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Novel Design of Optically Transparent Circuit Analog Absorber by Modifying of 
exponentially tapered edge of element to achieve wider Bandwidth
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ABSTRACT: This paper presents a novel design and analysis of a single-layer, exponentially tapered 
circuit analogue absorber (CAA) that is flexible and optically transparent. By modifying the edge of 
conventional crossed strips to an exponential taper, a wider bandwidth is achieved, analysed through 
current distribution and on the top layer of the unit cell. The designed unit cell comprises of ITO-
Coated-PET a ground plane and CA absorber layer and a quarter-wavelength PVC dielectric substrate, 
achieving over 80% transparency and a relative bandwidth exceeding 85%. Comparative analysis with 
Numerical and experimental results and conventional CAA unit cells is conducted. Also, the current 
distribution is expressed mathematically. Parametric studies investigate various design parameters 
and CA elements to enhance impedance matching and absorption properties across the 2 to 25 GHz 
frequency range. Challenges such as the impact of layer count, substrate thickness, and analogue element 
type on transparency and absorption are mitigated by optimizing absorber dimensions and employing 
tapered shapes for strips to widen the bandwidth. This innovative CAA design finds applications in 
electromagnetic compatibility, radar cross-section reduction, offering a balance between wide bandwidth 
electromagnetic shielding and absorbing and high optical transparency, suitable for aircraft windshields, 
fighter canopies, space station windows end etc.
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1- Introduction
The circuit analogue absorber (CAA) is a type of 

electromagnetic absorber that uses a periodic structure of 
circuit analogue to achieve high absorption performance 
[1]. The CAA also is a kind of nonmagnetic planar absorber, 
which consists of sheets of periodic planar frequency 
selective surfaces (FSS) [2]. The term circuit analogue for 
such absorbers is derived from the fact that the geometrical 
patterns are often defined in terms of the effective resistance, 
capacitance, and inductance. Equivalent circuit techniques 
are then used in the subsequent analysis and design of the 
resulting absorber [3]. As you see in Figure 1 [1], The structure 
consists of a ground plane and a circuit analogue sheet 
separated by a quarter-wavelength dielectric substrate. The 
circuit analogue sheet is made up of two perpendicular cross 
strips, which can be constructed using one or several layers. 
The CAAs are an improved version of Salisbury screen radar 
absorbers that introduce FSS instead of a resistive sheet with 
free-space impedance [4]. The absorber is designed to work 
over a wide range of frequencies and has been shown to have 
excellent absorption properties, particularly in microwave 
and millimetre-wave frequency ranges.

In the first type, the orthogonal cross strips are positioned 

on two opposite sides of a dielectric substrate, and the current 
is distributed uniformly throughout the strips. In the second 
type, each of the two strips is placed on one side of the dielectric 
substrate, and they are made of the same homogeneous strip. 
In this case, not only is the current distribution non-uniform, 
but the distribution in the intersection areas of the two strips 
is also different. This phenomenon can be attributed to the 
fringing effect observed in the parallel plates of a capacitor 
[5]. The current distribution in both types has been studied 
extensively, and formulas have been derived [1].

Several design parameters, such as the dimensions 
and spacing of the circuit analogue elements, have been 
investigated to achieve better impedance matching and higher 
absorption. Additionally, different types of circuit analogue 
elements, including the Jerusalem cross, E-shaped patch, and 
meander line, have been used to construct the absorber [1] [3] 
[5] [6] [7] [8].

The CAA has numerous applications in areas such as 
electromagnetic compatibility, radar cross-section reduction, 
and antenna design. It offers several advantages over other 
types of absorbers, including its wide bandwidth, low profile, 
and ease of fabrication. However, its performance can be 
affected by factors such as the number of layers used in its 
construction, the thickness of the dielectric substrate, and the 
type of circuit analogue elements used [1] [3] [5] [6] [7].

To avoid the use of fat or bulky elements, these structures *Corresponding author’s email: reza.mirzakhani@edu.ikiu.ac.ir
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typically consist of thin and periodic patterns of conductive 
and dielectric materials that are designed to selectively reflect, 
absorb or transmit electromagnetic waves within a specific 
frequency range. By using such structures, it is possible 
to achieve high electromagnetic shielding effectiveness 
without significantly affecting optical visibility. The use of 
thin elements in such structures helps to reduce the overall 
thickness of the absorber and enhance its transparency, making 
it suitable for applications where optical visibility is critical. 
Fat elements, on the other hand, can make the structure more 
complex and bulkier, which may not be desirable for some 
applications [1].

On the other hand, the use of transparent electromagnetic 
shields has increased and has been widely used in various 
industrial, medical, and military applications. One of the 
best materials for transparent conductive shields is indium 
tin oxide, which is widely used due to its many features, 

including high optical transparency and good conductivity [9]. 
However, it is challenging to achieve both wide bandwidth 
electromagnetic shielding and high optical transparency. As 
the thickness of the electromagnetic shield increases, the 
optical transparency decreases, and vice versa.

1- 1- The Fringing Effect
The fringing effect on orthogonal cross strips in circuit 

analogue absorbers can lead to a non-uniform current 
distribution and a reduction in absorption efficiency. 
According to Weber [5], the fringing effect observed in the 
parallel plates of a capacitor (see Figure 2) can cause the 
current distribution to be non-uniform, and the distribution 
in the intersection areas of the two strips is also different. 
Weber explains that this is due to fringing on both sides of 
the capacitor, which can be considered as two semi-infinite 
cases in parallel where the plate width equals one-half of the 

 

Fig. 1 Circuit Analog Absorber and Equivalent Circuit [1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Circuit Analog Absorber and Equivalent Circuit [1]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The Fringing Effect Observed in The Parallel Plates of 
Capacitor 

Fig. 2. The Fringing Effect Observed in The Parallel 
Plates of Capacitor

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 The Fringing Effect Between Two Electrodes of 
Finite and Equal Length. 

Fig. 3. The Fringing Effect Between Two Electrodes of 
Finite and Equal Length.
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plate separation. Each of these semi-infinite cases has a 60% 
increase in flux due to fringing, which in turn means that 
the total resistance of the square common to the area of two 
crossing strips is reduced.

To mitigate the effects of fringing, various techniques 
have been proposed, including the use of periodic structures 
and the optimization of the dimensions of the circuit 
analogue absorber for better impedance matching. Thus, 
if the orthogonal strips cross each other nc times within a 
strip length 2l1 (see Figure 3), the load resistance should be 
explained by '

LR  [1].

