تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,172 |
تعداد دریافت فایل اصل مقاله | 4,882,905 |
طراحی و اعتبار سنجی تجربی یک مشاهدهگر حالت توسعه یافته برای تخمین عدم قطعیتها و ورودی ناشناخته جاده در سیستم تعلیق مک فرسون یک چهارم خودرو | ||
نشریه مهندسی مکانیک امیرکبیر | ||
دوره 55، شماره 12، اسفند 1402، صفحه 1499-1522 اصل مقاله (2.67 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2024.22681.7658 | ||
نویسندگان | ||
زهرا آهنگری سیسی؛ مهدی میرزایی* ؛ صدرا رفعت نیا | ||
مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز، ایران. | ||
چکیده | ||
در این مقاله به طراحی و پیادهسازی عملی رویتگر حالت توسعهیافته بر روی دستگاه آزمایش سیستم تعلیق یکچهارم خودرو با مکانیزم مکفرسون در مقیاس واقعی و مجهز به حسگرهای متعدد پرداخته میشود. هدف این الگوریتم، تخمین عدمقطعیتهای مدل و ورودی نامعلوم جاده است که منجر به تعیین یک مدل دینامیکی دقیق برای سیستم تعلیق میگردد. در این روش، جملههایی که شامل عدمقطعیتهای مدل و ورودیهای نامعلوم جاده است، به عنوان متغیرهای حالت جدید به سیستم اضافه شده و با استفاده از دادههای مربوط به جابجاییهای جرم معلق و غیرمعلق تخمین زده میشوند. در ادامه به طراحی یک فیلتر کالمن غیرخطی با ورودی نامعلوم جهت مقایسه با رویتگر حالت توسعهیافته پرداخته میشود. نتایج آزمایشگاهی با دادههای واقعی که توام با خطاهای اندازهگیری است، حاکی از دقت بالاتر رویتگر حالت توسعه یافته در ایجاد یک مدل دینامیکی قابل اعتماد برای سیستم میباشد. ضمن اینکه ساختار این رویتگر در مقایسه با فیلتر کالمن با ورودی نامعلوم سادهتر بوده و تنظیم آن راحتتر است و از تعداد خروجیهای کمتری استفاده میکند. هر یک از رویتگرهای طراحی شده در ساختار یک سیستم کنترل تعلیق فعال با کنترلکننده بهینه غیرخطی استفاده میشود تا اهداف سیستم تعلیق را برآورده نماید. نتایج شبیهسازیها به صورت نرمافزار در حلقه در محیط متلب/آدامز، عملکرد مناسبتر کنترلکننده با رویتگر حالت توسعه یافته را نشان میدهند. | ||
کلیدواژهها | ||
سیستم تعلیق خودرو؛ ورودی نامعلوم جاده؛ رویتگر حالت توسعهیافته؛ فیلتر کالمن با ورودی نامعلوم؛ کنترل بهینه غیرخطی | ||
عنوان مقاله [English] | ||
Design and Experimental Validation of an Extended State Observer for Estimating of Uncertainties and Unknown Road Input in a Quarter-car McPherson Suspension System | ||
نویسندگان [English] | ||
Zahra Ahangari Sisi؛ Mehdi Mirzaei؛ Sadra Rafatnia | ||
Faculty of Mechanical Engineering, Sahand University of Technology, Tabriz, Iran | ||
چکیده [English] | ||
This paper deals with the design and experimental implementation of an extended state observer for a fabricated quarter-car suspension platform with a McPherson mechanism equipped with different sensors. The algorithm aims to estimate uncertainties and road input, leading to an accurate dynamic model for the vehicle suspension system. In the proposed method, the terms including uncertainties and unknown road input are added to the system equations as new state variables and then estimated along with other state variables using data of sprung mass and un-sprung mass displacements. A nonlinear Kalman filter with unknown input is also designed to be compared with the extended state observer. The comparison results using the experimental data under measurement errors indicate the high accuracy of the extended state observer in constructing a precise dynamic model for the system. Meanwhile, the extended state observer uses fewer sensors and its regulation is easier. Both observers are used within the structure of the active suspension system under an optimal nonlinear controller to provide the objectives of the suspension system. Co-simulation results of Adams/MATLAB show the better performance of the proposed controller using the extended state observer. | ||
کلیدواژهها [English] | ||
