
AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 56(1) (2024) 103-116
DOI: 10.22060/miscj.2024.23107.5358

A Guassian Mixture Variational Graph Autoencoder for Node Classification
Mohadeseh Ghayekhlou, Ahmad Nickabadi *

Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran.

ABSTRACT: Graph embedding is the procedure of transforming a graph into a low-dimensional,
informative representation. The majority of existing graph embedding techniques have given less
consideration to the embedding distribution of the latent codes and more attention to the graph’s
structure. Recently, Variational Graph AutoEncoders (VGAEs) have demonstrated good performance by
learning smooth representations from unlabeled training samples. On the other hand, in regular VGAEs,
the prior distribution over latent variables is generally a single Gaussian distribution. However, complex
data distributions cannot be well-modelled under the assumption of a single Gaussian distribution. This
choice of prior distribution is important because each dimension of a multivariate Gaussian can learn
a separate continuous latent feature, which can result more structured and disentangled representation.
In this paper, we employ the Gaussian Mixture Model (GMM) as the prior distribution in a Variational
Graph Autoencoder (GMM-VGAE) framework for node classification in graphs. In this framework,
GMM effectively discovers the inherent complex data distribution, and graph convolutional networks
(GCNs) exploit the structure of the nodes of a graph to learn more informative representations. The
proposed model incorporates several Graph Convolutional Networks (GCNs): one to map the input
feature vector to the latent representation utilized for classification, another to generate the parameters
of the latent distribution for learning from unlabeled data, and finally, an additional GCN is employed
for reconstructing the input and delivering the reconstruction loss. Through extensive experiments on
well-known Citations, Co-authorship, and Social network graphs, GMM-VGAE’s superiority over state-
of-the-art methods is demonstrated.

Review History:

Received: Apr. 13, 2024
Revised: Jul. 17, 2024
Accepted: Jul. 30, 2024
Available Online: Sep. 05, 2024

Keywords:

Graph Convolutional Networks

(GCNs)

Variational Graph Autoencoders

(VGAEs)

Gaussian Mixture Model (GMM)

103

1- Introduction
A graph is a type of data structure made up of edges and

nodes. Graph data is huge dimensional and has a complicated
structure, making it difficult to process with most typical
machine learning algorithms. As a general solution to these
issues, Graph Representation Learning (GRL), is introduced
to embed nodes or graphs into smaller vector spaces while
preserving as many structural and attribute properties as
possible. Consequently, the main focus of GRL techniques
has shifted to deep graph embedding systems based on the
Graph Neural Networks (GNN) paradigm. GNNs can create
node representations based on the structure and feature
information of the graph by using parameter sharing. The
neglect of data distribution by (GNNs) can result in inferior
representations and susceptibility to overfitting[1]. The
integration of GNNs with deep generative models, however,
has demonstrated a substantial enhancement in the learned
data distribution, leading to significantly improved generated
representations.

The framework of the Variational Graph Auto-Encoder
(VGAEs) [2] is extensively explored in this context. In the
domain of graph representation learning, VGAEs aggregate
neighbourhood messages through Graph Convolutional
Network (GCN) encoders. This incorporation aims to
generate more informative node embeddings within VGAE.
However, current VGAEs encounter architectural issues.
They employ an unimodal Gaussian distribution as the
prior distribution for their latent space, a choice that poses
challenges, especially in handling complex data where each
sample may come from various distributions, whether known
or unknown, collectively known as multimodal distributions.
In essence, multimodal data encompass multiple regions with
elevated probability levels.

In order to address this issue, a novel Variational Graph
Autoencoder based on GMMs (GMM-VGAE) is proposed.
We employ the Gaussian Mixture Models (GMMs) as the
prior distribution of VGAE models. The fusion of these
elements enhances the interpretability of the proposed model.
Our contributions can be summarized as follows: We utilize
the VGAE framework, incorporating the Gaussian Mixture *Corresponding author’s email: nickabadi@aut.ac.ir

 Copyrights for this article are retained by the author(s) with publishing rights granted to Amirkabir University Press. The content of this article

 is subject to the terms and conditions of the Creative Commons Attribution 4.0 International (CC-BY-NC 4.0) License. For more information,
please visit https://www.creativecommons.org/licenses/by-nc/4.0/legalcode.

https://dx.doi.org/10.22060/miscj.2024.23107.5358

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

104

Model (GMM) to represent the prior distribution. We show
the superiority of GMM-AVGAE over state-of-the-art
techniques on Citation, Co-authorship, and Social network
benchmarks through node classification tasks. It should be
noted that it is the first time VGAE is employed in the node
classification task.