𝑅𝑅𝐿𝐿′ = 2𝑅𝑅𝑠𝑠𝑙𝑙1 3𝑤𝑤⁄ [1 + 2𝐶𝐶1 − 1.1𝑤𝑤𝑛𝑛𝑐𝑐 2𝑙𝑙1⁄ ] (ohm)                      (1) 

 

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (𝛾𝛾. ℎ𝐿𝐿𝛿𝛿). 𝑑𝑑. 𝐻𝐻(𝑑𝑑 − 𝑑𝑑0)                                            (2) 

 

 

𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔) =
1

𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧0
Re {√𝜀𝜀𝑟𝑟

1−Γ𝐴𝐴
1+𝛤𝛤𝐴𝐴

} ( 𝑆𝑆𝑚𝑚)                                       (3) 

 

𝜀𝜀𝑟𝑟,𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔) =
𝜀𝜀𝐼𝐼𝐼𝐼𝐼𝐼′ −𝑗𝑗𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼 𝜔𝜔⁄

𝜀𝜀0
                                                    (4) 

 

𝐸𝐸(𝑡𝑡 + 𝑇𝑇) = 𝐸𝐸(𝑡𝑡)𝐸𝐸−1(0)𝐸𝐸(𝑇𝑇)                                           (5) 

 

[𝑆𝑆] = [𝐴𝐴]𝑒𝑒−𝐽𝐽𝐽𝐽𝐽𝐽                                                       (6) 

 

𝐸𝐸(𝑟𝑟) = ∑ 𝐸𝐸𝐺𝐺𝑒𝑒𝑗𝑗(𝐾𝐾+𝐺𝐺).𝑟𝑟𝐺𝐺                                                       (7) 

 

𝑆̂𝑆 = 𝑋̂𝑋𝑆𝑆𝑥𝑥 + 𝑌̂𝑌𝑆𝑆𝑦𝑦 + 𝑍̂𝑍𝑆𝑆𝑧𝑧                                                                  (8) 

 

𝐼𝐼𝑞𝑞𝑞𝑞 = 𝐼𝐼𝑜𝑜,𝑜𝑜𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝑥𝑥𝑆𝑆𝑥𝑥𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝑧𝑧𝑆𝑆𝑧𝑧                                                 (9) 

 

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝
𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝 tan(𝛽𝛽𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠)
𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 tan(𝛽𝛽𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠)

                                                  (10) 

 

𝑧𝑧𝑖𝑖𝑖𝑖 =
1

1
𝑧𝑧𝐴𝐴𝐴𝐴

+ 1
𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑍𝑍𝐴𝐴𝐴𝐴𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠
𝑍𝑍𝐴𝐴𝐴𝐴+𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠

                                                               (11) 

 

𝑍𝑍𝐴𝐴𝐴𝐴 = 𝑅𝑅 + 𝑗𝑗 (𝜔𝜔𝜔𝜔 − 1
𝜔𝜔𝜔𝜔)                                                                   (12) 

 

𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑗𝑗𝑍𝑍𝑚𝑚𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇 tan(𝛽𝛽𝛽𝛽)                                                             (13) 

 (1)
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Where  , δ  , and 0d  are the three fitting parameters and 
H(d-do) is the Helmholtz step function.

2- Theory and Design
2- 1- Periodic Structure

Periodic structures are a type of electromagnetic 
structures that have a repeating pattern at regular intervals. 
In radar absorbent structures (RAS), periodic structures are 
commonly used as the absorbing layer, because they can 
effectively attenuate the incident electromagnetic waves 
over a wide frequency range. An infinite array of metallic 
plates or strips forms a useful model for the analysis of many 
practical microwave structures. A more general formulation 
of the scattering problem of a two-dimensional periodic 
array of plates is studied by Chen in [10]. The periodicity 
of the structure plays a critical role in determining the 
electromagnetic properties of the RAS, such as the absorption 
bandwidth and polarization sensitivity. The periodic structure 
can be designed using a variety of methods, including fractal 
geometry, metamaterials, and photonic crystals.

2- 2- Properties of ITO
ITO is a transparent conductive material that is commonly 

used as a thin coating on PET films for various applications. 
PET is a type of plastic film that is widely used for packaging, 
displays, touchscreens, and other electronic devices. When 
PET films are coated with a thin layer of ITO, they gain 
properties such as high optical transparency and electrical 
conductivity. The combination of PET and ITO coating 
allows for the creation of flexible, transparent conductive 
films. These films are often used as transparent electrodes 
in electronic devices, including touchscreens, liquid crystal 
displays (LCDs), organic light-emitting diode (OLED) 

displays, solar cells, and electrochromic windows.
ITO-coated PET films provide excellent electrical 

conductivity while maintaining high light transmission, 
making them suitable for applications where both transparency 
and conductivity are required. However, it’s worth noting that 
indium is a relatively rare and expensive element, which can 
contribute to the cost of ITO-coated PET films. Alternative 
transparent conductive materials, such as graphene and silver 
nanowires, are being explored as potential replacements 
for ITO due to their improved flexibility, durability, and 
cost-effectiveness. Nonetheless, ITO-coated PET remains a 
widely used and established technology in various industries.

E. A. Alwan et al [11] have conducted measurements to 
determine the electrical properties of ITO, specifically the 
permittivity and conductivity, over a frequency range of 0.1-
20 GHz. As far as our knowledge goes, these measurements 
represent the first reported electrical properties of ITO across 
such a wideband range. The exact value of permittivity and 
conductivity could be calculated by using the following 
formula [11];
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2- 3- Floquet Theorem
The Floquet port method is a numerical technique used to 

analyse the electromagnetic behaviour of periodic structures, 
such as frequency-selective surfaces or photonic crystals. 
The method is based on the Floquet theorem [12], which 
states that the solution to Maxwell’s equations for a periodic 
structure can be expressed as a linear combination of plane 
waves with specific wave vectors. In the Floquet port method, 
the periodic structure is divided into a unit cell and the 
boundary conditions at the edges of the cell are expressed in 
terms of the Floquet modes. The Floquet port method allows 
the calculation of the scattering parameters of the periodic 
structure, which describes how the structure interacts with 
incident electromagnetic waves. Overall, the Floquet port 
method is a powerful and widely used technique for the 
design and analysis of periodic structures in electromagnetics 
[13]. The Floquet modes can be written as [14]:
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In addition, there is a matrix B (which may be complex) 
such that ( ) ( )1e 0TB E E T−=  and a T -periodic matrix 
function t → P (t) (which may be complex-valued) such that 
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( ) ( )etBE t P t=  for all t ∈  R. Also, there is a real matrix R 
and a real 2T -periodic matrix function t → Q(t) such that 
( )etRQ t   for all t ∈  R  [14]. where E is the electric field, t 

is the position along the direction of periodicity, and T is the 
period of the structure. 

Using the Floquet modes, the boundary conditions at 
the edges of the unit cell can be expressed in terms of the 
scattering matrices [15]. The scattering matrices relate the 
incident and reflected waves at the input and output ports 
of the unit cell to the electric and magnetic fields inside the 
cell. The overall scattering from the structure is determined 
by first evaluating a matrix of scattering parameters for each 
individual layer and then forming a scattering matrix for the 
entire structure by a procedure analogous to the cascading of 
networks in circuit theory [16]. The scattering matrices can 
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where [S] is the scattering matrix, [A] is the amplitude 
matrix, β is the propagation constant, and T is the period 
of the structure. The scattering parameters describe how 
the structure interacts with incident electromagnetic waves 
and can be used to optimize the design of the structure. 
The procedure to be presented here is to expand the 
electromagnetic field distribution near the array of the 
conducting plates into a set of Floquet mode functions. By 
requiring the total electric field to vanish on the conducting 
plates, an integral equation for the unknown current on each 
plate is obtained. The electromagnetic fields must satisfy the 
periodicity requirements imposed by Floquet’s theorem [10].

