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ABSTRACT: Graph embedding is the procedure of transforming a graph into a low-dimensional, 
informative representation. The majority of existing graph embedding techniques have given less 
consideration to the embedding distribution of the latent codes and more attention to the graph’s 
structure. Recently, Variational Graph AutoEncoders (VGAEs) have demonstrated good performance by 
learning smooth representations from unlabeled training samples. On the other hand, in regular VGAEs, 
the prior distribution over latent variables is generally a single Gaussian distribution. However, complex 
data distributions cannot be well-modelled under the assumption of a single Gaussian distribution. This 
choice of prior distribution is important because each dimension of a multivariate Gaussian can learn 
a separate continuous latent feature, which can result more structured and disentangled representation. 
In this paper, we employ the Gaussian Mixture Model (GMM) as the prior distribution in a Variational 
Graph Autoencoder (GMM-VGAE) framework for node classification in graphs. In this framework, 
GMM effectively discovers the inherent complex data distribution, and graph convolutional networks 
(GCNs) exploit the structure of the nodes of a graph to learn more informative representations. The 
proposed model incorporates several Graph Convolutional Networks (GCNs): one to map the input 
feature vector to the latent representation utilized for classification, another to generate the parameters 
of the latent distribution for learning from unlabeled data, and finally, an additional GCN is employed 
for reconstructing the input and delivering the reconstruction loss. Through extensive experiments on 
well-known Citations, Co-authorship, and Social network graphs, GMM-VGAE’s superiority over state-
of-the-art methods is demonstrated.
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1- Introduction
A graph is a type of data structure made up of edges and 

nodes. Graph data is huge dimensional and has a complicated 
structure, making it difficult to process with most typical 
machine learning algorithms. As a general solution to these 
issues, Graph Representation Learning (GRL), is introduced 
to embed nodes or graphs into smaller vector spaces while 
preserving as many structural and attribute properties as 
possible. Consequently, the main focus of GRL techniques 
has shifted to deep graph embedding systems based on the 
Graph Neural Networks (GNN) paradigm. GNNs can create 
node representations based on the structure and feature 
information of the graph by using parameter sharing. The 
neglect of data distribution by (GNNs) can result in inferior 
representations and susceptibility to overfitting[1]. The 
integration of GNNs with deep generative models, however, 
has demonstrated a substantial enhancement in the learned 
data distribution, leading to significantly improved generated 
representations. 

The framework of the Variational Graph Auto-Encoder 
(VGAEs) [2] is extensively explored in this context. In the 
domain of graph representation learning, VGAEs aggregate 
neighbourhood messages through Graph Convolutional 
Network (GCN) encoders. This incorporation aims to 
generate more informative node embeddings within VGAE. 
However, current VGAEs encounter architectural issues. 
They employ an unimodal Gaussian distribution as the 
prior distribution for their latent space, a choice that poses 
challenges, especially in handling complex data where each 
sample may come from various distributions, whether known 
or unknown, collectively known as multimodal distributions. 
In essence, multimodal data encompass multiple regions with 
elevated probability levels. 

In order to address this issue, a novel Variational Graph 
Autoencoder based on GMMs (GMM-VGAE) is proposed. 
We employ the Gaussian Mixture Models (GMMs) as the 
prior distribution of VGAE models. The fusion of these 
elements enhances the interpretability of the proposed model. 
Our contributions can be summarized as follows: We utilize 
the VGAE framework, incorporating the Gaussian Mixture *Corresponding author’s email: nickabadi@aut.ac.ir 
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Model (GMM) to represent the prior distribution. We show 
the superiority of GMM-AVGAE over state-of-the-art 
techniques on Citation, Co-authorship, and Social network 
benchmarks through node classification tasks. It should be 
noted that it is the first time VGAE is employed in the node 
classification task. 

In the remainder of the paper, Section 2 delves into related 
works, while Section 3 outlines the problem statement. The 
proposed GMM-VGAE model is detailed in Section 4. 
Experimental results and evaluations are presented in Section 
5. The paper concludes with Section 6. 

2- Related Works
Lately, scientists have employed encoders that are 

specifically made to combine the local neighbourhood data 
of nodes and produce low-dimensional embeddings. For 
example, Autoencoders prove to be a valuable approach for 
acquiring low-dimensional representations from unlabeled 
data. The utilization of graph autoencoders (GAEs) [3] to 
construct deep latent representations of network topologies 
has been increasingly favoured in recent years. The GAE 
models integrate graph convolutional networks (GCNs) 
[3] into the autoencoder architectures to learn a latent 
representation for nodes. This is achieved by reconstructing 
the adjacency matrix or initial feature vectors from these 
latent representations. Additionally, GAE-based approaches 
such as MGAE [4], GDN [5], and GALA [6] strive to preserve 
informative node features in the latent representation through 
the use of learnable encoders and decoders. While GAE-
based methods demonstrate effectiveness, they tend to neglect 
data distribution, resulting in suboptimal representations and 
susceptibility to overfitting [1]. The integration of the GAE 
framework with deep generative models serves to address 
these issues. Deep generative models can depict complicated 
relationships and interactions between input and output data 
by taking data distribution into consideration [7]. They have 
proven effective in applications such as unsupervised learning 
and the regularization of latent representations. 

