون و در نظر گرفتن ولتاژ اعمالی بر مصالح پیزوالکتریک به دست میآیند. جهت کوپل کردن معادلات بدست آمده برای تیر و ستون، از شرایط مرزی پیوستگی در نقاط اتصال تیر به ستون ها به یکدیگر استفاده میشود. به منظور حل عددی معادلات کوپل شده دینامیکی، از روش عددی تفاضلات مربعی استفاده شده است در این روش، معادلات دیفرانسیلی به معادلات جبری تبدیل شده و در نهایت به کمک روش نیومارک، تغییرشکل دینامیکی قاب بتنی بر حسب زمان محاسبه میگردد. بعد از صحتسنجی نتایج، اثر پارامترهای مختلفی همچون ولتاژ اعمالی به لایه پیزوالکتریک، کنترلکننده از نوع پیزوالکتریک، ضخامت لایه پیزوالکتریک و اثرات ترکیبی آنها بر تغییرشکل دینامیکی بررسی شد. در اینجا، مقادیر بهینه پارامترهای کنترلکننده شامل ضریب تناسب و ضریب مشتق بهترتیب برابر با 3/824 و 5/812 بهدست آمدند. نتایج نشان میدهد برای تعداد نقاط شبکه 15، تغییرشکل دینامیکی بدست آمده از روش تفاضلات مربعی همگرا میشود. همچنین، اگر از یک کنترلکننده از نوع پیزوالکتریک استفاده شود، دامنه نوساتات تغییرشکل به شدت کاهش یافته و زمان میرایی سیستم کوتاهتر خواهد شد. به عبارت دیگر استفاده از کنترلکننده به ترتیب منجر به کاهش 72 و 65 درصدی تغییرشکل دینامیکی جانبی و قائم قاب میشود. همچنین مشاهده شد، که تغییرشکل دینامیکی جانبی قاب درحالتیکه فقط ستونها لایه پیزوالکتریک دارند کمتر از حالتی است که فقط تیر لایه پیزوالکتریک دارد درحالیکه این موضوع برای خیز دینامیکی قائم قاب بالعکس میباشد. | ||
کلیدواژهها | ||
تغییرشکل دینامیکی؛ قاب بتنی؛ روش عددی؛ کنترل کننده پیزوالکتریک؛ مدلسازی ریاضی | ||
موضوعات | ||
سیستم های هوشمند؛ کنترل سازه؛ مکانیک محیط پیوسته | ||
عنوان مقاله [English] | ||
Dynamic deflection control of reinforced concrete frame under earthquake load with piezoelectric layer | ||
نویسندگان [English] | ||
mahmood Rabani Bidgoli1؛ masoud kargar2؛ hamid mazaheri2 | ||
1Department of Civil Engineering, Jasb branch, Islamic Azad university, Delijan , Iran | ||
2Department of Civil Engineering, Islamic Azad University, Khomein,Iran | ||
چکیده [English] | ||
Piezoelectric materials are a type of smart materials that are of interest to many researchers in various engineering sciences due to their extraordinary properties such as converting mechanical energy into electrical energy and vice versa. In this article, the determination and control of the dynamic deformation of a one-span concrete frame with a piezoelectric layer coating on beams and columns under seismic load is discussed. In order to control the dynamic deformation of the concrete frame, a proportional-derivative controller has been used in such a way that a piezoelectric layer is considered as an actuator and a layer as a sensor. The governing equations for the beam and column components of concrete frame are obtained by using high-order shear theory, calculating energy relations, applying Hamilton's principle and considering the applied voltage on piezoelectric materials. In order to solve the dynamic coupled equations, the numerical method of differential quadrature method has been used and finally, with the help of Newmark method, the dynamic deformation of the concrete frame is calculated. After validating the results, the effect of various parameters such as voltage applied to the piezoelectric layer, piezoelectric type controller, thickness of the piezoelectric layer on dynamic deformation were investigated. Here, the optimal values of controller parameters, including proportionality coefficient and derivative coefficient, were obtained as 3.824 and 5.812, respectively. The results show that the use of the controller leads to a reduction of 72 and 65 percent of the lateral and vertical dynamic deflection of the frame, respectively. | ||
کلیدواژهها [English] | ||
Dynamic deflection, concrete frame, numerical method, piezoelectric controller, mathematical modeling | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] A. Jafarian Arani, R. Kolahchi, Buckling analysis of embedded concrete columns armed with carbon nanotubes, Computers and Concrete, 17 (2016) 567-578. [2] B. Safari Bilouei, R. Kolahchi, M. Rabani Bidgoli, Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP), Computers and Concrete, 18(5) (2016) 1053-1063. [3] A. Arbabi, R. Kolahchi, M. Rabani Bidgoli, Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis, Wind and Structures, 24 (2017) 431-446. [4] M. Zamanian, R. Kolahchi, M. Rabani Bidgoli, Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with SiO2 nano-particles, Wind and Structures, 24 (2017) 43-57. [5] H. Mohammadian, R. Kolahchi, M. Rabani Bidgoli, Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load, Earthquakes and Structures, 13(6) (2017) 589-598. [6] M. Sharifi, R. Kolahchi, M. Rabani