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Abstract: 

In this extended study, the focus is on advancing the generation of synthetic distribution grids (SDGs) 

through the introduction of a new algorithm based on the Barabási-Albert random graph model. The 

initial use of the Erdős model to create SDGs revealed limitations in size and structural adjustability 

beyond the number of vertices. To address these limitations and push the research forward, the new 

algorithm utilizes the Barabási-Albert model to provide more control over the structural features of the 

generated graphs through the introduction of a novel tuning parameter known as the “richness index”. The 

effectiveness of both algorithms in producing SDGs of various sizes is demonstrated by generating SDGs 

with different sizes, confirming their ability to mimic synthetic radial distribution grids successfully. 

Additionally, a detailed examination of degree-based parameters and Pearson coefficients for SDGs of 

sizes from 20 to 1000 uncovers significant patterns. Furthermore, the proposed algorithm is examined in 

the terms of the variation of richness index in branching rate and μ-PMU placement, confirming the scale-

free characteristic of the method. A comparison of the Erdős and Barabási-Albert models shows 

variations in maximum degree values, branching rates, and mixing patterns. The original Barabási-Albert 

model tends to have nodes with higher degrees and increased branching rates, which can be adjusted by 

the richness index. These findings emphasize the ability of the Barabási-Albert model to generate scale-

free SDGs with diverse structures by fine-tuning the richness index. 
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Terms and Symbols 

In the context of this paper, italic letters denote integers and scalars, such as n and p. Matrices and vectors 

are symbolized by capital, bold, and non-italic letters, for example, A and Cd. Lower-case, italic, and 

indexed letters indicate arrays of matrices, like aij. Additionally, Cd(v) specifically designates the v-th 

element of the vector Cd. 

1. Introduction 

Power grids are categorized according to their voltage levels, namely High Voltage (HV), Medium 

Voltage (MV), and Low Voltage (LV) grids, with the latter two commonly known as Distribution Grids. 

These grids play a fundamental role in urban and industrial infrastructure by facilitating the transmission 

of electrical energy to end-users. Distribution grids are essential as they represent the critical final step in 

the electricity supply chain, guaranteeing the secure and efficient distribution of electricity to residences, 

commercial enterprises, and industrial facilities [1]. 

Distribution networks are critical components of smart grids because they facilitate the integration of 

renewable energy sources, such as wind and solar power, into the electrical grid. This allows for greater 

flexibility and resilience in meeting electricity demand while reducing greenhouse gas emissions. 

Moreover, distribution networks play a vital role in demand response programs, which involve real-time 

communication between utilities and customers regarding electricity consumption patterns and pricing 

strategies to promote efficient usage and reduce peak loads on the network [2, 3]. 

The growing importance of electrical distribution networks as a critical component of the smart grid 

system necessitates the need for better performance and optimization. Therefore, researchers have been 

exploring innovative methods to analyze these networks recently. One such approach involves modeling 

and analyzing power grids using complex network theory [4]. 

1-1- Power Grids as Complex Networks 
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Barabási et al. initially suggested the idea of examining power grids using complex network analysis, 

where the authors portrayed the power network as a “scale-free” network [5]. In this framework, the 

power graph comprises nodes (buses) and edges (lines), representing the connections between them at 

various voltage levels. At the high voltage (HV) level, buses are considered as vertices and transmission 

lines as edges. However, in distribution grids (MV and LV levels), buses are represented as vertices and 

lines as edges. The properties of vertices in distribution grids are defined by their active power supply or 

demand and voltage, while the properties of lines are determined by their cost, which is influenced by 

resistance, and capacity, which is determined by their limit [6]. 

There are several types of distribution grids that vary depending on their connection topology, including 

radial, parallel, ring, and interconnected systems [7]. Radial systems are the simplest and least expensive, 

consisting of feeders radiating outward from a central substation with power flowing in only one 

direction. These systems typically use tree graphs. 

As previously mentioned, new approaches such as those based on complex network analysis require 

numerous tests to verify models, but there are currently few available test feeders specifically designed 

for distribution grids, mostly introduced as IEEE test cases. To address this issue, synthetic test systems 

have been created to represent diverse real networks. While most existing synthetic systems focus on 

high-voltage (HV) networks [5], [8-22], some recent research also explores topological and electrical 

properties of distribution grids [23-28], and introduces methods for validating these synthetic systems 

[29-31]. 