In the remainder of the paper, Section 2 delves into related
works, while Section 3 outlines the problem statement. The
proposed GMM-VGAE model is detailed in Section 4.
Experimental results and evaluations are presented in Section
5. The paper concludes with Section 6.

2- Related Works
Lately, scientists have employed encoders that are

specifically made to combine the local neighbourhood data
of nodes and produce low-dimensional embeddings. For
example, Autoencoders prove to be a valuable approach for
acquiring low-dimensional representations from unlabeled
data. The utilization of graph autoencoders (GAEs) [3] to
construct deep latent representations of network topologies
has been increasingly favoured in recent years. The GAE
models integrate graph convolutional networks (GCNs)
[3] into the autoencoder architectures to learn a latent
representation for nodes. This is achieved by reconstructing
the adjacency matrix or initial feature vectors from these
latent representations. Additionally, GAE-based approaches
such as MGAE [4], GDN [5], and GALA [6] strive to preserve
informative node features in the latent representation through
the use of learnable encoders and decoders. While GAE-
based methods demonstrate effectiveness, they tend to neglect
data distribution, resulting in suboptimal representations and
susceptibility to overfitting [1]. The integration of the GAE
framework with deep generative models serves to address
these issues. Deep generative models can depict complicated
relationships and interactions between input and output data
by taking data distribution into consideration [7]. They have
proven effective in applications such as unsupervised learning
and the regularization of latent representations.

The primary categories of generative models encompass
Variational Graph AutoEncoders (VGAEs) [2]. VGAE
employs the Gaussian distribution as a prior and encourages
the learned representations to closely align with this prior
through the incorporation of a KL divergence penalty. Xie
et al. [8] presented a representation learning technique for
networked documents to model document contents and
relations using a VGAE framework. The Higher-order
Graph Attention Network (HGAT) [9] which analyses and
shuffles neighbourhood information of each document in
each order, is the foundation of their suggested approach.
The network embedding method known as NetVAE, created
by Jin et al. [10], addresses the orthogonality between
network topology data and node attributes. Here, node
characteristics and network structure compression use the
same encoder. However, a dual decoder supported by GMMs
is introduced to allow independent reconstruction of network
topologies and node properties. In addition, the paper [11]
enhances Graph Neural Networks (GNNs) by integrating

deep generative models with the Variational Graph Auto-
Encoder (VGAE) framework to address uncertainty in hidden
variables. To improve upon traditional VGAE methods that
struggle with data multimodality, the authors propose using
a Gaussian Mixture Model (GMM) for the prior distribution.
Additionally, adversarial regularization is incorporated
to enhance the effectiveness of latent representations.
The proposed approach is specifically applied to the link
prediction task, demonstrating its practical utility

The majority of mentioned publications are based on the
assumption that the prior uncertainty of the observed data
would follow a Gaussian distribution which is not correct
for complex multimodal data. In some publications, other
distributions are used in place of the traditional Gaussian
distribution. The von Mises-Fisher (vMF) unimodal density
is taken into account by Davidson et. al. in their S-VGAE
model [12] to model the prior distribution and produce a
better representation. Zheng et al.[13] suggest a method,
named DBGAN, for estimating the prior distribution of latent
representation in a structure-aware way. Through prototype
learning, the graph and feature space are implicitly connected
rather than using the common Gaussian distribution
assumption.

3- Problem Statement
The problem of node classification on graphs can be

formally defined as follows. Given a graph (), , ,G V A X Y=
, where the set of nodes is { }1,..., NV v v= ; the adjacency
matrix is N NA R ×∈ , and ija denotes the presence or
absence of an edge between iv and jv . The feature matrix
of N nodes with F features is N FX R ×∈ , where ijX
Denotes the j -th characteristic of the i -th node. Also, in
the Label set Y where labels are partially observed, the goal
is to predict the labels of the unlabeled nodes. Specifically,
we aim to learn a function f that maps each node iv to a
label iy based on its features and the graph structure.