Bidgoli, Dynamic analysis of concrete beams reinforced with Tio2 nano particles under earthquake load, Wind and Structures, 26(1) (2018) 1-9. [7] M. Azmi, R. Kolahchi, M. Rabani Bidgoli, Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load, Advances in Concrete Construction, 7(1) (2019) 51-63. [8] T. Liu, W. Zhong, Earthquake responses of near-fault frame structure clusters due to thrust fault by using flexural wave method and viscoelastic model of earth medium, Soil Dynamics and Earthquake Engineering, 61–62 (2014) 57-62. [9] F. Mazza, Wind and earthquake dynamic responses of fire-exposed steel framed structures, Soil Dynamics and Earthquake Engineering, 78 (2015) 218-229. [10] P. Paultre, B. Weber, S. Mousseau, J. Proulx, Detection and prediction of seismic damage to a high-strength concrete moment resisting frame structure, Engineering Structures, 114 (2016) 209-225. [11] N. Øystad-Larsen, E. Erduran, A.M. Kaynia, Evaluation of effect of confinement on the collapse probability of reinforced concrete frames subjected to earthquakes, Procedia Engineering, 199 (2017) 784-789. [12] Z.I. Syed, O.A. Mohamed, K. Murad, M. Kewalramani, Performance of Earthquake-resistant RCC Frame Structures under Blast Explosions, Procedia Engineering, 180 (2017) 82-90. [13] S. Mahmoud, M. Genidy, H. Tahoon, Time-History Analysis of Reinforced Concrete Frame Buildings with Soft Storeys Arabian Journal for Science and Engineering, 42 (2017) 1201–1217. [14] T.K. Šipoš, H. Rodrigues, M. Grubišić, Simple design of masonry infilled reinforced concrete frames for earthquake resistance, Engineering Structures, 171 (2018) 961-981. [15] C. Wang, J. Xiao, C. Wang, C. Zhang, Nonlinear damping and nonlinear responses of recycled aggregate concrete frames under earthquake loading, Engineering Structures, 201 (2019) 109575. [16] J. Su, B. Liu, G. Xing, Y. Ma, J. Huang, Seismic Damage and Collapse Assessment of Reinforced Concrete Frame Structures Using a Component-Classification Weighted Algorithm, Mathematical Problems in Engineering, (2019) 6438450, 19 pages. [17] J. Yu, J. Ye, B. Zhao, Shilang Xu, Dynamic Response of Concrete Frames Including Plain Ductile Cementitious Composites, Journal of Structural Engineering, 145(6) (2019) 04019042. [18] H. Sha, X. Chong, J. Wei, Seismic performance of precast concrete frame with energy dissipative cladding panel system: Half-scale test and numerical analysis, Soil Dynamics and Earthquake Engineering, 165 (2022) 107712. [19] H.S. Tzou, M. Cadre, Theoretical analysis of a multi-layered thin shell coupled with piezoelectric shell actuators for distributed vibration controls, Journal of Sound and Vibration, 132 (1989) 433-450. [20] G.G. Sheng, X. Wang, Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells, Applied Mathematical Modelling, 34 (2010) 2630–2643. [21] A. Alibeigloo, A.M. Kani, 3D free vibration analysis of laminated cylindrical shell integrated piezoelectric layers using the differential quadrature method, Applied Mathematical Modelling, 34 (2010) 4123–4137. [22] S. Hashemi Hoseini, S. Fazeli, M. Fadaei, Piezoelectric materials and their application in the transportation industry, Mechanical Engineering, 20(77) (2011) 48-56. (in Persian) [23] L.L. Ke, Y.S. Wang, Z.D. Wang, Nonlinear vibration of the piezoelectric nanobeams based on nonlocal theory, Composite Structures, 94 (2012) 20-38. [24] M. Bodaghi, M. Shakeri, An analytical approach for free vibration and transient response of functionally graded piezoelectric cylindrical panels subjected to impulsive loads, Composite Structures, 94 (2012) 17-21. [25] A. Alibeigloo, A.M. Kani, M.H. Pashaei, Elasticity solution for the free vibration analysis of functionally graded cylindrical shell bonded to thin piezoelectric layers, International Journal of Pressure Vessels and Piping, 89 (2012) 98. [26] M. Arab, Control of shell vibrations with piezoelectric materials, MS Thesis, University of Yazd, Faculty of Civil Engineering, (2013). (in Persian) [27] L. Yang, Y. Luo, T. Qiu, M. Yang, G. Zhou, G. Xie, An analytical method for the buckling analysis of cylindrical shells with non-axisymmetic thickness variations under external pressure, Thin-Walled Structures, 85 (2014) 431. [28] M. Yaqoob Yasin, S. Kapuria, An efficient finite element with layerwise mechanics for smart piezoelectric composite and sandwich shallow shells, Computational Mechanics, 53 (2014) 101-124. [29] A.V. Loptain, E.V. Morozov, Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure, Composite Structures, 122 (2015) 209. [30] M. Ghasemi, A. jaamialahmadi, Analytical