1-2- Random Graph and Synthetic Power Graph 

Generally speaking, a random graph is characterized by starting with a set of n unlinked nodes and 

subsequently adding edges at random among them [32]. Several widely utilized random graph models 

have been established, including the Erdős-Renyi model, which was put forth by Erdős, Rényi, and 

Gilbert [33, 34]; the Barabási-Albert (BA) random graph model, suggested by Albert-László Barabási and 
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Réka Albert; and the small-world model, presented by Watts and Strogatz [35]. While these random 

graph models are suitable for various applications, they have been found to fall short when it comes to 

accurately portraying power graphs, whether they pertain to transmission or distribution networks [10]. 

Consequently, researchers devised the “synthetic power graph” (SPG), an artificial representation of 

actual power grids based on their statistical features. SPGs may also refer to either “synthetic transmission 

grids” (STGs) or “synthetic distribution grids” (SDGs). 

In their research on STG generation, [10] presented a revised edition of the small-world model known as 

RT-nested-Smallworld, a random topology power grid model that considers the features of power graphs. 

Various other random graph models and algorithms like the Chung-Lu model [20], dual-stage constructed 

random graph algorithm [15], and Cluster-and-Connect algorithm [36] have also been suggested for 

creating STGs.  

The Erdős–Rényi model has recently been employed to generate STGs. In a previous study [21], STGs of 

varying sizes were produced by adjusting the input parameters for two versions of the Erdős–Rényi model 

(Erdős–Rényi itself and Gilbert model), demonstrating their resemblance to real power grids in the 

context of optimal PMU placement problem. In a more recent study [22], a modified version of the 

Erdős–Rényi model was proposed to create STGs of different sizes, while also specifying the locations of 

zero injection buses (ZIBs). The proposed technique systematically establishes the connectivity of the 

power graphs by rewiring and renumbering the vertices to achieve consecutive numbering. 

1-3- Review of Related Literature 

In the early 21st century, efforts were made to create synthetic power grids at the HV level to study power 

system blackouts [8] and develop a continuum model of electromechanical dynamics in large power grids 

[9]. These efforts were not yet official. Previous work on generating synthetic transmission networks was 

categorized into statistics-based approaches (e.g. [10]) and those utilizing machine learning methods (e.g. 

[18]), as discussed by the authors of [27]. 
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While the concept of synthetic transmission networks (HV) is relatively new in power system literature 

and emerged in the 21st century, the unofficial generation of synthetic distribution grids began in the 

early 2010s with Reference Network Models like RNM-Europe for distribution network planning [37, 

38]. This trend continued with models for distribution grids [14, 39]. The official introduction of synthetic 

distribution grids was documented in [23, 24], where authors used data from a Dutch DSO to create SDGs 

evaluated by KL divergence. An approach to generate synthetic distribution grids corresponding to 

existing power distribution systems was proposed in [25], along with a power system planning 

optimization technique using a multi-objective function. Authors in [26] extended their European 

reference model (RNM-Europe) to develop algorithms for large U.S. distribution grids, forming the 

RNM-US model. In [40], a grid synthesis procedure based on Dutch DSO spatial datasets was outlined, 

incorporating topology recognition, peak load estimation, and line dimensioning heuristics. 

Furthermore, a deep learning framework (unbalanced graph generative adversarial network) was 

introduced in [27] to create synthetic three-phase unbalanced active distribution networks using limited 

real data. Another framework proposed in [41] leveraged information on interdependent road and building 

infrastructures to synthesize distribution grids resembling physical counterparts for specific regions. 

In [42], a detailed overview of methods for creating synthetic graphs, encompassing both STGs and 

SDGs, up to the year of publication (2021) is available. However, the quantity of articles focusing on 

SDG generation [27, 40, 41, 43-46], and the validation approaches [31, 47] has notably increased since 

then. The recent increase in publications over the last two years alone underscores the novelty of 

generating synthetic distribution grids. 