You can construct unit cells for frequency selective 
surface (FSS) simulations using linked boundaries and two 
Floquet ports, with one port above the plane of the structure 
and the other port under it. The applied excitations are the 
Floquet modes themselves, usually one or both specular 
modes. As a direct result of the field solution, the reflection 
and transmission properties of the FSS are cast in terms of the 
computed S-matrix entries interrelating the Floquet modes. In 
CST Studio [17], Floquet ports calculate the resulting fields 
within the structure. 

The Floquet port relation for FSS is a mathematical 
expression that relates the electric and magnetic fields at the 
edges of the unit cell of the FSS. The relation is based on the 
periodicity of the FSS and the concept of Bloch’s theorem 
[18], which states that the electric and magnetic fields in a 
periodic structure can be represented by a combination of a 
plane wave and a phase factor. The Floquet port relation for an 
FSS cell in CST Studio can be expressed as [E, H] = [T] * [E’, 
H’] [17]. Where [E, H] is the electric and magnetic fields at 
the edges of the FSS cell, [E’, H’] is the electric and magnetic 
fields at the virtual Floquet port, and [T] is the transfer matrix 
that relates the fields at the edges of the cell to those at the 
Floquet port. The transfer matrix is calculated based on 

the geometry of the FSS cell, the substrate properties, and 
the excitation wavelength. The accuracy depends upon the 
number of modes used to approximate the induced current 
on each plate and the number of Floquet modes used to 
approximate the near field of distribution [10].

The plane wave expansion in Floquet mode is a technique 
used in the analysis of periodic structures, particularly 
in the context of electromagnetics and photonics. This 
method leverages the periodicity of the structure to simplify 
the problem by expanding the fields into a series of plane 
waves, each modulated by a periodic function known as 
the Floquet mode. In the plane wave expansion method, the 
electromagnetic fields are expanded into a series of plane 
waves. Each plane wave corresponds to a specific wave 
vector, and the fields are represented as:
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Where G is a reciprocal lattice vector of the periodic 
structure, GE  is the amplitude of the plane wave with 
wavevector (K+G). If this structure is exposed to an incident 
plane wave propagating in the direction of then the amplitude 
of all the element currents will be the same, while their phases 
will match the phase of the incident field. Put formally, for 
the element current in column q and row m is;
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As in the single infinite vase above, this is a direct 
consequence of the floquet theorem [1].

2- 4- Analysis of Exponential Taper and impedance matching
Tapered shapes can be used for the strip in the CAA to 

improve the bandwidth of the absorber. By gradually tapering 
the edges of the strip, the electromagnetic energy can be more 
effectively coupled into the absorber layer, which leads to a 
wider absorption bandwidth. The tapering can be achieved 
by changing the width or depth of the strip gradually from 
the centre to the edges of the unit cell. Several studies have 
investigated the use of tapered shapes for the strip in the CAA. 
The results showed that the tapered slots led to a significant 
improvement in the bandwidth of the absorber. Burleson 
examines the use of tapered periodic two-dimensional edge 
treatments to reduce wide-band edge diffraction from a knife 
edge for the polarization parallel to the plane of incidence 
[19]. There are mathematical analysis models that can be 
used to design tapered strips for circuit analogue absorbers. 
The analysis involves determining the resonance frequency 
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of the tapered strip and the corresponding absorption 
bandwidth. One commonly used model is the transmission 
line model [20], which considers the strip as a short-circuited 
transmission line. The width and length of the strip, as well as 
the taper angle and the spacing between adjacent strips, can 
be optimized to achieve the desired absorption performance. 
The model takes into account the inductive and capacitive 
effects of the slot and the surrounding dielectric material.

Another model that can be used is the equivalent circuit 
model (refer to Figure 4), which represents the absorber as 
a network of lumped elements such as resistors, capacitors, 
and inductors. The values of these elements can be calculated 
based on the physical dimensions and material properties of 
the absorber, as well as the desired absorption bandwidth 
and level. Both of these models require some knowledge of 
electromagnetic theory and circuit analysis, as well as access 
to simulation software such as CST Microwave Studio [17]. 
Overall, both approaches can be used to design and optimize 
tapered slot shapes in absorbers to achieve wider bandwidths 
and improved absorption performance.
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 (10)

𝑅𝑅𝐿𝐿′ = 2𝑅𝑅𝑠𝑠𝑙𝑙1 3𝑤𝑤⁄ [1 + 2𝐶𝐶1 − 1.1𝑤𝑤𝑛𝑛𝑐𝑐 2𝑙𝑙1⁄ ] (ohm)                      (1) 

 

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (𝛾𝛾. ℎ𝐿𝐿𝛿𝛿). 𝑑𝑑. 𝐻𝐻(𝑑𝑑 − 𝑑𝑑0)                                            (2) 

 

 

𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔) =
1

𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧0
Re {√𝜀𝜀𝑟𝑟

1−Γ𝐴𝐴
1+𝛤𝛤𝐴𝐴

} ( 𝑆𝑆𝑚𝑚)                                       (3) 

 

𝜀𝜀𝑟𝑟,𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔) =
𝜀𝜀𝐼𝐼𝐼𝐼𝐼𝐼′ −𝑗𝑗𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼 𝜔𝜔⁄

𝜀𝜀0
                                                    (4) 

 

𝐸𝐸(𝑡𝑡 + 𝑇𝑇) = 𝐸𝐸(𝑡𝑡)𝐸𝐸−1(0)𝐸𝐸(𝑇𝑇)                                           (5) 

 

[𝑆𝑆] = [𝐴𝐴]𝑒𝑒−𝐽𝐽𝐽𝐽𝐽𝐽                                                       (6) 

 

𝐸𝐸(𝑟𝑟) = ∑ 𝐸𝐸𝐺𝐺𝑒𝑒𝑗𝑗(𝐾𝐾+𝐺𝐺).𝑟𝑟𝐺𝐺                                                       (7) 

 

𝑆̂𝑆 = 𝑋̂𝑋𝑆𝑆𝑥𝑥 + 𝑌̂𝑌𝑆𝑆𝑦𝑦 + 𝑍̂𝑍𝑆𝑆𝑧𝑧                                                                  (8) 

 

𝐼𝐼𝑞𝑞𝑞𝑞 = 𝐼𝐼𝑜𝑜,𝑜𝑜𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝑥𝑥𝑆𝑆𝑥𝑥𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝑧𝑧𝑆𝑆𝑧𝑧                                                 (9) 

 