The primary categories of generative models encompass 
Variational Graph AutoEncoders (VGAEs) [2]. VGAE 
employs the Gaussian distribution as a prior and encourages 
the learned representations to closely align with this prior 
through the incorporation of a KL divergence penalty. Xie 
et al. [8] presented a representation learning technique for 
networked documents to model document contents and 
relations using a VGAE framework. The Higher-order 
Graph Attention Network (HGAT) [9] which analyses and 
shuffles neighbourhood information of each document in 
each order, is the foundation of their suggested approach. 
The network embedding method known as NetVAE, created 
by Jin et al. [10], addresses the orthogonality between 
network topology data and node attributes. Here, node 
characteristics and network structure compression use the 
same encoder. However, a dual decoder supported by GMMs 
is introduced to allow independent reconstruction of network 
topologies and node properties. In addition, the paper [11] 
enhances Graph Neural Networks (GNNs) by integrating 

deep generative models with the Variational Graph Auto-
Encoder (VGAE) framework to address uncertainty in hidden 
variables. To improve upon traditional VGAE methods that 
struggle with data multimodality, the authors propose using 
a Gaussian Mixture Model (GMM) for the prior distribution. 
Additionally, adversarial regularization is incorporated 
to enhance the effectiveness of latent representations. 
The proposed approach is specifically applied to the link 
prediction task, demonstrating its practical utility 

The majority of mentioned publications are based on the 
assumption that the prior uncertainty of the observed data 
would follow a Gaussian distribution which is not correct 
for complex multimodal data. In some publications, other 
distributions are used in place of the traditional Gaussian 
distribution. The von Mises-Fisher (vMF) unimodal density 
is taken into account by Davidson et. al. in their S-VGAE 
model [12] to model the prior distribution and produce a 
better representation. Zheng et al.[13] suggest a method, 
named DBGAN, for estimating the prior distribution of latent 
representation in a structure-aware way. Through prototype 
learning, the graph and feature space are implicitly connected 
rather than using the common Gaussian distribution 
assumption. 

3- Problem Statement
The problem of node classification on graphs can be 

formally defined as follows. Given a graph ( ), , ,G V A X Y=
, where the set of nodes is { }1,..., NV v v= ; the adjacency 
matrix is N NA R ×∈ , and ija  denotes the presence or 
absence of an edge between iv  and jv . The feature matrix 
of N  nodes with F  features is N FX R ×∈ , where ijX  
Denotes the j -th characteristic of the i -th node. Also, in 
the Label set Y  where labels are partially observed, the goal 
is to predict the labels of the unlabeled nodes. Specifically, 
we aim to learn a function f  that maps each node iv  to a 
label iy  based on its features and the graph structure.

Formally, the node classification task involves learning 
node embeddings Z  where each iz  is in d  for all 

iv V∈ . Using these embeddings, each node iv  is classified 
as one of the predefined classes { }1 2, ,..., KC c c c= . The 
classification function f  can be trained using supervised 
learning on the labelled nodes and semi-supervised or 
unsupervised methods to exploit the structure and feature 
information of the unlabeled nodes.

The node classification problem can be represented as an 
optimization problem. Given the graph ( ), , ,G V A X Y= , the 
objective is to minimize the classification loss function L , 
which can be defined as:

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1) 

 

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼) 

  𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋)    (2) 

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

 

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃)) 

 

 

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖)                       (3) 

 

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

                           (4) 

 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)]                                   (5) 

 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

                           (6) 

 

 (1)

where LV V⊂  is the set of labelled nodes, ( )( ),i il y f z  
is the loss function measuring the discrepancy between the 
true label iy  and the predicted label ( )if z . By solving 
this optimization problem, we aim to accurately classify the 
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nodes in the graph, leveraging both the labelled data and the 
inherent structure of the graph.

In addition, we use Gaussian Mixture Models (GMM) 
where GMM belongs to the parametric probability density 
function family. It is a weighted sum of K  components. 
Each of these components follows a multivariate Gaussian 
distribution. The mixing weight, also known as the mixture 
probability or coefficient, is denoted by iπ  for the i -th 
component, ensuring that 

1

1
K

i
i

π
=

=∑ .
The notations used in this paper are listed in Table  1.

4- The Proposed Method
In this section, we introduce the Variational Graph 

Autoencoder based on the Gaussian Mixture Model (GMM-
VGAE) designed for node classification in graphs. Initially, 
we outline the overarching structure of the proposed model, 
followed by a comprehensive examination of its key 
components. Lastly, we delve into the description of the loss 
functions and expound on the training process of the model.