In our very last publication [28], we introduced an algorithm based on the Erdős model to generate 

synthetic distribution graphs resembling radial distribution networks. The algorithm demonstrated 

promise in creating small-sized synthetic grids up to 35 vertices, with similarity to actual distribution 

networks validated through degree centrality metrics. 
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1-4- Motivation, Objective, and Contribution 

From the literature discussed in the preceding section and its timeliness, it is evident that the development 

of algorithms for creating synthetic distribution grids remains a current topic. Conversely, our recent 

algorithm proposal, based on the Erdős–Rényi model, can indeed generate radial SDGs but is limited in 

size. Thus, the need for algorithms with the capacity to generate remains an ongoing concern, serving as 

the primary motivation for our study. 

This research has two primary goals. The first objective is to enhance the algorithm in the Erdős–Rényi 

random graph model as detailed in [28] to produce synthetic distribution grids structured radially. In 

addressing the limitations of this initial algorithm, our study also introduces a new algorithm based on the 

Barabási-Albert model to create large and very large radial distribution grids synthetically. 

The contributions of this research are twofold: (I) To our knowledge, this work, alongside our earlier 

study [28], represents the inaugural endeavor to utilize the Erdős–Rényi random graph model for 

generating SDGs in the form of radial distribution grids. (II) This study marks the first exploration of 

employing the Barabási-Albert model to generate substantial and extensive SDGs structured as radial 

distribution grids. 

1-5- Paper Structure 

The structure of the remaining sections in this paper is as follows. Section 2 will provide an overview of 

the graph theory preliminaries. Section 3 will delve into the Erdős–Rényi random graph models, 

including the Gilbert and Erdős models, as well as explore tree generation. In Section 4, we will introduce 

our prior algorithm based on the Erdős–Rényi model, emphasizing its constraints in generating synthetic 

radial distribution grids. Consequently, we will propose a new algorithm in the same section, based on the 

Barabási-Albert model, aimed at addressing the limitations of the previous approach. Section 5 will 

showcase simulation results for synthetic distribution grids of various sizes, ranging from 20 to 1000. 

Finally, Section 6 will conclude the study and outline potential future research directions. 
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2. Preliminaries 

A graph G = (V,E) can be represented by a collection of vertices, V = {v1, v2, ..., vn} with a total of n 

vertices, and a set of edges, E = {eij} ⊆ V ×V with a total of M edges. The undirected edge eij connecting 

vertices vi and vj is denoted as eij = {vi, vj}. Two vertices vi and vj in V are considered adjacent if vi , vj ∈ E, 

and are referred to as neighbors. An undirected graph is a graph where all its edges are undirected. 

A graph G' = (V', E') is defined as a subgraph of another graph G = (V, E) if and only if V' is a subset of V 

and E' is a subset of E, meaning it includes all the vertices and edges present in the original graph. 

A tree is a type of graph that is both connected and acyclic, indicating it does not contain any cycles. It 

comprises nodes or vertices connected by edges, where each node has at most one edge incident upon it. 

This implies that there is a unique path between any two nodes in the tree. It is evident that a tree with n 

nodes has M = n-1 edges. 

In a graph G = (V, E) with n vertices and M edges, the adjacency matrix A, represented as a square 

matrix, is defined as A = [aij]n×n. Here, aij equals 1 if the ith vertex is connected to the jth vertex, and 0 

otherwise. In the case of an undirected graph, A is symmetric. A connected component in a disconnected 

undirected graph is a subgraph where any pair of vertices are linked by paths. It is denoted as Ci = (Vi, Ei), 

where i ranges from 1 to C(G), and the union of all Vi forms the entire vertex set V. The number of 

components in G is denoted by C(G), with C1 referred to as the giant component and the others as 

additional components. Various methods like breadth-first search (BFS), depth-first search (DFS), and the 

Tarjan algorithm have been suggested to determine graph connectivity and identify connected 

components. For a detailed explanation on calculating the number of components using DFS, readers are 

directed to Algorithm 1 in the referenced source [28]. 

2-1- Centrality Metrics 
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The analysis of complex networks involves various metrics categorized as clustering, distance, centrality, 

and scaling metrics. Within centrality metrics, there are two main types: neighborhood-based and shortest 

path-based. Degree centrality, a neighborhood-based metric, measures a node's connectivity in a network 

by counting the number of edges connected to that node. In an undirected graph G = (V, E), degree 

centrality is defined as: 

 )()deg()( vNvvd ==C  (1) 

where N(v) represents the direct neighbors of vertex v. 