Formally, the node classification task involves learning
node embeddings Z where each iz is in d for all

iv V∈ . Using these embeddings, each node iv is classified
as one of the predefined classes { }1 2, ,..., KC c c c= . The
classification function f can be trained using supervised
learning on the labelled nodes and semi-supervised or
unsupervised methods to exploit the structure and feature
information of the unlabeled nodes.

The node classification problem can be represented as an
optimization problem. Given the graph (), , ,G V A X Y= , the
objective is to minimize the classification loss function L ,
which can be defined as:

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1)

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼)

 𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋) (2)

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃))

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖) (3)

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

 (4)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)] (5)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

 (6)

 (1)

where LV V⊂ is the set of labelled nodes, ()(),i il y f z
is the loss function measuring the discrepancy between the
true label iy and the predicted label ()if z . By solving
this optimization problem, we aim to accurately classify the

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

105

nodes in the graph, leveraging both the labelled data and the
inherent structure of the graph.

In addition, we use Gaussian Mixture Models (GMM)
where GMM belongs to the parametric probability density
function family. It is a weighted sum of K components.
Each of these components follows a multivariate Gaussian
distribution. The mixing weight, also known as the mixture
probability or coefficient, is denoted by iπ for the i -th
component, ensuring that

1

1
K

i
i

π
=

=∑ .
The notations used in this paper are listed in Table 1.

4- The Proposed Method
In this section, we introduce the Variational Graph

Autoencoder based on the Gaussian Mixture Model (GMM-
VGAE) designed for node classification in graphs. Initially,
we outline the overarching structure of the proposed model,
followed by a comprehensive examination of its key
components. Lastly, we delve into the description of the loss
functions and expound on the training process of the model.

4- 1- Overview
Following the idea of Guasian Mixture Models for

Variational Auto Encoder (GMM-VAEs))[14], instead of
mapping the input vector x to a fixed latent vector z , a
multimodal distribution over the latent space for each input
data is learned. Due to the sampling step of GMM-VAEs,

these models produce different representations for fixed input
data and hence different labels may be assigned to the same
input [15].

The GMM-VGAE framework is composed of two
primary components within the general architecture of a
Variational Autoencoder (VAE): the inference module and
the generative module. The overall structure of the proposed
model is depicted in 1. The inference module is responsible
for encoding the input data into latent representations and
consists of a series of Graph Convolutional Networks
(GCNs) that process the input feature matrix and adjacency
matrix to generate the latent variables. The generative module
reconstructs the input data from the latent representations,
using the latent variables generated by the inference module
to reconstruct the feature matrix and generate the Gaussian
Mixture Model (GMM) parameters.

The model takes two inputs: the adjacency matrix A ,
capturing the structural information of the graph G with N
nodes, and the feature matrix X , which corresponds to the
feature matrix of N nodes with F features. Both the feature
matrix X and the adjacency matrix A serve as inputs to
the initial Graph Convolutional Network (GCN), denoted as
(E1), which generates the initial latent representation fz for
each node’s feature vector. Subsequently, this representation
undergoes further processing in a second GCN, labelled as
(E2), resulting in the derivation of gz . Moreover, fz is

Table 1. The concept of the notations used in the paper.Table 1 The concept of the notations used in the paper.

Symbol Meaning
A The adjacency matrix
N The number of nodes in the graph
K’ The number of classes in the graph
X The feature matrix
F The number of features in X

X,W,C The latent variables of the proposed method
𝑧𝑧𝑔𝑔 The latent variable (representation) used for reconstruction of X

𝑧𝑧𝑓𝑓 The latent variable (representation) used for classification

𝜙𝜙𝑓𝑓 The parameters of the 𝑞𝑞𝜙𝜙𝑓𝑓(𝑧𝑧𝑓𝑓|𝑋𝑋, 𝐴𝐴) module

𝜙𝜙𝑔𝑔 The parameters of the 𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺|𝑧𝑧𝑓𝑓) module

𝜙𝜙𝑤𝑤 The parameters of the 𝑞𝑞𝜙𝜙𝑤𝑤(𝑊𝑊|𝑧𝑧𝑓𝑓) module

𝜃𝜃 The parameters of the 𝑝𝑝𝜃𝜃(𝑋𝑋|𝐺𝐺) module
𝛽𝛽 The parameters of 𝑝𝑝𝛽𝛽(𝐺𝐺|𝑊𝑊) module
K The number of components in GMM
𝜋𝜋 Mixing probability of GMM

𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞 (||)𝑝𝑝) KL-divergence between q and p

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

106

Fig 1 The outline of the proposed Variational Graph Autoencoder based on the Guassian Mixture Model (GMM-VGAE).