4- 1- Overview
Following the idea of Guasian Mixture Models for 

Variational Auto Encoder (GMM-VAEs) )[14], instead of 
mapping the input vector x  to a fixed latent vector z , a 
multimodal distribution over the latent space for each input 
data is learned. Due to the sampling step of GMM-VAEs, 

these models produce different representations for fixed input 
data and hence different labels may be assigned to the same 
input [15].

The GMM-VGAE framework is composed of two 
primary components within the general architecture of a 
Variational Autoencoder (VAE): the inference module and 
the generative module. The overall structure of the proposed 
model is depicted in  1. The inference module is responsible 
for encoding the input data into latent representations and 
consists of a series of Graph Convolutional Networks 
(GCNs) that process the input feature matrix and adjacency 
matrix to generate the latent variables. The generative module 
reconstructs the input data from the latent representations, 
using the latent variables generated by the inference module 
to reconstruct the feature matrix and generate the Gaussian 
Mixture Model (GMM) parameters.

The model takes two inputs: the adjacency matrix A , 
capturing the structural information of the graph G  with N  
nodes, and the feature matrix X , which corresponds to the 
feature matrix of N  nodes with F  features. Both the feature 
matrix X  and the adjacency matrix A  serve as inputs to 
the initial Graph Convolutional Network (GCN), denoted as 
(E1), which generates the initial latent representation fz  for 
each node’s feature vector. Subsequently, this representation 
undergoes further processing in a second GCN, labelled as 
(E2), resulting in the derivation of gz . Moreover, fz  is 

Table 1. The concept of the notations used in the paper.Table 1 The concept of the notations used in the paper. 

Symbol Meaning 
A The adjacency matrix 
N The number of nodes in the graph 
K’ The number of classes in the graph 
X The feature matrix 
F The number of features in X 

X,W,C The latent variables of the proposed method 
𝑧𝑧𝑔𝑔 The latent variable (representation) used for reconstruction of X 

𝑧𝑧𝑓𝑓 The latent variable (representation) used for classification 

𝜙𝜙𝑓𝑓 The parameters of the 𝑞𝑞𝜙𝜙𝑓𝑓(𝑧𝑧𝑓𝑓|𝑋𝑋, 𝐴𝐴) module 

𝜙𝜙𝑔𝑔 The parameters of the 𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺|𝑧𝑧𝑓𝑓) module 

𝜙𝜙𝑤𝑤 The parameters of the 𝑞𝑞𝜙𝜙𝑤𝑤(𝑊𝑊|𝑧𝑧𝑓𝑓) module 

𝜃𝜃 The parameters of the 𝑝𝑝𝜃𝜃(𝑋𝑋|𝐺𝐺) module 
𝛽𝛽 The parameters of 𝑝𝑝𝛽𝛽(𝐺𝐺|𝑊𝑊) module 
K The number of components in GMM 
𝜋𝜋 Mixing probability of GMM 

𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞 (||)𝑝𝑝) KL-divergence between q and p 
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Fig 1 The outline of the proposed Variational Graph Autoencoder based on the Guassian Mixture Model (GMM-VGAE). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The outline of the proposed Variational Graph Autoencoder based on the Guassian Mixture 
Model (GMM-VGAE).

 
Fig 2 The graphical models for GMM-VGAE show the generative model (left) and the inference model (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The graphical models for GMM-VGAE show the generative model 
(left) and the inference model (right).
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subjected to additional transformation within a third GCN, 
denoted as (E3), ultimately producing wz . In parallel, wz  
serves as input for a fourth GCN, labelled as (E4), which 
generates K  latent representations in the form of K  mean 
vectors ( kµ ) and variance vectors ( kσ ). For the purpose of 
reconstructing the input feature vectors, a two-layer GCN 
network (D1) is employed, utilizing the latent representation 

gz  as input.
The inference module includes the following steps: E1 

encodes the input feature matrix X  and adjacency matrix 
A  to produce fz ; E2 further encodes fz  to derive gz ; 
E3 transforms fz  to generate wz ; and E4 encodes wz  to 
produce K  mean vectors ( kµ ) and variance vectors ( 2

kσ ). 
The generative module includes the decoder (D1), which uses 

gz  to reconstruct the input feature matrix X .
Detailed explanations of each of these two components 

and their corresponding training procedures are presented in 
the subsequent subsections.

4- 2- Generative, Inference
GMM-VGAE consists of two main modules: a GCN-

based generative module, GCN-based inference module. In 
general, the generative and inference models of our proposed 
method are depicted in Figure  2. In the following, each of 
these modules is explained in detail.