solution based on higher order shear and normal deformation theory for Buckling of functionally graded plates with piezoelectric layers, Modares Mechanical Engineering, 15(3) (2015) 387-397. (in Persian) [31] H. Farahani, R. Azarafza, F. Barati, Mechanical buckling of a functionally graded cylindrical shell with axial and circumferential stiffeners using third-order shear deformation theory, Comptes Rendus Mécanique, 342 (2014) 501. [32] Z.X. Lei, L.W. Zhang, K.M. Liew, J.L. Yu, Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method, Composite Structures, 113 (2014) 328. [33] Z.M. Li, P. Qiao, Buckling and postbuckling of anisotropic laminated cylindrical shells under external pressure and axial compression in thermal environments, Composite Structures, 119 (2015) 709. [34] B.A. Selim, L.W. Zhang, K.M. Liew, Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory. Composite Structures, 11 (2016) 11-19. [35] J. Li, Zh. Ma, Zh. Wang, Y. Narita, Random Vibration Control of Laminated Composite Plateswith Piezoelectric Fiber Reinforced Composites, Acta Mechanica Solida Sinica, 29 (2016) 316-327. [36] A. Alibeigloo, Thermoelastic analysis of functionally graded carbon nanotube reinforced composite cylindrical panel embedded in piezoelectric sensor and actuator layers, Composite Part B: Engineering, 98 (2016) 225–243. [37] M.R. Barati, M.H. Sadr, A.M. Zenkour, Buckling analysis of higher order graded smart piezoelectric plates withporosities resting on elastic foundation, International Journal of Mechanical Sciences, 117 (2016) 309-320. [38] M. Karimi, R. Tikani, S. Ziaei-Rad, Piezoelectric energy harvesting from bridge vibrations under moving consecutive masses, Modares Mechanical Engineering, 16(6), (2016) 108-118. (in Persian) [39] K. Kuliński, J. Przybylski, Piezoelectric effect on transversal vibrations and buckling of a beam with varying cross section, Mechanics Research Communications, 82 (2017) 43-48. [40] J. Przybylski, G. Gasiorski, Nonlinear vibrations of elastic beam with piezoelectric actuators, Journal of Sound and Vibration, 437 (2018) 150-165. [41] A. Bathaei, M. Ramezani, S.M. Zahrai, Semi-active fuzzy control of 5-story structure under near & far field earthquakes using piezoelectric friction dampers, Journal of Structure & Steel, 12(24) (2019) 65-76. (in Persian) [42] D.G. Ninh, T.V. Vang, D.V. Dao, Effect of cracks on dynamical responses of double-variable-edge plates made of graphene nanoplatelets-reinforced porous matrix and sur-bonded by piezoelectric layers subjected to thermo-mechanical loads, European Journal of Mechanics - A/Solids, 96 (2022) 104742. [43] A-S Poudrel, V-H Nguyen, G. Rosi, Optimization of a smart beam for monitoring a connected inaccessible mechanical system: Application to bone-implant coupling, Mechanical Systems and Signal Processing, 192 (2023) 110188. [44] X. Zhang, H. Qi, Dynamic behavior of an inhomogeneous piezoelectric/piezomagnetic half space with a circular ring structure under SH wave, Wave Motion, 114 (2022) 103037. [45] H.T. Thai, T.P. Vo, A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams, International Journal of Engineering Science, 54 (2012) 58–66. [46] A. Zamani, R. Kolahchi, M. Rabani Bidgoli, Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods, Computers and Concrete, 20 (2017) 671-682. [47] Q. Zhao, Y. Liu, L. Wang, H. Yang, D. Cao, Design method for piezoelectric cantilever beam structure under low frequency condition, International Journal of Pavement Research and Technology, 11 (2018) 153-159. [48] R. Kolahchi, M. Safari, M. Esmailpour, Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium, Composite Structures, 150 (2016) 255–265. [49] M.H. Hajmohhamad, A. Farrokhian, R. Kolahchi, Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise, Aerospace Science and Technology, 78 (2018) 260-270. [50] H. Rafieipour, S.M. Tabatabaei, M. Abbaspour, A novel approximate analytical method for nonlinear vibration analysis of Euler–Bernoulli and Rayleigh beams on the nonlinear elastic foundation, Arabian Journal for Science and Engineering, 39 (2014) 3279–3287. [51] M. Şimşek, Large amplitude free vibration of nanobeams with various boundary conditions based on the nonlocal elasticity theory, Composites: Part B, 56 (2014) 621-628. [52] R. Ansari, H. Rouhi, A. Nasiri Rad, Vibrational analysis of carbon nanocones under different boundary conditions: An analytical approach, Mechanics research communications, 56 (2014) 130–135. | ||
آمار تعداد مشاهده مقاله: 273 تعداد دریافت فایل اصل مقاله: 413 |