
تعداد نشریات | 7 |
تعداد شمارهها | 410 |
تعداد مقالات | 5,457 |
تعداد مشاهده مقاله | 5,871,601 |
تعداد دریافت فایل اصل مقاله | 5,230,770 |
برآورد تاثیر شدت سربار بر پتانسیل رمبندگی خاک در الگوهای مختلف نفوذ آب | ||
نشریه مهندسی عمران امیرکبیر | ||
مقاله 2، دوره 56، شماره 9، 1403، صفحه 1103-1124 اصل مقاله (1.25 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/ceej.2024.22440.7976 | ||
نویسندگان | ||
جواد محمودی؛ رضا پورحسینی* | ||
دانشکده مهندسی عمران، دانشگاه یزد، یزد، ایران | ||
چکیده | ||
خاک رمبنده در حالت خشک پایداری خوبی از خود نشان میدهد اما با ورود آب دچار نشستهای قابل توجه میگردد. پارامترهای زیادی میتوانند بر میزان نشست رمبندگی تاثیر بگذارند. میزان سربار در زمان خیس شدن یکی از مهمترین پارامترهای تاثیر گذار بر روی نشست و رفتار خاک رمبنده است. اشباع شدن خاک رمبنده از طریق منابع مختلفی مانند سیلاب، بارندگی، آبیاری، نشت لولههای مدفون و ... انجام میشود اما در آزمایشهایی که برای بررسی رفتار خاک رمبنده استفاده میشود، تاثیر این منابع قابل بررسی نیست. یک دستگاه با قابلیت شبیهسازی الگوهای مختلف نفوذ آب در خاک ساخته شد و با استفاده از سه سربار اشباع شدگی 100، 200 و 300 کیلوپاسکال تاثیر سربار در هر الگو نفوذ آب به صورت جداگانه مورد بررسی قرار گرفت. نتایج نشان میدهد که برای خاک رمبنده استفاده شده، در هر سه سربار میزان پتانسیل رمبندگی آزمایش ادئومتر با آزمایشهای الگوهای نفوذ آب اختلاف دارد و بیشترین اختلاف با مقدار 16 درصد مربوط به سربار 300 کیلوپاسکال است و در بین الگوهای مختلف نفوذ آب، الگوی نفوذ آب نقطهای از بالا بیشترین پتانسیل رمبندگی را ایجاد میکند. تغییرات پتانسیل رمبندگی در مقابل تغییرات سربار اشباع شدگی نشان میدهد در تمام الگوهای نفوذ آب با افزایش سربار اشباع شدگی، پتانسیل رمبندگی کاهش مییابد اما میزان تغییرات برای هر الگو متفاوت است. به عنوان مثال با افزایش سربار از 100 تا 200 کیلوپاسکال، بیشترین کاهش پتانسیل رمبندگی با مقدار27/2 درصد در الگو نفوذ آب نقطهای از پایین ایجاد میگردد. | ||
کلیدواژهها | ||
پتانسیل رمبندگی؛ نشت آب؛ دستگاه بزرگ مقیاس؛ سربار؛ خاک رمبنده | ||
موضوعات | ||
تست های آزمایشگاهی؛ خاک رمبنده؛ روش های آزمایشگاهی | ||
عنوان مقاله [English] | ||
Evaluation of the effect of surcharge intensity on the collapse potential of soils in different water infiltration patterns | ||
نویسندگان [English] | ||
Javad Mahmoudi؛ reza pourhosseini | ||
department of civil engineering, yazd university | ||
چکیده [English] | ||
Collapsible soils have good stability in dry states, but it experience significant settlements due to wetting. Many characteristics can affect the collapse settlement. The amount of wetting pressure is one of the most important parameters affecting the collapsible soil. Water can enter the collapsible soil from various sources such as floods, rainfall, irrigation, etc. However, in the tests used to investigate the behavior of the collapsible soils, the influence of these sources cannot be investigated. An apparatus capable of simulating different patterns of water infiltration in the soil was built and using three wetting pressures of 100, 200, and 300 kPa, the effect of surcharge in each pattern of water infiltration was investigated separately. The results show that if collapsible soil is used, in all three surcharges, the collapse potential of the oedometer test is different from the water infiltration tests. The biggest difference is related to the surcharge of 300 kPa that the maximum difference between the oedometer and water infiltration tests is 16%. When the water enters as top-point pattern, the highest collapse potential is created among the different patterns. The collapse potential decreases with the increase of the surcharge, but the amount of changes is different for each pattern. For example, with the increase of surcharge from 100 to 200 kPa, the greatest reduction of the collapse potential with a value of 27.2% is created in the bottom-point pattern. | ||
کلیدواژهها [English] | ||
Collapse Potential, Water Infiltration, Apparatus, Surcharge, Collapsible Soil | ||
مراجع | ||