GCN-based generative module: As 
depicted in Figure  2, the generative model 

( ) ( ) ( ) ( ) ( ), , , , ,p X G W C p C p W p G W C p X Gβ θ β θ=  
generates an observed sample X  from a set of latent variables 
G , W , and C , in contrast to VGAE, which employs a 
singular latent variable. This process can be described as:

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1) 

 

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼) 

  𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋)    (2) 

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

 

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃)) 

 

 

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖)                       (3) 

 

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

                           (4) 

 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)]                                   (5) 

 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

                           (6) 

 

 (2)

Where K  is the number of components in the 
mixture model and this parameter is identified as a model 
hyperparameter. W  follows a Gaussian distribution with 
mean zero and covariance matrix I . Also, a one-hot vector 
C  shows the mixing coefficients of the Gaussian mixture 
components which is sampled from mixing probability π . 
Here, 1/ kπ =  to cause C  to be uniformly distributed.

As shown in Figure  1, there is one GNN with the 
parameter of β  and one GNN with parameters of θ . 
According to the definition provided, the input of the GNN 

( )p G Wβ
 parameterized by β  is W  and its output is a 

Gaussian mixture of K  numbers of c kµ  and 
kcΣ . In the 

proposed model, ( ) ( ) ( )( )2; , ;p X G N G Gθ µ θ σ θ∼  which is 
parameterized by θ  is a two-layer GCN network that uses the 
structural information of the graph and the embedding of the 
neighbouring nodes to reconstruct the feature vector of a node. 
Training the model with the corresponding reconstruction loss 
forces the model to produce more representative embeddings 
for the input data.

The GCN-based inference module: This module encodes 
the input to a distribution over the latent space. However, 
it is challenging to directly solve the generative model, for 
example, determining the maximum likelihood estimation 
(MLE) of the parameters and the maximum a posteriori (MAP) 
of the latent variables. So, graph convolutional networks 
GCNs [3] are used to learn the representation and to produce 
the nodes’ representations based on the graph structure 
A  and the input feature matrix N FX R ×∈  . As shown in 
Figure  1, the first GNN ( )1E  as ( ),

f fq Z AXφ  has a one-
layer GCN architecture and maps the input feature matrix X  
and the graph structure A  to the latent representation fz . It 
should be noted that fz  is the final representation of GMM-
VGAE for the classification of the nodes.

Based on the mean-field variational family, we 
approximate the posterior distribution ( ), , fp G W C z  using 
a new distribution ( ), , fq G W C z  which is parameterized by 
trainable parameters φ , and β . Referring to Figure  2, in the 
inference model, we assume ( ), , fq G W C z

 
as

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1) 

 

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼) 

  𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋)    (2) 

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

 

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃)) 

 

 

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖)                       (3) 

 

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

                           (4) 

 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)]                                   (5) 

 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

                           (6) 

 

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1) 

 

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼) 

  𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋)    (2) 

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
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𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃)) 
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𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖)                       (3) 

 

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

                           (4) 

 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
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= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

                           (6) 

 

 (3)

In this equation, β  denotes the collection of GNN 
parameters associated with each GMM component. The set of 
GNN parameters related to G  and W  in variational factors 
are shown by gφ  and wφ , respectively. In addition, i indexes 
over data points and in order to make the notations simpler 
and assume one node at a time, the i indices are dropped in 
the following. We take the z-posterior, ( ),p C G Wβ

, as:

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1) 

 

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼) 

  𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋)    (2) 

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
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𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃)) 

 

 

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
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𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
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 (4)

The Evidence lower bound (ELBO), as the variational 
inference objective, is used to train the generative model, 
which can be determined as:

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1) 

 

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼) 

  𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋)    (2) 

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

 

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃)) 

 

 

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖)                       (3) 

 

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

                           (4) 

 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)]                                   (5) 

 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

                           (6) 

 

 (5)

in which, ( ) ( ) ( ) ( ) ( ), , , ,p X G W C p C p W p G W C p X G= , 
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so the ELBO loss is defined as:

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1) 

 

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼) 

  𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋)    (2) 

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

 

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃)) 

 

 

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖)                       (3) 

 

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

                           (4) 

 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)]                                   (5) 

 

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

                           (6) 

 

 (6)

The ELBO can be expressed as follows:

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)]
⏟

Reconstruction term

 −𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))]
⏟

G-conditional prior term

 −𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑤𝑤 (𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝(𝑊𝑊))
⏟

W-prior term

 −𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓) [𝐾𝐾𝐾𝐾 (𝑝𝑝𝛽𝛽(𝐶𝐶 ∣ 𝐺𝐺, 𝑊𝑊) ∥ 𝑝𝑝(𝐶𝐶))]
⏟

C-prior term

                           (7) 

 

 

 

𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)] ≈ 𝐸𝐸𝑧𝑧𝑔𝑔 ∼ 𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝𝜃𝜃(𝑋𝑋 ∣ 𝑧𝑧𝑔𝑔)]                        (8) 

 

𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))] ≈
1
𝑀𝑀 ∑ ∑ 𝑝𝑝𝛽𝛽

𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑗𝑗=1 (𝑐𝑐𝑘𝑘 = 1 ∣ 𝑔𝑔𝑗𝑗, 𝑤𝑤𝑗𝑗)𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔 (𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑤𝑤𝑗𝑗, 𝑐𝑐𝑘𝑘 = 1))

                        (9) 