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝
𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝 tan(𝛽𝛽𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠)
𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 tan(𝛽𝛽𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠)

                                                  (10) 

 

𝑧𝑧𝑖𝑖𝑖𝑖 =
1

1
𝑧𝑧𝐴𝐴𝐴𝐴

+ 1
𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑍𝑍𝐴𝐴𝐴𝐴𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠
𝑍𝑍𝐴𝐴𝐴𝐴+𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠

                                                               (11) 

 

𝑍𝑍𝐴𝐴𝐴𝐴 = 𝑅𝑅 + 𝑗𝑗 (𝜔𝜔𝜔𝜔 − 1
𝜔𝜔𝜔𝜔)                                                                   (12) 

 

𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑗𝑗𝑍𝑍𝑚𝑚𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇 tan(𝛽𝛽𝛽𝛽)                                                             (13) 

 (11)

𝑅𝑅𝐿𝐿′ = 2𝑅𝑅𝑠𝑠𝑙𝑙1 3𝑤𝑤⁄ [1 + 2𝐶𝐶1 − 1.1𝑤𝑤𝑛𝑛𝑐𝑐 2𝑙𝑙1⁄ ] (ohm)                      (1) 

 

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (𝛾𝛾. ℎ𝐿𝐿𝛿𝛿). 𝑑𝑑. 𝐻𝐻(𝑑𝑑 − 𝑑𝑑0)                                            (2) 

 

 

𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔) =
1

𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧0
Re {√𝜀𝜀𝑟𝑟

1−Γ𝐴𝐴
1+𝛤𝛤𝐴𝐴

} ( 𝑆𝑆𝑚𝑚)                                       (3) 

 

𝜀𝜀𝑟𝑟,𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔) =
𝜀𝜀𝐼𝐼𝐼𝐼𝐼𝐼′ −𝑗𝑗𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼 𝜔𝜔⁄

𝜀𝜀0
                                                    (4) 

 

𝐸𝐸(𝑡𝑡 + 𝑇𝑇) = 𝐸𝐸(𝑡𝑡)𝐸𝐸−1(0)𝐸𝐸(𝑇𝑇)                                           (5) 

 

[𝑆𝑆] = [𝐴𝐴]𝑒𝑒−𝐽𝐽𝐽𝐽𝐽𝐽                                                       (6) 

 

𝐸𝐸(𝑟𝑟) = ∑ 𝐸𝐸𝐺𝐺𝑒𝑒𝑗𝑗(𝐾𝐾+𝐺𝐺).𝑟𝑟𝐺𝐺                                                       (7) 

 

𝑆̂𝑆 = 𝑋̂𝑋𝑆𝑆𝑥𝑥 + 𝑌̂𝑌𝑆𝑆𝑦𝑦 + 𝑍̂𝑍𝑆𝑆𝑧𝑧                                                                  (8) 

 

𝐼𝐼𝑞𝑞𝑞𝑞 = 𝐼𝐼𝑜𝑜,𝑜𝑜𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝑥𝑥𝑆𝑆𝑥𝑥𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝑧𝑧𝑆𝑆𝑧𝑧                                                 (9) 

 

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝
𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝 tan(𝛽𝛽𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠)
𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 tan(𝛽𝛽𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠)

                                                  (10) 

 

𝑧𝑧𝑖𝑖𝑖𝑖 =
1

1
𝑧𝑧𝐴𝐴𝐴𝐴

+ 1
𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑍𝑍𝐴𝐴𝐴𝐴𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠
𝑍𝑍𝐴𝐴𝐴𝐴+𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠

                                                               (11) 

 

𝑍𝑍𝐴𝐴𝐴𝐴 = 𝑅𝑅 + 𝑗𝑗 (𝜔𝜔𝜔𝜔 − 1
𝜔𝜔𝜔𝜔)                                                                   (12) 

 

𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑗𝑗𝑍𝑍𝑚𝑚𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇 tan(𝛽𝛽𝛽𝛽)                                                             (13) 

 (12)

𝑅𝑅𝐿𝐿′ = 2𝑅𝑅𝑠𝑠𝑙𝑙1 3𝑤𝑤⁄ [1 + 2𝐶𝐶1 − 1.1𝑤𝑤𝑛𝑛𝑐𝑐 2𝑙𝑙1⁄ ] (ohm)                      (1) 

 

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (𝛾𝛾. ℎ𝐿𝐿𝛿𝛿). 𝑑𝑑. 𝐻𝐻(𝑑𝑑 − 𝑑𝑑0)                                            (2) 

 

 

𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔) =
1

𝑡𝑡𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧0
Re {√𝜀𝜀𝑟𝑟

1−Γ𝐴𝐴
1+𝛤𝛤𝐴𝐴

} ( 𝑆𝑆𝑚𝑚)                                       (3) 

 

𝜀𝜀𝑟𝑟,𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔) =
𝜀𝜀𝐼𝐼𝐼𝐼𝐼𝐼′ −𝑗𝑗𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼 𝜔𝜔⁄

𝜀𝜀0
                                                    (4) 

 

𝐸𝐸(𝑡𝑡 + 𝑇𝑇) = 𝐸𝐸(𝑡𝑡)𝐸𝐸−1(0)𝐸𝐸(𝑇𝑇)                                           (5) 

 

[𝑆𝑆] = [𝐴𝐴]𝑒𝑒−𝐽𝐽𝐽𝐽𝐽𝐽                                                       (6) 

 

𝐸𝐸(𝑟𝑟) = ∑ 𝐸𝐸𝐺𝐺𝑒𝑒𝑗𝑗(𝐾𝐾+𝐺𝐺).𝑟𝑟𝐺𝐺                                                       (7) 

 

𝑆̂𝑆 = 𝑋̂𝑋𝑆𝑆𝑥𝑥 + 𝑌̂𝑌𝑆𝑆𝑦𝑦 + 𝑍̂𝑍𝑆𝑆𝑧𝑧                                                                  (8) 

 

𝐼𝐼𝑞𝑞𝑞𝑞 = 𝐼𝐼𝑜𝑜,𝑜𝑜𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝑥𝑥𝑆𝑆𝑥𝑥𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝐷𝐷𝑧𝑧𝑆𝑆𝑧𝑧                                                 (9) 

 

𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝
𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝 tan(𝛽𝛽𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠)
𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝+𝑗𝑗𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 tan(𝛽𝛽𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠)

                                                  (10) 

 

𝑧𝑧𝑖𝑖𝑖𝑖 =
1

1
𝑧𝑧𝐴𝐴𝐴𝐴

+ 1
𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠

= 𝑍𝑍𝐴𝐴𝐴𝐴𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠
𝑍𝑍𝐴𝐴𝐴𝐴+𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠

                                                               (11) 

 

𝑍𝑍𝐴𝐴𝐴𝐴 = 𝑅𝑅 + 𝑗𝑗 (𝜔𝜔𝜔𝜔 − 1
𝜔𝜔𝜔𝜔)                                                                   (12) 

 

