| تعداد نشریات | 8 |
| تعداد شمارهها | 431 |
| تعداد مقالات | 5,605 |
| تعداد مشاهده مقاله | 7,237,051 |
| تعداد دریافت فایل اصل مقاله | 6,091,646 |
An existence result for a Robin problem involving $p(x)$-Kirchhoff-type equation with indefinite weight | ||
| AUT Journal of Mathematics and Computing | ||
| مقاله 4، دوره 6، شماره 4، 2025، صفحه 317-326 اصل مقاله (425.83 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22060/ajmc.2024.22990.1213 | ||
| نویسندگان | ||
| Mehdi Latifi* 1؛ Mohsen Alimohammady2 | ||
| 1Department of Basic Sciences, Khatam-Ol-Anbia (PBA) University, Tehran, Iran | ||
| 2Department of Mathematics, Faculty of Basic Sciences, University of Mazandaran, Babolsar 47416-1468, Iran | ||
| چکیده | ||
| This paper discusses the existence of at least two distinct nontrivial weak solutions for a class of $p(x)$-Kirchhoff-type equation plus an indefinite potential under Robin boundary condition. The variable exponent theory of generalized Lebesgue-Sobolev spaces, mountain pass theorem and Ekeland variational principle are used for this purpose. | ||
| کلیدواژهها | ||
| $p(x)$-Kirchhoff؛ Nontrivial weak solution؛ Mountain pass theorem؛ Ekeland variational principle | ||
| مراجع | ||
|
[1] M. Allaoui, Existence results for a class of p(x)-Kirchhoff problems, Studia Sci. Math. Hungar., 54 (2017), pp. 316–331.
[2] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), pp. 349–381.
[3] S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), pp. 19–36.
[4] S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal., 60 (2005), pp. 515–545.
[5] M. Avci, B. Cekic, and R. A. Mashiyev, Existence and multiplicity of the solutions of the p(x)-Kirchhoff type equation via genus theory, Math. Methods Appl. Sci., 34 (2011), pp. 1751–1759.
[6] B. Cekic and R. A. Mashiyev, Existence and localization results for p(x)-Laplacian via topological methods, Fixed Point Theory Appl., (2010), pp. Art. ID 120646, 7.
[7] N. T. Chung, Multiplicity results for a class of p(x)-Kirchhoff type equations with combined nonlinearities, Electron. J. Qual. Theory Differ. Equ., (2012), pp. No. 42, 13.
[8] S.-G. Deng, Positive solutions for Robin problem involving the p(x)-Laplacian, J. Math. Anal. Appl., 360 (2009), pp. 548–560.
[9] D. E. Edmunds and J. Rakosn ´ ´ık, Density of smooth functions in Wk,p(x) (Ω), Proc. Roy. Soc. London Ser. A, 437 (1992), pp. 229–236.
[10] , Sobolev embeddings with variable exponent, Studia Math., 143 (2000), pp. 267–293.
[11] X. Fan, J. Shen, and D. Zhao, Sobolev embedding theorems for spaces Wk,p(x) (Ω), J. Math. Anal. Appl., 262 (2001), pp. 749–760.
[12] , Sobolev embedding theorems for spaces Wk,p(x) (Ω), J. Math. Anal. Appl., 262 (2001), pp. 749–760.
[13] X. Fan and D. Zhao, On the spaces L p(x) (Ω) and W m,p(x) (Ω), J. Math. Anal. Appl., 263 (2001), pp. 424–446.
[14] B. Ge and Q.-M. Zhou, Multiple solutions for a Robin-type differential inclusion problem involving the p(x)-Laplacian, Math. Methods Appl. Sci., 40 (2017), pp. 6229–6238.
[15] M. K. Hamdani, On a nonlocal asymmetric Kirchhoff problem, Asian-Eur. J. Math., 13 (2020), pp. 2030001, 15.
[16] M. K. Hamdani, A. Harrabi, F. Mtiri, and D. D. Repovˇs, Existence and multiplicity results for a new p(x)-Kirchhoff problem, Nonlinear Anal., 190 (2020), pp. 111598, 15.
[17] M. K. Hamdani, L. Mbarki, M. Allaoui, O. Darhouche, and D. D. Repovˇs, Existence and multiplicity of solutions involving the p(x)-Laplacian equations: on the effect of two nonlocal terms, Discrete Contin. Dyn. Syst. Ser. S, 16 (2023), pp. 1452–1467.
[18] M. K. Hamdani and D. D. Repovˇs, Existence of solutions for systems arising in electromagnetism, J. Math. Anal. Appl., 486 (2020), pp. 123898, 18.
[19] G. R. Kirchhoff, Vorlesungen ¨uber mathematische Physik. I. Mechanik. Leipzig. Teubner, 1876.
[20] M. R˚uˇzicka ˇ , Electrorheological fluids: modeling and mathematical theory, vol. 1748 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2000.
[21] S. M. Shahruz and S. A. Parasurama, Suppression of vibration in the axially moving Kirchhoff string by boundary control, J. Sound Vibration, 214 (1998), pp. 567–575. | ||
|
آمار تعداد مشاهده مقاله: 304 تعداد دریافت فایل اصل مقاله: 68 |
||