 

 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = − ∑ 𝑌𝑌𝑖𝑖
𝐿𝐿
𝑖𝑖=1 log(𝑌̂𝑌𝑖𝑖)                                      (10) 

 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜆𝜆1𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐                         (11) 

 

 

 (7)

The first term in the lower bound is the reconstruction term 
and the following are G-conditional prior term, W-prior term, 
and C-prior term [14], respectively. In the ELBO equation, 
the reconstruction term can be estimated by taking Monte 
Carlo samples from ( )

g fq G zφ  
as gz , and improves the input 

reconstruction qualities. The reconstruction loss is defined as:

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)]
⏟

Reconstruction term

 −𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))]
⏟

G-conditional prior term

 −𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑤𝑤 (𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝(𝑊𝑊))
⏟

W-prior term

 −𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓) [𝐾𝐾𝐾𝐾 (𝑝𝑝𝛽𝛽(𝐶𝐶 ∣ 𝐺𝐺, 𝑊𝑊) ∥ 𝑝𝑝(𝐶𝐶))]
⏟

C-prior term

                           (7) 

 

 

 

𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)] ≈ 𝐸𝐸𝑧𝑧𝑔𝑔 ∼ 𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝𝜃𝜃(𝑋𝑋 ∣ 𝑧𝑧𝑔𝑔)]                        (8) 

 

𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))] ≈
1
𝑀𝑀 ∑ ∑ 𝑝𝑝𝛽𝛽

𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑗𝑗=1 (𝑐𝑐𝑘𝑘 = 1 ∣ 𝑔𝑔𝑗𝑗, 𝑤𝑤𝑗𝑗)𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔 (𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑤𝑤𝑗𝑗, 𝑐𝑐𝑘𝑘 = 1))

                        (9) 

 

 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = − ∑ 𝑌𝑌𝑖𝑖
𝐿𝐿
𝑖𝑖=1 log(𝑌̂𝑌𝑖𝑖)                                      (10) 

 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜆𝜆1𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐                         (11) 

 

 

 (8)

Where φ  and θ  are parameters of the GNNs. 
So, the model tries to increase the probability of 
generating the input X  as the output. The reconstruction 
loss is propagated back through this network. 
To approximate the conditional prior term, Monte Carlo 
can be utilized without the need to sample from the discrete 
distribution ( ),p C G W  as demonstrated in Equation(5). 
Therefore, the conditional prior term can be expressed as 
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Where M  is the number of Monte Carlo 
samples used to approximate the expectation. 
The W-prior term can be calculated analytically. The 
C-prior term in ELBO aims to reduce the KL divergence 
between the uniform prior and the C-posterior. In our model, 
C is a discrete latent variable, and C-posterior measures how 

far G is from each cluster position by W creates to calculate 
the likelihood of a cluster being assigned. By maximizing 
overlap and bringing the means closer together, it would try 
to bring the clusters together.

In addition, to improve the training process for the node 
classification task, we introduce a supervised loss term into 
the objective function. The cross-entropy loss function is 
defined as:
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where ˆY  Represents the class probabilities estimated by 
the classifier for the input data and L  is labeled data points. 
Each element iY  in Y  is a one-hot vector representing the 
true class of the i -th labelled node.

Finally, we combine the ELBO and classification losses to 
train our GMM-VGAE as follows:
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𝑖𝑖=1 log(𝑌̂𝑌𝑖𝑖)                                      (10) 

 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜆𝜆1𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐                         (11) 

 

 

 (11)

where 1λ  is a positive scalar weights that balance the 
terms in the loss. The pseudo-code of the proposed model is 
given in Algorithm 1.

4- 3- Training Procedure
The training procedure includes the following steps: 

Initialize the parameters φ , β , and θ  randomly. For each 
iteration, encode the input data using the sequence of GCNs 
to generate fz , gz , and wz . Sample from the latent 
representations and decode them to reconstruct the input 
feature matrix and generate GMM parameters. Calculate 
the reconstruction loss and the GMM-based loss to optimize 
the model parameters. Finally, update the model parameters 
using the calculated losses.

5- Experimental Results and Evaluations
To assess and analyze the performance of GMM-VGAE 

in node classification on graphs with a limited number of 
labelled nodes, several experiments are conducted in this 
section. Five Citation graph datasets, namely Cora-full[16], 
PubMed [17], CiteSeer [18], Cora [18], UAI2010 [19], 
two Co-authorship graph data sets, namely Coauthor CS 
[20] and Coauthor Physics [20] and two Social networks, 
namely BlogCatalog [21] and Flickr [22] are selected for 
the experiments. Table 2 summarizes the statistics of these 
datasets. 

Within the Citation datasets, each node represents an 
article, and the presence of an edge between two nodes 
indicates that one article cites the other. The topic of each 
article is denoted by a label. In this context, class labels serve 
as representations of the primary research area of the author, 
and node features encapsulate the keywords associated with 
the papers.