𝑍𝑍𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑗𝑗𝑍𝑍𝑚𝑚𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇 tan(𝛽𝛽𝛽𝛽)                                                             (13)  (13)

𝛤𝛤 = 𝑍𝑍𝑖𝑖𝑖𝑖−𝑍𝑍0
𝑍𝑍𝑖𝑖𝑖𝑖+𝑍𝑍𝑜𝑜

                                                                                      (14) 

 

𝛤𝛤𝑖𝑖𝑖𝑖(𝑙𝑙) = 1
2 𝑍𝑍𝑥𝑥𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 ∫ 𝑒𝑒−2𝑗𝑗𝑗𝑗𝑗𝑗

𝑙𝑙
2

−𝑙𝑙
2

𝑑𝑑 ln(𝑒𝑒𝑎𝑎𝑎𝑎)
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 

1
2 ln (𝑍𝑍𝑙𝑙

𝑍𝑍𝑠𝑠
) (sin(𝛽𝛽𝛽𝛽))

𝛽𝛽𝛽𝛽                                                                       (15) 

 

 

𝑦𝑦 = ± 𝑆𝑆 ×  𝑒𝑒𝑟𝑟×(𝑡𝑡−𝐵𝐵) + 𝐶𝐶                                                  (16) 

 

𝐽𝐽(𝑥𝑥, 𝑧𝑧) = 

∑ 𝐶𝐶𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑥𝑥

)𝑚𝑚,𝑛𝑛 . 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑧𝑧

) . 𝑒𝑒−𝑗𝑗𝛽𝛽𝑚𝑚𝑥𝑥. 𝑒𝑒−𝑗𝑗𝛽𝛽𝑛𝑛𝑧𝑧                            (17) 

 

 

𝑃𝑃 = 𝑅𝑅 ∫ ∫ |∑ 𝐶𝐶𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑥𝑥

)𝑚𝑚,𝑛𝑛 . 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑧𝑧

) . 𝑒𝑒−𝑗𝑗𝛽𝛽𝑚𝑚𝑥𝑥. 𝑒𝑒−𝑗𝑗𝛽𝛽𝑛𝑛𝑧𝑧|
2

𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧
𝑙𝑙

−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧                (18) 

 

𝑃𝑃 = 𝑅𝑅 ∫ ∫ |∑ 𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝
∗ . 𝑠𝑠𝑠𝑠𝑠𝑠2 (𝜋𝜋𝜋𝜋

𝐷𝐷𝑥𝑥
)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞 . 𝑠𝑠𝑠𝑠𝑠𝑠2 (𝜋𝜋𝜋𝜋

𝐷𝐷𝑧𝑧
) . 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑚𝑚−𝛽𝛽𝑝𝑝)𝑥𝑥. 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑛𝑛−𝛽𝛽𝑞𝑞)𝑧𝑧|

2
𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧

𝑙𝑙
−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧           (19) 

 

𝑃𝑃 = 𝑅𝑅 ∑ 𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝
∗

𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞
 

. ∫   𝑒𝑒−𝑗𝑗(𝛽𝛽𝑚𝑚−𝛽𝛽𝑝𝑝)𝑥𝑥𝑑𝑑𝑧𝑧 . ∫ 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑛𝑛−𝛽𝛽𝑞𝑞)𝑧𝑧𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧               (20) 

 

 (14)

To find the relation between the width of orthogonal cross 
strips on CAA and the exponentially tapered edge of the strip 
from the centre to the edge of the cell, we need to determine 
the required values of absorbing layer impedance based on 
the desired tapering shape of the edge.

Tapered impedance transformers match an impedance 
ZS to an impedance ZL using a transmission line having a 
characteristic impedance Z0 that gradually varies from ZS 
to ZL along the length of the line. The exponential taper has 
an exponential taper of the line’s characteristic impedance. 
Setting ( )0 eaz

xZ z Z=  with 1 ln L

S

za
l z

 
=  

 
 and /2al

x sz z e −=  
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So Γin has a sinc function characteristic with the variations 
of Γin reducing as the taper becomes longer. The main 
problem with this taper comes from the abrupt impedance 

 
 

Fig. 4 Equivalent Circuit Model of Single Layer Absorber 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Equivalent Circuit Model of Single Layer Absorber
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discontinuity at the Zl end of the taper. [21]

3- Unit Cell Design and Simulation
3- 1- Unit Cell design

The proposed unit cell is shown in Figure 5(a) and 
consists of three optically transparent layers. The geometry 
parameters are presented in Figure and W is the overall 
width of a square patch with the dimension of 220 20 mm×  
along the X-Y direction. it is consisting of the ground plane, 
substrate and absorber layer. 

The substrate is made from Polyvinyl chloride (PVC) 
with the relative dielectric constant ( )2.4 1 0.06PVC jε = −  that 
means the loss tangent of 0.06 and thickness of 3 subd mm= .

The Ground plane is a thin film of PET that is coated by a 
thin layer of indium tin oxide (ITO) with a surface resistance 
of 8 / sqΩ . The relative dielectric constant of ITO-Coated-
Pet is ( )3.0 1 0.006PET jε = −  that means the loss tangent of 
0.006 and thickness of 0.175 subd mm= .

The Circuit Analog Absorber is a thin film of PET that is 
coated by a thin layer of indium tin oxide (ITO) with a surface 
resistance of 8 / sqΩ  . The relative dielectric constant of 
ITO-Coated-Pet is ( )3.0 1 0.006PET jε = −  that means the 
loss tangent of 0.006 and thickness of 0.175 subd mm=
. Instead of using a crossed strip, the edge of the cross is 
tapered exponentially to gradually load the absorber element 
electrically to achieve wider bandwidth [22].

𝛤𝛤 = 𝑍𝑍𝑖𝑖𝑖𝑖−𝑍𝑍0
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 (16)

Where s, r, and t stand for Cartesian exponential function 
parameters could be plotted in the parametric equation in 3D 
as a u(t), v(t) and w(t). Also “S” is the scaling factor, “r” is 
the exponential rate, B is the shifting value, and C the offset 
value [22]. 

 

 

 

 

 

 

 

 

 

  

 

 

Fig. 5 (a)Explosive perspective view of unit cell (b) Perspective view of unit cell (c) Top View. (d) Side View. All the dimension are in mm. 

 (c) (d) 

(a)  (b) 

Fig. 5. (a)Explosive perspective view of unit cell (b) Perspective view of unit cell (c) Top View. (d) Side View. All the 
dimension are in mm.
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3- 2- Simulation Results
In this study, we propose to employ numerical simulation 

techniques using CST Studio to modify conventional CAA 
with cross orthogonal cross strip to the exponentially tapered 
crossed strip to enhance bandwidth. Due to the singularity of 
the current distribution at the edges of a perfectly conducting 
strip, the convergence of the iteration process is much slower 
than for the resistive strips. By evaluating the boundary 
conditions using the least square error criterion, a rapid 
convergence can be assured when the cross-polarized field 
component is negligible [23]. If instead of a perfect conductor, 
we consider using indium tin oxide (ITO-Coated-PET) film, 
several changes and considerations come into play:

1. Convergence Rate: The convergence rate of the 
iteration process may be different compared to a perfect 
conductor. The presence of the ITO coating introduces 
additional complexities due to its conductivity and thickness. 
The singularity at the edges may still affect the convergence, 
but the specific behaviour would depend on the properties of 
the ITO film.