A pendant vertex is a node v linked to the graph by a single edge (deg(v) = 1), while an isolated vertex has 

no connections (deg(v) = 0). The average degree of graph G = (V, E) is computed as: 

 
n

M
k

2
=  (2) 

where n = |V| and M = |E|. 

Several metrics based on degree centrality are employed to assess radial-shaped graphs and were 

introduced in [30] for validating radial-shaped synthetic distribution grids. 

The branching rate, denoted as br, offers insight into how much a network branches out. It is determined 

by the ratio of vertices with a degree of 3 or higher to the total number of vertices in the graph: 
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Assortative mixing in a network examines the correlation between nodes with similar degrees. The 

degree-based assortativity property is assessed using the Pearson correlation coefficient ρ: 
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where ji and ki represent the degrees of the vertices at the ends of the ith edge, with i = 1, ..., M. 

Here, negative values indicate a disassortative mixing pattern (nodes with high degrees tend to connect to 

nodes with low degrees), while positive values indicate an assortative mixing pattern (nodes with similar 

degrees tend to connect). 

3. Erdős–Rényi Random Graph Model 

The idea of random graphs emerged as a distinct area in graph theory [32], originating from the 

pioneering work of Solomonoff and Rapoport in 1951 [48]. They introduced a model for directed graphs 

with a fixed out-degree and randomly chosen connections to other nodes, known as the “Random Net.” 

However, significant progress in the study of random graphs was not made until the late 1950s and early 

1960s. Paul Erdős and Alfréd Rényi played a vital role in advancing the theory of random graphs through 

a series of papers published between 1959 and 1968 [33, 49-54]. Their research delved into various 

aspects such as evolution, strength, asymmetry, existence, and randomness within random graph models, 

laying the groundwork for further exploration in this field. Concurrently, Edgar Nelson Gilbert 

independently introduced his own model for generating random graphs around the same time as Erdős 

and Rényi's work [34]. Gilbert's model offered an alternative perspective on studying randomness in 

graph structures. While both models are commonly referred to as Erdős–Rényi, this study will use the 

term Erdős for the former and Gilbert for the latter. 

3-1- Erdős Random Graph Model 

The Erdős model, represented as G(n, M), gives all graphs with exactly M edges the same likelihood of 

occurring. The total count of different elements in G(n, M) is given by 








M

L
, where L is the total number 
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of potential edges that can be formed. Each individual graph within this model has an occurrence 

probability of 









M

L
1 . 

In order to create a random graph utilizing this model, a single loop procedure is employed to generate M 

edges as outlined in Algorithm 1. The result of this procedure is an adjacency matrix A, and the overall 

count of edges can be determined by tallying the non-zero elements within A through the utilization of the 

SUM function detailed in the algorithm [22]. 

Algorithm 1 – Erdős Random Graph Model 

 

3-2- Gilbert Random Graph Model 

The Gilbert random graph model is denoted by G(n, p), which is a commonly studied random graph 

model. In this model, each edge occurs independently with a probability p. The probability of obtaining a 

random graph with M edges is given by pM(1-p)N-M, where N is the number of possible combinations. In 

this model, the average degree can be approximated as ⟨k⟩≈n.p [34]. 
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The behavior of G(n, p) in its evolution depends on the value of c≜n.p. In the subcritical regime, if n.p <1, 

the components of G(n, p) are likely to be small trees. In the critical regime, if n.p=1, the largest 

component is likely to have size n⅔. In the supercritical regime, if n.p >1, there is likely to be a unique 

giant component. Furthermore, in the sparse regime, which occurs as n increases, the properties of the 

components of G(n, p) differ from those in the subcritical, critical, and supercritical regimes. It is 

important to highlight that the various regimes outlined in the Gilbert model can also be extended to this 

model, where c = 2M/n [22]. 

The Gilbert model generates graphs by selecting edges between vertices using two loops and a random 

number generator. If the generated random number θ is less than or equal to p, an edge is selected. Please 

refer to Algorithm 2 in the [28] for further details. 

3-3- Analyzing Two Erdős–Rényi Models in Tree Production 

The comprehensive analysis in [28] focuses on generating random graphs in tree structures. It emphasizes 

that the Erdős model, using G(n, M=n-1) as input parameters, has a higher likelihood of generating trees 

compared to the Gilbert model using G(n, 2/n). This contrast is illustrated in Figure 1. 