[1] J.K. Mitchell, K. Soga, Fundamentals of soil behavior, John Wiley & Sons New York, (2005). [2] K.E. Gaaver, Geotechnical properties of Egyptian collapsible soils, Alexandria Engineering Journal, 51(3) (2012) 205-210. [3] K.-z. Yuan, W.-k. Ni, X.-f. Lü, H.-m. Wang, Effect of water distribution on shear strength of compacted loess, Geomechanics and Engineering, 31(5) (2022) 519. [4] C. Rogers, T. Dijkstra, I. Smalley, Hydroconsolidation and subsidence of loess: studies from China, Russia, North America and Europe: in memory of Jan Sajgalik, Engineering Geology, 37(2) (1994) 83-113. [5] M. Nouaouria, M. Guenfoud, B. Lafifi, Engineering properties of loess in Algeria, Engineering Geology, 99(1-2) (2008) 85-90. [6] M. Noutash, B. Hajialilue, M. Cheshmdoost, Prepounding of canals as a remediation method for collapsible soils, in: Proceedings of the 4th international conference on geotechnical engineering and soil mechanics, Tehran, Iran, (2010). [7] P. Li, S. Vanapalli, T. Li, Review of collapse triggering mechanism of collapsible soils due to wetting, Journal of Rock Mechanics and Geotechnical Engineering, 8(2) (2016) 256-274. [8] M. Zimbardo, L. Ercoli, B. Megna, The open metastable structure of a collapsible sand: fabric and bonding, Bulletin of Engineering Geology and the Environment, 75(1) (2016) 125-139. [9] M.S. Mahmood, M.J. Abrahim, A review of collapsible soils behavior and prediction, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, (2021), pp. 012044. [10] M.U. Qureshi, Z. Mahmood, Q.U. Farooq, Q. Qureshi, H. Alhandasi, I. Chang, Engineering characteristics of dune sand-fine marble waste mixtures, Geomech. Eng, 28 (2022) 547-557. [11] J. Jennings, A guid to construction on or with materials exhibiting additional settlement due to collapse of grain structure, (1975). [12] E.C. Lawton, R.J. Fragaszy, M.D. Hetherington, Review of wetting-induced collapse in compacted soil, Journal of geotechnical engineering, 118(9) (1992) 1376-1394. [13] L. Steadman, Collapse settlement in compacted soils of variable fines content, Washington State University, (1987). [14] Y. Guo, W. Ni, H. Liu, Effects of dry density and water content on compressibility and shear strength of loess, Geomechanics and Engineering, 24(5) (2021) 419-430. [15] S. Houston, W. Houston, C. Lawrence, Collapsible soil engineering in highway infrastructure development, Journal of Transportation Engineering, 128(3) (2002) 295-300. [16] D. Kim, Y. Chung, N.Z. Siddiki, Y. Shin, J.R. Kim, Mechanical Characteristics of Indiana Loess Soils for Highway Embankments, (2008). [17] M.S. Mahmood, A. Akhtarpour, R. Almahmodi, M.M.A. Husain, Settlement assessment of gypseous sand after time-based soaking, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, (2020), pp. 012080. [18] S. Wheeler, R. Sharma, M. Buisson, Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils, Géotechnique, 53(1) (2003) 41-54. [19] J.H. Pereira, D.G. Fredlund, M.P. Cardão Neto, G.d.F. Gitirana Jr, Hydraulic behavior of collapsible compacted gneiss soil, Journal of Geotechnical and Geoenvironmental Engineering, 131(10) (2005) 1264-1273. [20] G. Medero, F. Schnaid, W. Gehling, Oedometer behavior of an artificial cemented highly collapsible soil, Journal of Geotechnical and Geoenvironmental Engineering, 135(6) (2009) 840-843. [21] T. Alwail, C. Ho, R. Fragaszy, Collapse mechanism of compacted clayey and silty sands, in: Vertical and Horizontal Deformations of Foundations and Embankments, ASCE, (1994), pp. 1435-1446. [22] E.C. Lawton, Wetting-induced collapse in compacted soil, Washington State University, (1986). [23] N. Ismael, A. Jeragh, M. Mollah, O. Khaldi, Factors affecting the collapse potential of calcareous desert sands, in: Southeast Asian geotechnical conference. 9, (1987), pp. 147-158. [24] A. El Howayek, P.-T. Huang, R. Bisnett, M.C. Santagata, Identification and behavior of collapsible soils, Purdue University. Joint Transportation Research Program, (2011). [25] I. Mashhour, A. Hanna, Drag load on end-bearing piles in collapsible soil due to inundation, Canadian Geotechnical Journal, 53(12) (2016) 2030-2038. [26] M.A. Alassal, A.M. Hassan, H.H. Elmamlouk, Effect of Fines and Matric Suction on the Collapsibility of Sandy Soils, in: International Congress and Exhibition" Sustainable Civil Infrastructures”, Springer, (2019), pp. 61-72. [27] S.M. Haeri, Hydro-mechanical behavior of collapsible soils in unsaturated soil mechanics context, Japanese Geotechnical Society Special Publication, 2(1) (2016) 25-40. [28] A. Hanna, S. Soliman, Experimental investigation of foundation on collapsible soils, Journal of Geotechnical and Geoenvironmental Engineering, 143(11) (2017) 04017085. [29] S.D. Mohammadi, R. Ajalloeian, Investigation of Desirability of Sand Pluviation Technique in order to Sample Making of Sandy Soils for Laboratory Models, Modares Civil Engineering journal, 13(5) (2014) 53-63.(in Persion) | ||
آمار تعداد مشاهده مقاله: 205 تعداد دریافت فایل اصل مقاله: 235 |