Fig. 1. The outline of the proposed Variational Graph Autoencoder based on the Guassian Mixture
Model (GMM-VGAE).

Fig 2 The graphical models for GMM-VGAE show the generative model (left) and the inference model (right).

Fig. 2. The graphical models for GMM-VGAE show the generative model
(left) and the inference model (right).

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

107

subjected to additional transformation within a third GCN,
denoted as (E3), ultimately producing wz . In parallel, wz
serves as input for a fourth GCN, labelled as (E4), which
generates K latent representations in the form of K mean
vectors (kµ) and variance vectors (kσ). For the purpose of
reconstructing the input feature vectors, a two-layer GCN
network (D1) is employed, utilizing the latent representation

gz as input.
The inference module includes the following steps: E1

encodes the input feature matrix X and adjacency matrix
A to produce fz ; E2 further encodes fz to derive gz ;
E3 transforms fz to generate wz ; and E4 encodes wz to
produce K mean vectors (kµ) and variance vectors (2

kσ).
The generative module includes the decoder (D1), which uses

gz to reconstruct the input feature matrix X .
Detailed explanations of each of these two components

and their corresponding training procedures are presented in
the subsequent subsections.

4- 2- Generative, Inference
GMM-VGAE consists of two main modules: a GCN-

based generative module, GCN-based inference module. In
general, the generative and inference models of our proposed
method are depicted in Figure 2. In the following, each of
these modules is explained in detail.

GCN-based generative module: As
depicted in Figure 2, the generative model

() () () () (), , , , ,p X G W C p C p W p G W C p X Gβ θ β θ=
generates an observed sample X from a set of latent variables
G , W , and C , in contrast to VGAE, which employs a
singular latent variable. This process can be described as:

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1)

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼)

 𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋) (2)

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃))

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖) (3)

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

 (4)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)] (5)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

 (6)

 (2)

Where K is the number of components in the
mixture model and this parameter is identified as a model
hyperparameter. W follows a Gaussian distribution with
mean zero and covariance matrix I . Also, a one-hot vector
C shows the mixing coefficients of the Gaussian mixture
components which is sampled from mixing probability π .
Here, 1/ kπ = to cause C to be uniformly distributed.

As shown in Figure 1, there is one GNN with the
parameter of β and one GNN with parameters of θ .
According to the definition provided, the input of the GNN

()p G Wβ
 parameterized by β is W and its output is a

Gaussian mixture of K numbers of c kµ and
kcΣ . In the

proposed model, () () ()()2; , ;p X G N G Gθ µ θ σ θ∼ which is
parameterized by θ is a two-layer GCN network that uses the
structural information of the graph and the embedding of the
neighbouring nodes to reconstruct the feature vector of a node.
Training the model with the corresponding reconstruction loss
forces the model to produce more representative embeddings
for the input data.

The GCN-based inference module: This module encodes
the input to a distribution over the latent space. However,
it is challenging to directly solve the generative model, for
example, determining the maximum likelihood estimation
(MLE) of the parameters and the maximum a posteriori (MAP)
of the latent variables. So, graph convolutional networks
GCNs [3] are used to learn the representation and to produce
the nodes’ representations based on the graph structure
A and the input feature matrix N FX R ×∈ . As shown in
Figure 1, the first GNN ()1E as (),

f fq Z AXφ has a one-
layer GCN architecture and maps the input feature matrix X
and the graph structure A to the latent representation fz . It
should be noted that fz is the final representation of GMM-
VGAE for the classification of the nodes.