We generated 10,000 random graphs for three values of c (1.5, 2.0, and 2.5) and n ranging from 3 to 30 to 

analyze the tree generation probability. Similarly, for the Erdős model with adjustment G(n, M=n−1), we 

examined 10,000 random graphs for n ranging from 3 to 30. The results, depicted in Figure 1, show that 

the highest probability of generating a tree in the Gilbert model G(n, p) occurs at c = 2.0. For n > 15, the 

tree generation probability in this model drops to zero, while in the Erdős model G(n, M), this happens for 

n > 20. The probability of forming a tree in the Erdős model is notably higher than the best case of the 

Gilbert model (c = 2) due to the equal probability distribution of graphs with M edges in the Erdős model, 

particularly when M = n − 1, compared to the approximate edge determination in the Gilbert model. 
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Fig. 1. Probability of producing connected tree by G(n, p=c/n ) model with c=1.5, 2.0, and 2.5, and by G(n, M=n − 1) [28]. 

3-4- SDG Generation with Erdős Model 

The objective of [28] was to create random graphs resembling distribution networks using the Erdős–

Rényi random graph model. To accomplish this, we initially analyzed the structure of distribution 

networks and extracted their topology. Subsequently, leveraging the insights from previous sections and 

the network structures, we examined the potential of the Erdős–Rényi random graph models (Erdős itself 

and Gilbert) in replicating radial distribution network structures. Finally, an algorithm based on the Erdős 

model was introduced in [28] to generate synthetic distribution graphs. 

Algorithm 2 illustrates the proposed algorithm, with the sole input being n, representing the number of 

nodes in the synthetic distribution grid. The algorithm iterates the process of creating an Erdős random 

graph with the parameters G(n,M=n−1) until a connected graph is established. The connectivity 

verification is conducted using Algorithm 1 of [28], which assesses the number of components. 

Specifically, if C(G) equals one, indicating the formation of a tree, the generation process concludes. 

The data presented in Fig. 1 suggests that the Erdős model can potentially construct a tree up to n=20. 

However, upon implementing Algorithm 2 in [28], the algorithm demonstrated success in constructing 

trees up to n=35. In the study, various SDGs of sizes 15, 20, and 35 were created using Algorithm 2. The 
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average degree, maximum degree, branching rate, and clustering coefficient of these synthetic grids were 

then compared with real-world scenarios, revealing significant similarities. 

Algorithm 2 – Proposed Algorithm to Generate SDGs based on Erdős Random Graph Model 

 

The research in [28] primarily focused on generating SDGs using the established Erdős model, which, 

despite its widespread use, has size limitations. Moreover, within this model, there are no additional 

parameters beyond n to adjust the structure of the resultant tree, such as maximum degree and branching 

rate. To address these limitations and build upon the findings of [28], a new algorithm based on the 

renowned Barabási-Albert random graph model is proposed in this study. This novel algorithm, detailed 

in the subsequent section, aims to enhance the generation of SDGs by introducing additional control over 

the structural characteristics of the generated graphs. 

4. Proposed Method: SDG Generation with Barabási-Albert Model 

High-level description: The primary aim of this study is to introduce algorithms capable of generating 

Synthetic Distribution Grids (SDGs) in the form of trees, i.e., synthetic radial distribution grids. The 

initial algorithm, as presented in [28] and fully described in previous section, relies on the Erdős random 

model. While effective, this algorithm is constrained, particularly in terms of SDG size. To address this 

limitation, our novel algorithm is based on the Barabási-Albert model. It provides a solution without the 
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size restrictions of the previous method and includes a tuning parameter to modify the structure of the 

generated SDGs. 

The Barabási-Albert (BA) random graph model, proposed by Albert-László Barabási and Réka Albert in 

1999, revolutionized the study of complex networks [55]. This model aimed to explain the emergence of 

scale-free networks, where a few nodes have a disproportionately large number of connections compared 

to the majority of nodes with only a few connections. In the BA model, the network grows over time by 

adding nodes that preferentially attach to existing nodes with high degrees. This “rich get richer” 

mechanism leads to the formation of hubs, highly connected nodes that play a crucial role in the network's 

structure. As new nodes join the network, they are more likely to connect to well-connected nodes, 

reinforcing the network's scale-free nature. The BA model captures the idea that real-world networks, 

such as social networks, the World Wide Web [56], power grids [55], and biological networks [57], 

exhibit a power-law distribution of node degrees. This means that while most nodes have only a few 

connections, a small number of nodes act as hubs with a large number of connections. The algorithm for 

generating a Barabasi-Albert random graph can be described as follows: 

1. Start with a small number of nodes, typically m0, fully connected to each other to form a seed 

graph. 