In the Co-authorship datasets, which derive from the 
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Microsoft Academic Graph in the KDD Cup 2016 challenge, 
nodes represent authors. Each edge signifies that two 
corresponding authors have collaborated in coauthoring an 
article.

In social network datasets, we use Flickr and BlogCatalog 
datasets. Flickr is a social network of the online photo-
sharing platform where nodes show users and edges represent 
friendship among users through photo sharing. The labels 
demonstrate the interest groups of the users, and features 
are determined by a list of tags reflecting the interests of the 
users. BlogCatalog is a Social network with bloggers and 
their social connections from the BlogCatalog website where 
nodes’ attributes are constructed by keywords generated 
by the users as a short description of the blogs. The labels 
represent the topic categories provided by the authors.

5- 1- Experimental Setup 
In our GMM-VGAE, the first GNN has one graph 

convolutional layer with 32 units and the other networks 
have one convolutional layer with 16 hidden units. The 
activation function of all layers is ReLU . We have trained 
GMM-VGAE for a maximum of 200 epochs using the 
Adam optimizer [23]. with an initial learning rate of 0.01, 
L2 regularization weight of 45 10−×  and dropout rates of 0.6 
for CiteSeer, Cora and Pubmed and 0.5 for other datasets. 
We stop training when validation accuracy does not increase, 
and announce the accuracy on the test set when the accuracy 
of the validation reaches its maximum. Every experiment is 
carried out ten times.

 

 

Table 2 Datasets used for the experiments. 

Dataset Type #Nodes #Edges #Classes #Features 
CiteSeer Citation network 3327 4732 6 3703 

Cora Citation network 2708 5429 7 1433 

Pubmed Citation network 19717 44338 3 500 

CoraFull Citation network 19793 65311 70 8710 

UAI2010 Citation network 3067 28311 19 4973 

Coauthor CS Co-authorship 18333 81894 15 6805 

Coauthor Physics Co-authorship 34493 247962 5 8415 

BlogCatalog Social network 5196 171743 6 8189 

Flickr Social network 7575 239738 9 12047 
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5- 1- 1- Results and Analysis 
The proposed model’s performance is compared with that 

of state-of-the-art models. We utilize the fixed data splits from 
[24], as they represent the standard benchmark data splits, 
and the results of other methods are predominantly reported 
on these splits. In addition, an ablation study is undertaken to 
verify the effect of GMM-VGAE.

5- 1- 2- Comparing the State-of-the-art Methods 
In this experiment, we adopt the fixed data splits 

recommended in [24]. For each class, 20 labelled nodes are 
chosen as the fixed split for training. The training sets for 
PubMed, CiteSeer, and Cora have sizes of 60, 120, and 140, 
respectively. For all datasets have identical validation and test 
sets, with 500 nodes for validation and 1000 nodes for testing. 

The results of various methods on the standard splits are 
presented in Table 3. The numbers indicate the classification 
accuracies of the models on the test sets of the mentioned 
three datasets, and the best results are highlighted in bold. 
Additionally, we conduct a comparative analysis of various 
supervised methods, broadly classified into two categories. 
The first category encompasses shallow Graph Convolutional 
Network (GCN) methods, such as GCN [3], G3NN[25], 
Eigen-GCN [26], GNN-LF/HF [27] and OAGS [28]. 
Subsequently, we extend our comparison to include deep 
GCN methods, namely JKNet[29], GCNII[30], ACMP[31] 
and GM-VGAE[11] . The results of the aforementioned 9 
competitive models are directly extracted from the related 
papers. 

As evident from the results, our proposed model 

consistently outperforms the base-line GCN method, 
demonstrating improvements of 2.6%, 4.3%, and 2.2% 
on Cora, CiteSeer, and PubMed, respectively. These 
improvements reflect the differences compared to the basic 
GCN method. When compared to other advanced methods, 
such as GCNII and JKNet, the improvements, while present, 
are not as pronounced. Specifically, our model achieved 
improvements of 1.2% and 1.0% on CiteSeer and PubMed, 
respectively, compared to GCNII. However, it should be 
noted that for the Cora dataset, GCNII outperforms our model 
slightly by 1.4%. 

Table 4 shows classification accuracies on Co-authorship 
datasets for some baseline methods and the proposed model. 
To guarantee a fair comparison with baselines, we execute 
100 runs for random training/validation/test splits and use 
20 labelled nodes per class for the training set, 30 nodes 
per class for the validation set, and the remaining nodes for 
the test set. The results of the baselines are obtained from 
[33]. We have divided all models into two categories: GNN 
variants ( GCN [3], MoNet[34], GAT[35], GraphSAGE[36], 
DAGNN[33], GraphMix[37]), and baseline methods (MLP, 
LogReg, LabelProp, LabelProp NL[38]). 