2. Boundary Conditions: The evaluation of boundary 
conditions using the least square error criterion can still be 
employed to enhance convergence. However, the specific 
boundary conditions would need to be adapted to the 
properties of the ITO coating and its interaction with the PET 
film.

3. Cross-Polarized Field Component: Neglecting the 
cross-polarized field component may still be applicable 
depending on the specific characteristics of the ITO-coated 
PET film. The assumption of negligible cross-polarized field 
components should be validated considering the electrical 
properties and geometry of the ITO film.

4. Electrical Properties: The conductivity of the ITO 

film plays a significant role in the current distribution. The 
electrical properties of ITO, such as sheet resistance and 
conductivity, would need to be incorporated into the analysis 
to accurately model the behaviour of the film.

5. Thickness Considerations: The thickness of the ITO 
coating on the PET film also affects the current distribution. 
Thicker coatings may have a more significant impact on the 
convergence rate and the overall behaviour of the system.

6. Material Modelling: The properties of the ITO-
coated PET film would need to be accurately modelled and 
incorporated into the analysis. This includes considering the 
frequency-dependent behaviour, dispersion, and anisotropy 
of the ITO film.

For this purpose, the comparison is performed to ensure 
the achieved results. Figure 6 presents the conventional circuit 
analogue absorber unit cell. In this unit cell, the ITO-Coated-
PET with the thickness of 0.175 mm is used as a ground plane 
and top CA absorber layer. 

A parametric study was conducted to investigate the 
effect of varying the width of an orthogonal crossed strip 
in the range of 0.4 mm to 5 mm, with different step sizes. 
The scattering parameter results are presented in Figure 7. 
It was observed that different values were obtained for each 
dimension considered during the study. The best results were 
achieved at a resonant frequency of 18.6 GHz with a level of 
-24.38 dB. Notably, it was found that increasing the width of 
the crossed strip resulted in a shift in the resonant frequency. 
When the width of the crossed strip is increased, the 
fringing electric fields at the edges of the strip become more 
pronounced. The increased fringing effect leads to an increase 
in the effective capacitance of the unit cell. As a result, the 
resonant frequency decreases, causing a shift toward lower 
frequencies. Conversely, if the width of the crossed strip is 

 
 

Fig. 6 Top View of Conventional Circuit Analog Absorber Unit Cell Simulated with CST Studio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Top View of Conventional Circuit Analog Absorber Unit Cell Simulated with CST Studio



R. Mirzakhani and  A. R. Bayat, AUT J. Model. Simul., 56(1) (2024) 55-68, DOI: 10.22060/miscj.2024.22964.5353

62

reduced, the fringing effect becomes less significant, resulting 
in a decrease in the effective capacitance and a shift of the 
resonant frequency towards higher frequencies. 

Also, the numerical analysis has been performed to find 
the scattering parameters of exponentially modified CAA. 
The simulation with a unit cell is illustrated in Figure 6 where 
the conventional crossed strip CAA is converted to the new 
design. In this method, 2 elements are intercepted at the 
center. So the transmission coefficient is yielded as a Figure 
8 it shows that when the strips are connected at the center 
between frequencies of 0 to 25 GHz the scattering parameters 
at the resonant frequency of 15.327 GHz where the level 
is reached to -42.67 dB absorption. Also, the bandwidth is 
increased from 1.19 Ghz to 6.5 Ghz approximately. 

To achieve the desired objectives, a comprehensive 
parametric study was conducted, focusing on varying the 
exponential parameters. This study explored the response 
corresponding to the exponential rate (r) through a carefully 
designed experimental setup, which involved three distinct 
steps. The obtained results from this investigation are 
presented in Figure 9, providing a visual representation of 
the observed response to the varying exponential rate. When 
the exponential rate “r” in the tapered edge configuration of 
the crossed strip in a CAA unit cell is increased or decreased, 
it influences the behaviour and performance of the absorber. 
The decrease in the exponential rate “r” tends to result in a 
reduction of the bandwidth of the absorber, while an increase 
in “r” generally leads to an enhancement of the absorber 
bandwidth. However, it is important to note that adjusting 

the value of “r” is a trade-off that affects other parameters 
as well. Decreasing “r” may limit the absorber’s ability to 
effectively absorb a wide range of frequencies, resulting in 
a narrower bandwidth. On the other hand, increasing “r” can 
broaden the absorber’s bandwidth, allowing it to absorb a 
wider range of frequencies.

However, it’s crucial to consider the overall design 
objectives and constraints. Modifying “r” should be done in 
conjunction with other parameters and design considerations 
to ensure that desired performance characteristics are met. 
These parameters may include the dimensions of the absorber, 
the specific materials used, and the targeted frequency range. 
Therefore, while adjusting “r” can have a direct impact on 
the absorber’s bandwidth, it is essential to carefully evaluate 
and optimize the interplay between “r” and other parameters 
to achieve the desired trade-off for the specific application.

Here are table number 1 where contains the comparison 
review with the previous research that constraint only with 
PET and PVC substrate;

Our study diverges from [24], [25], and [26]  in several key 
aspects. Specifically, we utilize a single-layer structure with 
an overall thickness of 3.35 mm. This thin profile enhances 
transparency and facilitates integration with other materials 
as a protective layer, overcoming existing fabrication 
limitations. Our research methodology involves reviewing 
previous literature and enhancing the mathematical modelling 
of current distribution. Notably, we consider current density 
changes in both X and Y directions, a novel approach. By 
modifying the edge of CA, we achieve greater bandwidth, 

 
Fig. 7 Parametric Study of CAA: The Scattering Parameter Shows Variation with Regards to Parameter Wd ;sweep From 0.4 to 5 

mm with 0.2 mm Step 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Parametric Study of CAA: The Scattering Parameter Shows Variation with Regards to Param-
eter Wd ;sweep From 0.4 to 5 mm with 0.2 mm Step
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Fig. 8 Comparison of Conventional CAA With Respect to Exponentially Modified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Comparison of Conventional CAA With Respect to Exponentially Modified.

 
 

Fig. 9 Parametric Study of Exp-Modified CAA The Scattering Parameter Shows Variation with Regards to Exponentially rate r. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Parametric Study of Exp-Modified CAA The Scattering Parameter Shows Variation with Re-
gards to Exponentially rate r.
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leading to the introduction of a new type of CAA.

3- 3- The Current Distribution
 The current distribution in a CAA can vary depending 

on the design parameters and the operating frequency range. 
Overall, the current distribution in a CAA is complex and 
depends on the specific design parameters and operating 
frequency range. Understanding the current distribution is 
important for optimizing the absorption performance and 
designing CAAs for specific applications.