2. Add a new node at each time step t and connect it to m ≤ m0 existing nodes. The probability pi that 

the i-th existing node will be chosen for connection by the new node is proportional to its degree 

Cd(i): 

 


=

=
n
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d

d
i

k

i
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C

C
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3. Repeat step 2 until the desired number of nodes is reached. 
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The resulting graph is a scale-free network, meaning that the degree distribution follows a power-law 

distribution, as follow: 

 − kkP )(  (6) 

where γ is a constant that represents the degree exponent. 

The Barabasi-Albert model offers flexibility in generating various graph structures, including trees. To 

produce a tree shape graph and in the first step, only two nodes, v1 and v2, are inserted in m0. 

Subsequently, new nodes are added and connected to existing nodes using preferential attachment 

described in Eq. 5. In each iteration, a new node is connected to existing nodes based on their 

connectivity, determined by the degree vector calculation. This iterative process fosters the growth of a 

tree structure where nodes are hierarchically connected like branches of a tree. Indeed, the initialization 

step and the connection of new nodes from the third node onwards contribute to shaping the resulting 

graph into a tree-like structure. 

In the original version of BA model described above, the probability of connecting to a node is influenced 

by its current degree, favoring nodes with higher degrees, described in Eq. 5. Following this approach, 

there is no any control on the structure of generated tree. Hence, we have introduced a new parameter, 

named “richness index” (denoted by ri) to modify the preferential attachment mechanism, as follow: 
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where, ri is the richness index and can be varied from 0 to 1. 
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Algorithm 3 – Proposed Algorithm to Generate SDGs based on Barabási -Albert Random Graph Model 

 

By introducing this tuning parameter, i.e. richness index, the proposed B-A model can be adapted to 

generate tree structures by modifying the preferential attachment mechanism. The richness index 

influences the probability of connecting to existing nodes during each step of the process, allowing for 

control over the growth patterns of the resulting SDG. Algorithm 3 outlines this process, which is 

described in 5 steps as follows: 

1. Initialization: Begin by initializing an adjacency matrix A of size n × n filled with zeros. Connect 

the first two nodes (v1 and v2) in the graph to start the network. 

2. Iterative Addition of Nodes: For each new node from 3 to n, calculate the degree vector Cd by 

summing the rows of the adjacency matrix. 
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3. Preferential Attachment: Calculate the probability pv of connecting to a node v based on its 

degree raised to the power of the richness index ri. Normalize these probabilities to create a selection 

probability p for existing nodes. 

4. Connect New Node: Randomly select an existing node to connect to based on preferential 

attachment. Update the adjacency matrix A by connecting the new node to the selected existing node 

and ensuring symmetry in the matrix. 

5. Return Result: Return the final adjacency matrix A, representing the generated SDG following the 

Barabasi-Albert model with the specified parameters. 

In Algorithm 3, through the adjustment of the richness index, the algorithm ensures that new nodes are 

added to the tree in a strategic manner that promotes a SDG, while still preserving the scale-free 

properties characteristic of B-A model. This fine-tuning allows for the creation of scale-free SDGs with 

desired characteristics. We will show this capability in the next sections. 

 

(a)                                                                                                  (b) 

Fig. 2. Two version of SDG with the size of n=20 generated by two proposed algorithms (a) Erdos and (b) Barabási-Albert. 
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(a)                                                                                                  (b) 

Fig. 3. Two version of SDG with the size of n=30 generated by two proposed algorithms (a) Erdos and (b) Barabási-Albert. 