Vehicle suspension system, Unknown road input, Extended state observer, Unknown input Kalman filter, Optimal nonlinear control | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] Z. Z Ahangari Sisi, M. Mirzaei, S. Rafatnia, B. Alizadeh, Design of a constrained nonlinear controller using firefly algorithm for active suspension system, Journal of Computational Methods in Engineering, 39(2) (2022) 23-44. (in persion) [2] S. Aghasizade, M. Mirzaei, S. Rafatnia, Novel constrained control of active suspension system integrated with anti-lock braking system based on 14-degree of freedom vehicle model, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 232(4) (2018) 501-520. [3] S. Aghasizade, M. Mirzaei, S. Rafatnia, The effect of road quality on integrated control of active suspension and anti-lock braking systems, AUT Journal of Mechanical Engineering, 3(1) (2019) 123-135. [4] B. Abdi, M. Mirzaei, R. Mojed Gharamaleki, A new approach to optimal control of nonlinear vehicle suspension system with input constraint, Journal of vibration and control, 24(15) (2018) 3307-3320. [5] M. Doumiati, S. Erhart, J. Martinez, O. Sename, L. Dugard, Adaptive control scheme for road profile estimation: application to vehicle dynamics, IFAC Proceedings Volumes, 47(3) (2014) 8445-8450. [6] M. Doumiati, A. Victorino, A. Charara, D. Lechner, Estimation of road profile for vehicle dynamics motion: experimental validation, in: Proceedings of the 2011 American control conference, IEEE, 2011, pp. 5237-5242. [7] T.F. Nodeh, M. Mirzaei, M.J. Khosrowjerdi, Simultaneous output selection and observer design for vehicle suspension system with unknown road profile, IEEE Transactions on Vehicular Technology, 70(5) (2021) 4203-4211. [8] F. Yu, J. Zhang, D. Crolla, A study of a Kalman filter active vehicle suspension system using correlation of front and rear wheel road inputs, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 214(5) (2000) 493-502. [9] S.-W. Kang, J.-S. Kim, G.-W. Kim, Road roughness estimation based on discrete Kalman filter with unknown input, Vehicle System Dynamics, 57(10) (2019) 1530-1544. [10] Y. Qin, M. Dong, F. Zhao, R. Langari, L. Gu, Road profile classification for vehicle semi-active suspension system based on adaptive neuro-fuzzy inference system, in: 2015 54th IEEE Conference on Decision and Control (CDC), IEEE, 2015, pp. 1533-1538. [11] M. Doumiati, J. Martinez, O. Sename, L. Dugard, D. Lechner, Road profile estimation using an adaptive Youla–Kučera parametric observer: Comparison to real profilers, Control Engineering Practice, 61 (2017) 270-278. [12] J.J. Rath, K.C. Veluvolu, M. Defoort, Estimation of road profile for suspension systems using adaptive super-twisting observer, in: 2014 European Control Conference (ECC), IEEE, 2014, pp. 1675-1680. [13] B.L. Boada, M.J.L. Boada, H. Zhang, Sensor fusion based on a dual Kalman filter for estimation of road irregularities and vehicle mass under static and dynamic conditions, IEEE/ASME Transactions on Mechatronics, 24(3) (2019) 1075-1086. [14] J. Jordan, N. Hirsenkorn, F. Klanner, M. Kleinsteuber, Vehicle mass estimation based on vehicle vertical dynamics using a multi-model filter, in: 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), IEEE, 2014, pp. 2041-2046. [15] G. Wang, M. Chadli, M.V. Basin, Practical terminal sliding mode control of nonlinear uncertain active suspension systems with adaptive disturbance observer, IEEE/ASME Transactions On Mechatronics, 26(2) (2020) 789-797. [16] M. Du, D. Zhao, T. Ni, L. Ma, S. Du, Output feedback control for active suspension electro-hydraulic actuator systems with a novel sampled-data nonlinear extended state observer, IEEE Access, 8 (2020) 128741-128756. [17] H. Wang, G.I. Mustafa, Y. Tian, Model-free fractional-order sliding mode control for an active vehicle suspension