From the results of Table  4, it can be concluded that GNN-
based approaches which combine the structural information 
and feature information have better performances compared 
to the baseline methods that only consider the features or the 
structure. Among the GNN variants, GraphSAGE and GCN 
provide the same performance for almost all datasets. As 
evident from the results, our proposed model, GMM-VGAE, 
achieves the best performance on the Coauthor CS dataset. On 

Table 3. Node classification accuracies on the standard data splits of the three test datasets. The results are 
reported as mean accuracy ± standard deviation over multiple runs.Table 3 Node classification accuracies on the standard data splits of the three test datasets. The results are reported 

as mean accuracy ± standard deviation over multiple runs. 

Method Cora CiteSeer PubMed 
GCN[3] 81.5 70.3 79.0 
G3NN[25]  82.5 ± 0.2 74.4 ± 0.3 77.9 ± 0.4 
Eigen-GCN [26]  78.9 ± 0.7 66.5 ± 0.3 78.6 ± 0.1 
GNN-LF/HF [27]  84.0 ± 0.2 72.3 ± 0.3 80.5 ± 0.3 
OAGS[28]  83.9 ± 0.5 73.7 ± 0.7 81.9 ± 0.9 
GAUG+GCN[32]  83.6 73.11 —- 
JKNet[29]  82.7 ± 0.4 73.0 ± 0.5 77.9 ± 0.4 
GCNII[30]  85.5 ± 0.5 73.4 ± 0.6 80.2 ± 0.4 
ACMP[31]  84.9 ± 0.6 74.5 ± 1.0 79.4 ± 0.4 
GM-VGAE[11]  81.9 ± 0.7 72.1 ± 0.6 80.4 ± 0.3 

GMM-VGAE 84.1 ± 0.4 74.6 ± 0.2 81.2 ± 0.1 
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Table 4. Classification accuracies on Co-authorship datasets.The results are reported as mean accuracy ± 
standard deviation over multiple runs.Table 3 Node classification accuracies on the standard data splits of the three test datasets. The results are reported 

as mean accuracy ± standard deviation over multiple runs. 

Method Cora CiteSeer PubMed 
GCN[3] 81.5 70.3 79.0 
G3NN[25]  82.5 ± 0.2 74.4 ± 0.3 77.9 ± 0.4 
Eigen-GCN [26]  78.9 ± 0.7 66.5 ± 0.3 78.6 ± 0.1 
GNN-LF/HF [27]  84.0 ± 0.2 72.3 ± 0.3 80.5 ± 0.3 
OAGS[28]  83.9 ± 0.5 73.7 ± 0.7 81.9 ± 0.9 
GAUG+GCN[32]  83.6 73.11 —- 
JKNet[29]  82.7 ± 0.4 73.0 ± 0.5 77.9 ± 0.4 
GCNII[30]  85.5 ± 0.5 73.4 ± 0.6 80.2 ± 0.4 
ACMP[31]  84.9 ± 0.6 74.5 ± 1.0 79.4 ± 0.4 
GM-VGAE[11]  81.9 ± 0.7 72.1 ± 0.6 80.4 ± 0.3 

GMM-VGAE 84.1 ± 0.4 74.6 ± 0.2 81.2 ± 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Node classification results on UAI, CoraFull datasets.

 

Table 5 Node classification results on UAI, CoraFull datasets. 

Dataset UAI CoraFull 
L/C 20 40 60 20 40 60 

Metric ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 
DeepWalk 42.0 32.9 51.2 46.0 54.3 44.4 29.23 28.05 36.23 33.2 46.6 37.9 

LINE 43.7 37.0 45.3 39.6 51.0 43.7 17.7 18.2 25.0 25.4 29.6 30.8 
Cheby shev 50.0 33.6 58.1 38.8 59.8 40.6 53.3 74.5 58.2 53.4 59.8 54.1 

GCN 49.8 32.8 51.8 33.8 54.4 34.1 56.6 52.4 60.6 55.5 62.0 56.2 
KNN-GCN 66.06 52.43  68.74  54.45  71.64  54.78       
AMGCN 70.10     55.61 73.14 64.88 74.40 65.99       

GAT 56.9 39.6 63.7 45.0 68.4 48.9 58.4 54.4 62.9 58.3 64.3 59.6 
DEMO Net 23.4 16.8 30.2 26.3 34.1 29.0 54.5 50.4 60.2 56.2 61.5 57.2 

MixHop 61.5 49.1 65.0 53.8 67.6 56.3 47.4 45.0 57.2 53.5 60.1 56.4 
GRACE 65.54  48.38  66.67  49.50  68.68  51.51       

GMI 60.69  46.75  63.14  49.10  64.73  44.36       
SLAPS 46.82  41.60  34.62  25.28  62.51  51.81       
GCA 72.55  56.97  73.27  54.55  73.60  56.00       

GM-VGAE 71.0  55.4  72.1  53.1  71.4  53.9 58.3 54.2 62.6 57.3 63.4 58.9 
GMM-VGAE 73.5 57.15 74.3 55.0 74.2 56.8 61.4 56.4 65.0 60.1 66.1 61.7 
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the Coauthor Physics dataset, while GMM-VGAE performs 
exceptionally well, GraphMix slightly outperforms it with 
an accuracy of 94.4 0.8%±  compared to GMM-VGAE’s 
94.5 0.9%±

To assess the performance of our model in greater detail, 
the effect of different numbers (rates) of training nodes on our 
model is investigated on four other datasets. 