5. Examples of Applications 

In this section, to demonstrate the effectiveness of the proposed B-A algorithm in generation of SDGs, we 

have used this model and our previous Erdős model in three different applications. Firstly, we assess the 

performance of both algorithms (i.e. Erdős and B-A) in creating SDGs of varying sizes, highlighting their 

capabilities in scaling effectively. Furthermore, we explore the versatility of the B-A algorithm in 

constructing SDGs with diverse structures by leveraging the richness index (ri) parameter. Through this 

exploration, we demonstrate how adjusting the ri value allows for the generation of SDGs with different 

topological characteristics, showcasing the flexibility and adaptability of the B-A algorithm in capturing a 

wide range of network structures. 

5-1- SDG Generation with Different Sizes 

In this section, 5 SDGs are created by the proposed algorithms, displayed in Fig. 2 to Fig. 4, with the B-A 

model set at ri=1, that is, the proposed B-A model considered to be original one. Results confirm the 

successful generation of synthetic radial distribution grids by both algorithms. 
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The degree-based parameters and Pearson coefficients of these SDGs, alongside three others of sizes 100, 

500, and 1000, are detailed in Table 1. The average degree values align closely with the theoretical 

formula for tree structures, indicating effective generation of tree-like graph by both models. Variations in 

maximum degree values show the original version of B-A model tends to produce higher-degree nodes, 

likely due to its preferential attachment mechanism set at ri=1. 

Table 1. Degree Metrics and Pearson Coefficient for Produced SGDs 

SDG 

Size 
Model 

Average 

Degree 

Max 

Degree 

Branching 

Rate 

Pearson 

Coefficient 

20 
Erdős 1.9000 4 0.1500 -0.2160 

B-A 1.9000 4 0.3000 -0.4074 

30 
Erdős 1.9333 4 0.1667 -0.2959 

B-A 1.9333 6 0.2333 -0.0755 

50 B-A 1.9600 6 0.2800 -0.1765 

100 B-A 1.9800 7 0.2600 -0.0195 

500 B-A 1.9960 10 0.2380 -0.0279 

1000 B-A 1.9980 11 0.2390 +0.0091 

 

The branching rate increases with tree size for both models, with the original B-A model consistently 

exhibiting higher rates, indicating a larger proportion of nodes with degrees ≥ 3. Pearson coefficients vary 

across sizes: smaller grids show negative coefficients, shifting to more neutral or slightly positive values 

with increased size, particularly in very large trees like n=1000 where most neighbor nodes have degree 

values of 2. 
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Fig. 4. The SDG with the size of n=50 generated by Barabási-Albert model. 

5-2- Proportion of Branching Rate (br) and Richness Index (ri) 

In this section, we analyze the impact of varying the richness index (ri) on the branching rates of SDGs. 

By generating 10,000 SDGs for sizes 25 and 100, with ri ranging from 0 to 1 in steps of 0.01, we observe 

changes in the branching rates displayed in Figure 5 by calculating the mean value of 10,000 obtained 

values of br for each B-A-SDG(n,ri). The results indicate that an increase in ri corresponds to a decrease 

in branching rate (br). This inverse relationship can be attributed to the equal probability of selecting 

nodes at ri=0, resulting in more nodes having higher degrees. In other word, same probability for every 

node in the tree leads to form more nodes with higher degrees. For instance in Figure 7 (a), uniform 

distributing of 2M=48 connections between n=25 nodes (ri set to 0) lead to form only 5 nodes with higher 

degree (v1 to v4 and v6), while preferential attachment mechanism (ri=1) lead to create 6 high degree 

nodes (v1, v3, v6, v8, v14, v19) in Figure 7 (b). In summary, the introduction of the new parameter (ri) in the 

proposed B-A algorithm enables the transformation of generated SDGs from “rural” to “urban” 

configurations.  

https://doi.org/10.22060/eej.2024.23143.5591


AUT Journal of Electrical Engineering 
10.22060/EEJ.2024.23143.5591 

 

Fig. 5. The changes in branching rate (br) based on the richness index (ri) in the B-A model for SDGs with two different sizes, 

n=25 (blue-dashed line) and n=100 (black line). 

Additionally in SDGs of smaller sizes (n=25), we observe lower branching rates at ri=0, due to limited 

candidates for nodes with high degrees. Conversely, in SDGs following the original preferential 

attachment mechanism at ri=1, larger sizes (n=100) lead to increased branching rates as there are more 

candidates available for attachment mechanisms. 