system, Advances in Engineering Software, 115 (2018) 452-461. [18] D.B. Waghmare, V.G. Asutkar, B.M. Patre, Extended disturbance observer based robust sliding mode control for active suspension system, International Journal of Dynamics and Control, 9(4) (2021) 1681-1694. [19] M. Du, D. Zhao, M. Yang, H. Chen, Nonlinear extended state observer-based output feedback stabilization control for uncertain nonlinear half-car active suspension systems, Nonlinear Dynamics, 100 (2020) 2483-2503. [20] H. Wang, Y. Lu, Y. Tian, N. Christov, Fuzzy sliding mode based active disturbance rejection control for active suspension system, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(2-3) (2020) 449-457. [21] H. Wang, L. Chang, Y. Tian, Extended state observer–based backstepping fast terminal sliding mode control for active suspension vibration, Journal of Vibration and Control, 27(19-20) (2021) 2303-2318. [22] G.-W. Kim, S.-W. Kang, J.-S. Kim, J.-S. Oh, Simultaneous estimation of state and unknown road roughness input for vehicle suspension control system based on discrete Kalman filter, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 234(6) (2020) 1610-1622. [23] H. Pang, X. Zhang, Z. Xu, Adaptive backstepping-based tracking control design for nonlinear active suspension system with parameter uncertainties and safety constraints, ISA transactions, 88 (2019) 23-36. [24] Y.-J. Liu, H. Chen, Adaptive sliding mode control for uncertain active suspension systems with prescribed performance, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(10) (2020) 6414-6422. [25] Y.Z. Arslan, A. Sezgin, N. Yagiz, Improving the ride comfort of vehicle passenger using fuzzy sliding mode controller, Journal of vibration and control, 21(9) (2015) 1667-1679. [26] B.-Z. Guo, Z.-l. Zhao, On the convergence of an extended state observer for nonlinear systems with uncertainty, Systems & Control Letters, 60(6) (2011) 420-430. [27] B. Qin, H. Yan, H. Zhang, Y. Wang, S.X. Yang, Enhanced reduced-order extended state observer for motion control of differential driven mobile robot, IEEE Transactions on Cybernetics, (2021). [28] J. Yao, Z. Jiao, D. Ma, Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping, IEEE Transactions on Industrial electronics, 61(11) (2014) 6285-6293. [29] J. Yang, S. Pan, H. Huang, An adaptive extended Kalman filter for structural damage identifications II: unknown inputs, Structural Control and Health Monitoring: The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures, 14(3) (2007) 497-521. [30] M. M. S. Arani, M. Mirzaei, A. A. Alvanagh, S.A. Shaarbaf, Identification of nonlinear model for elements of test rig of quarter car suspension system, Modares Mechanical Engineeringl 15(11) (2015) 136-142. [31] A. Malekshahi, M. Mirzaei, S. Aghasizade, Non-linear predictive control of multi-input multi-output vehicle suspension system, Journal of Low Frequency Noise, Vibration and Active Control, 34(1) (2015) 87-105. [32] A.M. Khiavi, M. Mirzaei, S. Hajimohammadi, A new optimal control law for the semi-active suspension system considering the nonlinear magneto-rheological damper model, Journal of Vibration and Control, 20(14) (2014) 2221-2233. [33] A. Malekshahi, M. Mirzaei, Designing a non-linear tracking controller for vehicle active suspension systems using an optimization process, International Journal of Automotive Technology, 13 (2012) 263-271. [34] H. Chen, P.-Y. Sun, K.-H. Guo, Constrained h-infinity control of active suspensions: an LMI approach, in: The 2002 International Conference on Control and Automation, 2002. ICCA. Final Program and Book of Abstracts., IEEE, 2002, pp. 157-157. | ||
آمار تعداد مشاهده مقاله: 245 تعداد دریافت فایل اصل مقاله: 395 |