We chose 1000 nodes as the test and three label rates 
(20, 40, and 60 labelled nodes per class) for the training set 
from [39]. The same parameters specified by the arti- cles’ 
authors are used to initialize all baselines. Tables 5 and 6 
show classification accuracies and F1 scores where L/C 
refers to the number of labeled nodes per class. We compare 
GMM-VGAE with seven graph neural network algorithms 
(Chebyshev [40], GCN[3],kNN-GCN [39], GAT [35], 
DEMO-Net[41], MixHop[42], AMGCN[39]), two network 

embedding methods (DeepWalk[43], LINE[44]) and four 
self-supervised models (GRACE[45], GCA [46], GMI [47], 
SLAPS [48]). 

As the results show, the proposed model almost gets 
the best performance on all datasets with all label rates. 

5- 1- 3- Further analysis 
Table  5 summarizes the results of the proposed model 

for different values of the hyperparameter K  in node 
classification tasks. As can be seen, the best value of K  
depends on the target dataset. For example, the best value 
of K  for Cora ,Citetseer and Pubmed are 2, 3, and 3, 
respectively. It is clear from the results, that GMMs ( 1K >
) outperform the single Gaussian model ( 1K = ) and the 
best results for citation datasets are obtained for 2K =  and 

3K = .

Table 6. Node classification results on Flickr, and BlogCatalog datasets.Table 6 Node classification results on Flickr, and BlogCatalog datasets. 

Dataset Flickr BlogCatallog 
L/C 20 40 60 20 40 60 

Metric ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 
DeepWalk 24.3 21.3 28.7 26.9 30.1 27.2 38.6 34.9 50.8 48.6 55.0 53..5 

LINE 33.2 31.1 36.6 37.1 38.5 37.7 58.7 57.7 61.1 60.7 64.5 63.8 
Cheby shev 23.2 21.2 35.1 33.5 41.7 40.1 38.0 33.3 56.2 53.8 70.0 68.3 

GCN 41.4 39.9 45.4 43.2 47.9 46.5 69.8 68.7 71.2 70.7 72.6 71.8 
kNN-GCN  69.28  70.33  75.08  75.40  77.94  77.97  75.49  72.53  80.84  80.16  82.46 81.90 
AMGCN  75.26 74.63 80.06 79.36 82.10 81.81 81.89 81.36 84.94 84.32 87.30 86.94 

GAT 38.5 37.0 38.4 36.9 38.9 37.3 64.0 63.3 67.4 66.3 69.9 69.0 
DEMO Net 34.8 33.5 46.5 45.2 57.3 56.4 54.1 52.7 63.4 63.0 76.8 76.7 

MixHop 39.5 40.1 55.1 56.2 64.9 65.7 65.4 64.8 71.6 70.8 77.4 76.3 
GRACE   49.42 48.18 53.64 52.61 55.67 54.61 76.56 75.56 76.66 75.88 77.66 77.08 

GMI 49.17 28.43 52.74 30.94 53.78 31.50 66.46 39.2 68.01 40.42 72.59 43.24 
SLAPS  72.20 72.48 79.00 78.90 76.20 76.50 87.80 87.34 88.50 87.57 89.50 89.22 
GCA 63.44 63.26 63.90 64.60 64.43 64.64 80.51 81.28 84.89 84.04 86.34 86.19 

GM-VGAE  58.4 61.5 61.8 62.9 63.5 62.8 87.1 86.5 87.6 86.5 84.3 84.0 
GMM-VGAE 64.3 66.6 64.0 65.0 66.4 65.4 88.9 88.5 89.1 88.1 86.9 86.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. The results of different values of the hyperparameter K for GMM-VGAE.
Table 7 The results of different values of the hyperparameter 𝐾𝐾 for GMM-VGAE. 

Dataset k=1 k=2 k=3 k=4 k=5 k=6 k=7 
Cora 0.833 0.844 0.8303 0.8395 0.8376 0.831 0.830 

Citeseer 0.733 0.741 0.746 0.707 0.716 0.720 0.722 

Pubmed 0.801 0.809 0.812 0.80 0.798 0.792 0.797 
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6- Conclusions 
In this paper, we proposed an efficient framework, 

namely GMM-VGAE, for node classification in graphs by 
combining Graph Convolutional Networks and Variational 
Autoencoders. By assuming the Gaussian mixture models 
as the prior distribution of VGAE to capture the inherent 
complex data distributions, the GMM-VGAE profits from 
both labelled and unlabeled data to learn continuous latent 
representations for the nodes. The classification losses of 
the model improve the separation of the classes in the latent 
space while the ELBO regularize and smooth this space. 
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