تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,178 |
تعداد دریافت فایل اصل مقاله | 4,882,930 |
Geometry of Ricci solitons admitting a new geometric vector field | ||
AUT Journal of Mathematics and Computing | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 01 مرداد 1403 | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2024.23142.1234 | ||
نویسندگان | ||
Farzaneh Shamkhali؛ Ghodratallah Fasihi Ramandi* ؛ Shahroud Azami | ||
Department of Pure Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran | ||
چکیده | ||
In this paper, we define a new geometric vector field on (semi-)Riemannaian manifolds. These new vector fields on 3-dimensional Walker manifolds will be derived. Then, we study Ricci solitons admitting this new vector field (called semi-Killing vector field) as their potential. In Riemannain setting, we prove that Ricci solitons with semi-Killing potential vector field are Einstein. Also, It will be shown that such Lorentzian solitons have constant scalar curvature. Finally, application of this new structure in physics will be investigated. In fact, we propose that semi-Killing vector fields are in relation to the notion of dark energy in general relativity. | ||
کلیدواژهها | ||
Warped product؛ Geometric vector field؛ Riemannian geometry | ||
آمار تعداد مشاهده مقاله: 138 |