تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,194 |
تعداد دریافت فایل اصل مقاله | 4,882,935 |
On Zermelo’s navigation problem and weighted Einstein Randers metrics | ||
AUT Journal of Mathematics and Computing | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 16 اردیبهشت 1403 | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2024.22745.1189 | ||
نویسندگان | ||
Illatra Khamonezhad؛ Bahman Rezaei* ؛ Mehran Gabrani | ||
Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran | ||
چکیده | ||
This paper investigates a specific form of weighted Ricci curvature known as the quasi-Einstein metric. Two Finsler metrics, $F$ and $\tilde{F}$ are considered, which are generated by navigation representations $(h, W)$ and $(F, V)$, respectively, where $W$ represents a vector field, and $V$ represents a conformal vector field on the manifold $M$. The main focus is on identifying the necessary and sufficient condition for the Randers metric $F$ to qualify as a quasi-Einstein metric. Additionally; we establish the relationship between the curvatures of the given Finsler metrics $F$ and $\tilde{F}$. | ||
کلیدواژهها | ||
Weighted Ricci curvature؛ Navigation problem؛ Conformal vector field | ||
آمار تعداد مشاهده مقاله: 125 |