In the context of Circuit Analog Absorbers (CAA), when 
the metallic patch is operating at its resonance frequency, 
the current distribution on the patch is maximum, which 
indicates that the patch is acting as a short circuit. This means 
that the impedance of the patch at resonance is equal to zero, 

and thus the patch is highly conductive, allowing a maximum 
amount of current to flow through it. As a result, the incident 
electromagnetic waves are strongly reflected by the patch, 
which leads to a high absorption of the energy.

On the other hand, at frequencies away from the 
resonance frequency, the current distribution on the patch is 
non-uniform and concentrated near the slots. This indicates 
that the absorption is mainly due to the slot resonances, rather 
than the patch resonance. The slots on the metallic patch 
create a periodic structure that interacts with the incident 
waves to create resonances. These resonances can lead to 
constructive interference between the incident and reflected 
waves, resulting in a strong absorption of the energy. 

Figure 10 shows the current density at the frequency 
of 15 Ghz with different phases. The current density at the 

Table 1. Comparison review with previous researchTable 1 Comparison review with previous research 

Reference Thickness Number of layers Bandwidth 

(GHz) 

Relative 

Bandwidth 

Substrate 

[24] 0.103λ 1 5.6-19 85% PVC 

[25] 0.123λ 1 8-18 90% PVC 

[26] 0.08λ 1 6-16.5 90% PVC 

[27] 0.138λ 2 4.3-11.10 88% PVC 

[28] 0.06λ 3 1.98–18.6 167.4 PET 

[29] 0.062λ 4 1.81–20.4 90% PDMS 

This work 0.139λ 1 12.5-21 85% PVC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 Current Distribution at Frequency Of 15 At Different Phases 

Fig. 10. Current Distribution at Frequency Of 15 At Different Phases
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exponential edge of the strip is maximum and shows that the 
absorption in this area is maximum at resonance frequency.

This current distribution can be explained mathematically 
with a Given a sinusoidal current distribution in both x and 
z directions for a periodic structure, the total current density 
J(x, z) can be expressed as a sum of Bloch waves:

𝛤𝛤 = 𝑍𝑍𝑖𝑖𝑖𝑖−𝑍𝑍0
𝑍𝑍𝑖𝑖𝑖𝑖+𝑍𝑍𝑜𝑜
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Here:
mnC  are coefficients representing the contribution of each 

mode.
   x zD and D are the spacings between elements in the x and 

z directions, respectively.
  m nandβ β are the phase constants in the x and z directions 

for the m-th and n-th modes.
Now, let’s substitute this into the power dissipation 
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Now, let’s proceed by expanding the square of the sum 
and simplifying the expression:

𝛤𝛤 = 𝑍𝑍𝑖𝑖𝑖𝑖−𝑍𝑍0
𝑍𝑍𝑖𝑖𝑖𝑖+𝑍𝑍𝑜𝑜

                                                                                      (14) 

 

𝛤𝛤𝑖𝑖𝑖𝑖(𝑙𝑙) = 1
2 𝑍𝑍𝑥𝑥𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 ∫ 𝑒𝑒−2𝑗𝑗𝑗𝑗𝑗𝑗

𝑙𝑙
2

−𝑙𝑙
2

𝑑𝑑 ln(𝑒𝑒𝑎𝑎𝑎𝑎)
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 

1
2 ln (𝑍𝑍𝑙𝑙

𝑍𝑍𝑠𝑠
) (sin(𝛽𝛽𝛽𝛽))

𝛽𝛽𝛽𝛽                                                                       (15) 

 

 

𝑦𝑦 = ± 𝑆𝑆 ×  𝑒𝑒𝑟𝑟×(𝑡𝑡−𝐵𝐵) + 𝐶𝐶                                                  (16) 

 

𝐽𝐽(𝑥𝑥, 𝑧𝑧) = 

∑ 𝐶𝐶𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑥𝑥

)𝑚𝑚,𝑛𝑛 . 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑧𝑧

) . 𝑒𝑒−𝑗𝑗𝛽𝛽𝑚𝑚𝑥𝑥. 𝑒𝑒−𝑗𝑗𝛽𝛽𝑛𝑛𝑧𝑧                            (17) 

 

 

𝑃𝑃 = 𝑅𝑅 ∫ ∫ |∑ 𝐶𝐶𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑥𝑥

)𝑚𝑚,𝑛𝑛 . 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑧𝑧

) . 𝑒𝑒−𝑗𝑗𝛽𝛽𝑚𝑚𝑥𝑥. 𝑒𝑒−𝑗𝑗𝛽𝛽𝑛𝑛𝑧𝑧|
2

𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧
𝑙𝑙

−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧                (18) 

 

𝑃𝑃 = 𝑅𝑅 ∫ ∫ |∑ 𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝
∗ . 𝑠𝑠𝑠𝑠𝑠𝑠2 (𝜋𝜋𝜋𝜋

𝐷𝐷𝑥𝑥
)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞 . 𝑠𝑠𝑠𝑠𝑠𝑠2 (𝜋𝜋𝜋𝜋

𝐷𝐷𝑧𝑧
) . 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑚𝑚−𝛽𝛽𝑝𝑝)𝑥𝑥. 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑛𝑛−𝛽𝛽𝑞𝑞)𝑧𝑧|

2
𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧

𝑙𝑙
−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧           (19) 

 

𝑃𝑃 = 𝑅𝑅 ∑ 𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝
∗

𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞
 

. ∫   𝑒𝑒−𝑗𝑗(𝛽𝛽𝑚𝑚−𝛽𝛽𝑝𝑝)𝑥𝑥𝑑𝑑𝑧𝑧 . ∫ 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑛𝑛−𝛽𝛽𝑞𝑞)𝑧𝑧𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧               (20) 

 

𝛤𝛤 = 𝑍𝑍𝑖𝑖𝑖𝑖−𝑍𝑍0
𝑍𝑍𝑖𝑖𝑖𝑖+𝑍𝑍𝑜𝑜

                                                                                      (14) 

 

𝛤𝛤𝑖𝑖𝑖𝑖(𝑙𝑙) = 1
2 𝑍𝑍𝑥𝑥𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 ∫ 𝑒𝑒−2𝑗𝑗𝑗𝑗𝑗𝑗

𝑙𝑙
2

−𝑙𝑙
2

𝑑𝑑 ln(𝑒𝑒𝑎𝑎𝑎𝑎)
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 

1
2 ln (𝑍𝑍𝑙𝑙

𝑍𝑍𝑠𝑠
) (sin(𝛽𝛽𝛽𝛽))

𝛽𝛽𝛽𝛽                                                                       (15) 

 

 

𝑦𝑦 = ± 𝑆𝑆 ×  𝑒𝑒𝑟𝑟×(𝑡𝑡−𝐵𝐵) + 𝐶𝐶                                                  (16) 

 