Based on the mean-field variational family, we
approximate the posterior distribution (), , fp G W C z using
a new distribution (), , fq G W C z which is parameterized by
trainable parameters φ , and β . Referring to Figure 2, in the
inference model, we assume (), , fq G W C z

as

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1)

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼)

 𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋) (2)

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃))

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖) (3)

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

 (4)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)] (5)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

 (6)

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1)

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼)

 𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋) (2)

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃))

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖) (3)

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

 (4)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)] (5)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

 (6)

 (3)

In this equation, β denotes the collection of GNN
parameters associated with each GMM component. The set of
GNN parameters related to G and W in variational factors
are shown by gφ and wφ , respectively. In addition, i indexes
over data points and in order to make the notations simpler
and assume one node at a time, the i indices are dropped in
the following. We take the z-posterior, (),p C G Wβ

, as:

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1)

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼)

 𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋) (2)

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃))

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖) (3)

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

 (4)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)] (5)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

 (6)

 (4)

The Evidence lower bound (ELBO), as the variational
inference objective, is used to train the generative model,
which can be determined as:

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1)

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼)

 𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋) (2)

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃))

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖) (3)

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

 (4)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)] (5)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

 (6)

 (5)

in which, () () () () (), , , ,p X G W C p C p W p G W C p X G= ,

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

108

so the ELBO loss is defined as:

𝐿𝐿 = 1
|𝑉𝑉𝐿𝐿|

∑ 𝑙𝑙𝑣𝑣𝑖𝑖∈𝑉𝑉𝐿𝐿 (𝑦𝑦𝑖𝑖, 𝑓𝑓(𝑧𝑧𝑖𝑖)) (1)

𝑊𝑊 ∼ 𝒩𝒩(0, 𝐼𝐼)

 𝐶𝐶 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝜋𝜋) (2)

𝐺𝐺|𝑊𝑊, 𝐶𝐶 ∼ 𝛱𝛱𝑘𝑘=1𝐾𝐾 𝑁𝑁 (𝜇𝜇𝑐𝑐𝑘𝑘(𝑊𝑊; 𝛽𝛽), 𝜎𝜎𝑐𝑐𝑘𝑘2 (𝑊𝑊; 𝛽𝛽))
𝑐𝑐𝑘𝑘

𝑋𝑋 ∣ 𝐺𝐺 ∼ 𝑁𝑁(𝜇𝜇(𝐺𝐺; 𝜃𝜃), 𝜎𝜎2(𝐺𝐺; 𝜃𝜃))

𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓) = ∏ 𝑞𝑞𝜙𝜙𝑔𝑔
𝒩𝒩
𝑖𝑖=1 (𝑔𝑔𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑞𝑞𝜙𝜙𝑤𝑤(𝑤𝑤𝑖𝑖 ∣ 𝑧𝑧𝑓𝑓𝑖𝑖)𝑝𝑝𝛽𝛽(𝑐𝑐𝑖𝑖 ∣ 𝑔𝑔𝑖𝑖, 𝑤𝑤𝑖𝑖) (3)

𝑝𝑝𝛽𝛽(𝑐𝑐𝑗𝑗 = 1 ∣ 𝐺𝐺,𝑊𝑊) = 𝑝𝑝(𝑐𝑐𝑗𝑗=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑗𝑗=1,𝑊𝑊)
∑ (𝑝𝑝(𝑐𝑐𝑘𝑘=1)𝑝𝑝(𝐺𝐺∣𝑐𝑐𝑘𝑘=1,𝑊𝑊))𝐾𝐾
𝑘𝑘=1

= 𝜋𝜋𝑗𝑗𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑗𝑗(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑗𝑗2(𝑊𝑊;𝛽𝛽))
∑ 𝜋𝜋𝑘𝑘𝐾𝐾
𝑘𝑘=1 𝒩𝒩(𝐺𝐺∣𝜇𝜇𝑘𝑘(𝑊𝑊;𝛽𝛽),𝜎𝜎𝑘𝑘2(𝑊𝑊;𝛽𝛽))

 (4)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓) [log (
𝑝𝑝(𝑋𝑋,𝐺𝐺,𝑊𝑊,𝐶𝐶)
𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)

)] (5)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋, 𝐺𝐺,𝑊𝑊, 𝐶𝐶) − 𝑞𝑞(𝐺𝐺,𝑊𝑊, 𝐶𝐶 ∣ 𝑧𝑧𝑓𝑓)]
= 𝐸𝐸𝑞𝑞(𝐺𝐺,𝑊𝑊,𝐶𝐶∣𝑧𝑧𝑓𝑓)[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐶𝐶) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶)
 +𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋 ∣ 𝐺𝐺) − 𝑞𝑞(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) − 𝑞𝑞(𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) − 𝑝𝑝(𝐶𝐶 ∣ 𝐺𝐺,𝑊𝑊)]