5-3- Proportion of μ-PMU Coverage (%PMU) and Richness Index (ri) 

The μ-PMU device, equipped with the ability to measure voltage and current phasors across a bus in the 

distribution grid, synchronized with GPS clock, enables observation of the bus and its neighboring buses. 

The μ-PMU placement problem focuses on determining the minimum number of μ-PMUs required for 
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complete observability of the distribution grid, known as μ-PMU coverage (%PMU) [58]. This placement 

problem can be formulated as a linear programming problem as follows [21, 22]: 
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where, X is a Boolean decision vector used to specify the location of a μ-PMU, with xi=1 indicating that 

the μ-PMU will be installed in the i-th bus. The generalized adjacency matrix A+ is defined as A+=A+In×n. 

While our recent research extensively explores the impact of transmission grid structures on %PMU 

values [22], this section delves into investigating how the structure of radial distribution grids influences 

μ-PMU coverage, represented as %PMU. 

To investigate how structural changes affect the %PMU value in radial grids of sizes 25 and 100, we 

generated 100 SDGs with varying values of the parameter ri (ranging from 0 to 1 in steps of 0.01). We 

then calculated the %PMU for each B-A-SDG(n,ri) by using linear programming as described in Eq. (8) 

and reported the mean value of 100 obtained values of %PMU in Figure 6. The figure illustrates that as ri 

increases from 0 to 1, there is a decrease in the %PMU, indicating a reduction in the number of μ-PMUs 

as the richness index increases. In light of the findings from Figure 5, it can be inferred that an increase in 

the branching rate leads to a higher %PMU, which may initially seem counterintuitive. 

This observation can be explained by the fact that in urban SDGs with higher branching rates, the number 

of branches with depths of 2 or 3 expands in the main branches (feeders), necessitating a greater number 

of μ-PMUs for full observability. This phenomenon is illustrated in Figures 7; Figure (a) represents a 

rural SDG with ri=0, requiring 8 μ-PMUs for full observability, while Figure (b) depicts an urban SDG 

with ri=1, necessitating 9 μ-PMUs for full observability. 
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Fig. 6. The changes in PMU coverage (%PMU) based on the richness index (ri) in the B-A model for SDGs with two different 

sizes, n=25 (blue-dashed line) and n=100 (black line). 

As a final conclusion, disregarding the minor differences between the graphs of n=25 and n=100 shown in 

Figures 5 and 6, it can be deduced that our proposed B-A model demonstrates the characteristics of a 

scale-free model with respect to the variation in the richness index. 
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(a) ri=0 , br=0.2 , No. of PMUs=8 (32%)                                         (b) ri=1, br=0.24 , No. of PMUs=9 (36%) 

Fig. 7. Two version of B-A SDGs with the size of n=25 generated by B-A algorithm (a) ri=0 , br=0.2 , %PMU=32% - and (b) 

ri=1, br=0.24 , %PMU=36%. The μ-PMU locations are specified by red squares. 

1. Conclusion 

In this extended study, we delve into the generation of synthetic distribution grids (SDGs) using 

innovative algorithms based on the Erdős and Barabási-Albert (B-A) random graph models. Building 

upon prior work, our research aims to overcome the size limitations and lack of adjustable structural 

parameters in the Erdős model by introducing the B-A model, offering enhanced control over the 

structural characteristics of the generated graphs through the introduction of a novel tuning parameter 

known as the “richness index”. Through the production of five SDGs of varying sizes and the analysis of 

degree-based parameters and Pearson coefficients, we showcase the efficacy of both algorithms in 

generating synthetic radial distribution grids. The comparison between the Erdős and the original B-A 

models reveals variations in maximum degree values, branching rates, and mixing patterns, with the 

original B-A model demonstrating a preference for nodes with higher degrees. Notably, as tree size 

increases, both models exhibit differing Pearson coefficients, reflecting changes in mixing patterns from 

disassortative to more neutral or slightly positive. Moreover, the proposed B-A model is analyzed 

concerning the variation of richness index in branching rate and μ-PMU placement. The results indicate 

that as the richness index increases, both the branching rate and PMU coverage decrease. These two 
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analyses also serve to validate the scale-free characteristic of the method, demonstrating its effectiveness 

in creating a well-connected SDG. Future research directions may delve into the unexplored area of 

vertex renumbering to enhance the refinement of algorithms for generating SDGs.  
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