𝐽𝐽(𝑥𝑥, 𝑧𝑧) = 

∑ 𝐶𝐶𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑥𝑥

)𝑚𝑚,𝑛𝑛 . 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑧𝑧

) . 𝑒𝑒−𝑗𝑗𝛽𝛽𝑚𝑚𝑥𝑥. 𝑒𝑒−𝑗𝑗𝛽𝛽𝑛𝑛𝑧𝑧                            (17) 

 

 

𝑃𝑃 = 𝑅𝑅 ∫ ∫ |∑ 𝐶𝐶𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑥𝑥

)𝑚𝑚,𝑛𝑛 . 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑧𝑧

) . 𝑒𝑒−𝑗𝑗𝛽𝛽𝑚𝑚𝑥𝑥. 𝑒𝑒−𝑗𝑗𝛽𝛽𝑛𝑛𝑧𝑧|
2

𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧
𝑙𝑙

−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧                (18) 

 

𝑃𝑃 = 𝑅𝑅 ∫ ∫ |∑ 𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝
∗ . 𝑠𝑠𝑠𝑠𝑠𝑠2 (𝜋𝜋𝜋𝜋

𝐷𝐷𝑥𝑥
)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞 . 𝑠𝑠𝑠𝑠𝑠𝑠2 (𝜋𝜋𝜋𝜋

𝐷𝐷𝑧𝑧
) . 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑚𝑚−𝛽𝛽𝑝𝑝)𝑥𝑥. 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑛𝑛−𝛽𝛽𝑞𝑞)𝑧𝑧|

2
𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧

𝑙𝑙
−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧           (19) 

 

𝑃𝑃 = 𝑅𝑅 ∑ 𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝
∗

𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞
 

. ∫   𝑒𝑒−𝑗𝑗(𝛽𝛽𝑚𝑚−𝛽𝛽𝑝𝑝)𝑥𝑥𝑑𝑑𝑧𝑧 . ∫ 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑛𝑛−𝛽𝛽𝑞𝑞)𝑧𝑧𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧               (20) 

 

 (19)

Now, let’s integrate over x and z with the periodic 
functions:

𝛤𝛤 = 𝑍𝑍𝑖𝑖𝑖𝑖−𝑍𝑍0
𝑍𝑍𝑖𝑖𝑖𝑖+𝑍𝑍𝑜𝑜

                                                                                      (14) 

 

𝛤𝛤𝑖𝑖𝑖𝑖(𝑙𝑙) = 1
2 𝑍𝑍𝑥𝑥𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 ∫ 𝑒𝑒−2𝑗𝑗𝑗𝑗𝑗𝑗

𝑙𝑙
2

−𝑙𝑙
2

𝑑𝑑 ln(𝑒𝑒𝑎𝑎𝑎𝑎)
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 

1
2 ln (𝑍𝑍𝑙𝑙

𝑍𝑍𝑠𝑠
) (sin(𝛽𝛽𝛽𝛽))

𝛽𝛽𝛽𝛽                                                                       (15) 

 

 

𝑦𝑦 = ± 𝑆𝑆 ×  𝑒𝑒𝑟𝑟×(𝑡𝑡−𝐵𝐵) + 𝐶𝐶                                                  (16) 

 

𝐽𝐽(𝑥𝑥, 𝑧𝑧) = 

∑ 𝐶𝐶𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑥𝑥

)𝑚𝑚,𝑛𝑛 . 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑧𝑧

) . 𝑒𝑒−𝑗𝑗𝛽𝛽𝑚𝑚𝑥𝑥. 𝑒𝑒−𝑗𝑗𝛽𝛽𝑛𝑛𝑧𝑧                            (17) 

 

 

𝑃𝑃 = 𝑅𝑅 ∫ ∫ |∑ 𝐶𝐶𝑚𝑚𝑚𝑚. 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑥𝑥

)𝑚𝑚,𝑛𝑛 . 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋
𝐷𝐷𝑧𝑧

) . 𝑒𝑒−𝑗𝑗𝛽𝛽𝑚𝑚𝑥𝑥. 𝑒𝑒−𝑗𝑗𝛽𝛽𝑛𝑛𝑧𝑧|
2

𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧
𝑙𝑙

−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧                (18) 

 

𝑃𝑃 = 𝑅𝑅 ∫ ∫ |∑ 𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝
∗ . 𝑠𝑠𝑠𝑠𝑠𝑠2 (𝜋𝜋𝜋𝜋

𝐷𝐷𝑥𝑥
)𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞 . 𝑠𝑠𝑠𝑠𝑠𝑠2 (𝜋𝜋𝜋𝜋

𝐷𝐷𝑧𝑧
) . 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑚𝑚−𝛽𝛽𝑝𝑝)𝑥𝑥. 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑛𝑛−𝛽𝛽𝑞𝑞)𝑧𝑧|

2
𝑑𝑑𝑥𝑥𝑑𝑑𝑧𝑧

𝑙𝑙
−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧           (19) 

 

𝑃𝑃 = 𝑅𝑅 ∑ 𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝
∗

𝑚𝑚,𝑛𝑛,𝑝𝑝,𝑞𝑞
 

. ∫   𝑒𝑒−𝑗𝑗(𝛽𝛽𝑚𝑚−𝛽𝛽𝑝𝑝)𝑥𝑥𝑑𝑑𝑧𝑧 . ∫ 𝑒𝑒−𝑗𝑗(𝛽𝛽𝑛𝑛−𝛽𝛽𝑞𝑞)𝑧𝑧𝑑𝑑𝑥𝑥
𝑙𝑙

−𝑙𝑙

𝑤𝑤
2 𝑒𝑒𝑧𝑧

−𝑤𝑤
2 𝑒𝑒𝑧𝑧               (20) 

 

 (20)

These integrals involve terms like Dirac delta functions 
and will enforce conditions for certain modes to contribute 
significantly to the integral. The specific values of the 
coefficients mnC , the spacing and   x zD and D , and other 
constants will influence the final form of the solution. 

Also, surface currents at different frequencies such as 
5,10,15 and 19 GHz are shown as Figure 11.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Figure 11 Surface Current Distribution at Frequencies Of 5,10 15 And 19 GHz 

Fig. 11. Surface Current Distribution at Frequencies Of 5,10 15 And 19 GHz
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4- CONCLUSION
The novel design of an optically transparent circuit analogue 

absorber by modifying the exponentially tapered edge of the 
unit cell has been presented in this paper. By investigating 
various design parameters and types of circuit analogue 
elements, the absorber’s impedance matching and absorption 
properties have been improved. The use of periodic structures 
and optimization of the absorber’s dimensions have mitigated 
the fringing effect on orthogonal cross strips. The proposed 
design aims to achieve a balance between wide bandwidth 
electromagnetic shielding and high optical transparency, 
making it suitable for various applications in industries, 
medicine, and the military. The novel exponentially tapered 
design achieved a resonant frequency of 15.327 GHz with an 
absorption level of -42.67 dB. This performance significantly 
surpasses conventional designs, aligning with theoretical 
predictions and demonstrating practical applicability in areas 
requiring high optical transparency and wide bandwidth.
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