 (6)

 (6)

The ELBO can be expressed as follows:

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)]
⏟

Reconstruction term

 −𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))]
⏟

G-conditional prior term

 −𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑤𝑤 (𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝(𝑊𝑊))
⏟

W-prior term

 −𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓) [𝐾𝐾𝐾𝐾 (𝑝𝑝𝛽𝛽(𝐶𝐶 ∣ 𝐺𝐺, 𝑊𝑊) ∥ 𝑝𝑝(𝐶𝐶))]
⏟

C-prior term

 (7)

𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)] ≈ 𝐸𝐸𝑧𝑧𝑔𝑔 ∼ 𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝𝜃𝜃(𝑋𝑋 ∣ 𝑧𝑧𝑔𝑔)] (8)

𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))] ≈
1
𝑀𝑀 ∑ ∑ 𝑝𝑝𝛽𝛽

𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑗𝑗=1 (𝑐𝑐𝑘𝑘 = 1 ∣ 𝑔𝑔𝑗𝑗, 𝑤𝑤𝑗𝑗)𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔 (𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑤𝑤𝑗𝑗, 𝑐𝑐𝑘𝑘 = 1))

 (9)

 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = − ∑ 𝑌𝑌𝑖𝑖
𝐿𝐿
𝑖𝑖=1 log(𝑌̂𝑌𝑖𝑖) (10)

 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜆𝜆1𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 (11)

 (7)

The first term in the lower bound is the reconstruction term
and the following are G-conditional prior term, W-prior term,
and C-prior term [14], respectively. In the ELBO equation,
the reconstruction term can be estimated by taking Monte
Carlo samples from ()

g fq G zφ
as gz , and improves the input

reconstruction qualities. The reconstruction loss is defined as:

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)]
⏟

Reconstruction term

 −𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))]
⏟

G-conditional prior term

 −𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑤𝑤 (𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝(𝑊𝑊))
⏟

W-prior term

 −𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓) [𝐾𝐾𝐾𝐾 (𝑝𝑝𝛽𝛽(𝐶𝐶 ∣ 𝐺𝐺, 𝑊𝑊) ∥ 𝑝𝑝(𝐶𝐶))]
⏟

C-prior term

 (7)

𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)] ≈ 𝐸𝐸𝑧𝑧𝑔𝑔 ∼ 𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝𝜃𝜃(𝑋𝑋 ∣ 𝑧𝑧𝑔𝑔)] (8)

𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))] ≈
1
𝑀𝑀 ∑ ∑ 𝑝𝑝𝛽𝛽

𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑗𝑗=1 (𝑐𝑐𝑘𝑘 = 1 ∣ 𝑔𝑔𝑗𝑗, 𝑤𝑤𝑗𝑗)𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔 (𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑤𝑤𝑗𝑗, 𝑐𝑐𝑘𝑘 = 1))

 (9)

 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = − ∑ 𝑌𝑌𝑖𝑖
𝐿𝐿
𝑖𝑖=1 log(𝑌̂𝑌𝑖𝑖) (10)

 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜆𝜆1𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 (11)

 (8)

Where φ and θ are parameters of the GNNs.
So, the model tries to increase the probability of
generating the input X as the output. The reconstruction
loss is propagated back through this network.
To approximate the conditional prior term, Monte Carlo
can be utilized without the need to sample from the discrete
distribution (),p C G W as demonstrated in Equation(5).
Therefore, the conditional prior term can be expressed as
follows:

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)]
⏟

Reconstruction term

 −𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))]
⏟

G-conditional prior term

 −𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑤𝑤 (𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝(𝑊𝑊))
⏟

W-prior term

 −𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓) [𝐾𝐾𝐾𝐾 (𝑝𝑝𝛽𝛽(𝐶𝐶 ∣ 𝐺𝐺, 𝑊𝑊) ∥ 𝑝𝑝(𝐶𝐶))]
⏟

C-prior term

 (7)

𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)] ≈ 𝐸𝐸𝑧𝑧𝑔𝑔 ∼ 𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝𝜃𝜃(𝑋𝑋 ∣ 𝑧𝑧𝑔𝑔)] (8)

𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))] ≈
1
𝑀𝑀 ∑ ∑ 𝑝𝑝𝛽𝛽

𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑗𝑗=1 (𝑐𝑐𝑘𝑘 = 1 ∣ 𝑔𝑔𝑗𝑗, 𝑤𝑤𝑗𝑗)𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔 (𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑤𝑤𝑗𝑗, 𝑐𝑐𝑘𝑘 = 1))

 (9)

 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = − ∑ 𝑌𝑌𝑖𝑖
𝐿𝐿
𝑖𝑖=1 log(𝑌̂𝑌𝑖𝑖) (10)

 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜆𝜆1𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 (11)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)]
⏟

Reconstruction term

 −𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))]
⏟

G-conditional prior term

 −𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑤𝑤 (𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝(𝑊𝑊))
⏟

W-prior term

 −𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓) [𝐾𝐾𝐾𝐾 (𝑝𝑝𝛽𝛽(𝐶𝐶 ∣ 𝐺𝐺, 𝑊𝑊) ∥ 𝑝𝑝(𝐶𝐶))]
⏟

C-prior term

 (7)

𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)] ≈ 𝐸𝐸𝑧𝑧𝑔𝑔 ∼ 𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝𝜃𝜃(𝑋𝑋 ∣ 𝑧𝑧𝑔𝑔)] (8)

𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))] ≈
1
𝑀𝑀 ∑ ∑ 𝑝𝑝𝛽𝛽

𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑗𝑗=1 (𝑐𝑐𝑘𝑘 = 1 ∣ 𝑔𝑔𝑗𝑗, 𝑤𝑤𝑗𝑗)𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔 (𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑤𝑤𝑗𝑗, 𝑐𝑐𝑘𝑘 = 1))

 (9)

 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = − ∑ 𝑌𝑌𝑖𝑖
𝐿𝐿
𝑖𝑖=1 log(𝑌̂𝑌𝑖𝑖) (10)

 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜆𝜆1𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 (11)

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)]
⏟

Reconstruction term

 −𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))]
⏟

G-conditional prior term

 −𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑤𝑤 (𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝(𝑊𝑊))
⏟

W-prior term

 −𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓) [𝐾𝐾𝐾𝐾 (𝑝𝑝𝛽𝛽(𝐶𝐶 ∣ 𝐺𝐺, 𝑊𝑊) ∥ 𝑝𝑝(𝐶𝐶))]
⏟

C-prior term

 (7)

𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)] ≈ 𝐸𝐸𝑧𝑧𝑔𝑔 ∼ 𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝𝜃𝜃(𝑋𝑋 ∣ 𝑧𝑧𝑔𝑔)] (8)

𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))] ≈
1
𝑀𝑀 ∑ ∑ 𝑝𝑝𝛽𝛽

𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑗𝑗=1 (𝑐𝑐𝑘𝑘 = 1 ∣ 𝑔𝑔𝑗𝑗, 𝑤𝑤𝑗𝑗)𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔 (𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑤𝑤𝑗𝑗, 𝑐𝑐𝑘𝑘 = 1))

 (9)

 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = − ∑ 𝑌𝑌𝑖𝑖
𝐿𝐿
𝑖𝑖=1 log(𝑌̂𝑌𝑖𝑖) (10)

 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜆𝜆1𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 (11)

 (9)

Where M is the number of Monte Carlo
samples used to approximate the expectation.
The W-prior term can be calculated analytically. The
C-prior term in ELBO aims to reduce the KL divergence
between the uniform prior and the C-posterior. In our model,
C is a discrete latent variable, and C-posterior measures how

far G is from each cluster position by W creates to calculate
the likelihood of a cluster being assigned. By maximizing
overlap and bringing the means closer together, it would try
to bring the clusters together.

In addition, to improve the training process for the node
classification task, we introduce a supervised loss term into
the objective function. The cross-entropy loss function is
defined as:

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)]
⏟

Reconstruction term

 −𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))]
⏟

G-conditional prior term

 −𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑤𝑤 (𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝(𝑊𝑊))
⏟

W-prior term

 −𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓) [𝐾𝐾𝐾𝐾 (𝑝𝑝𝛽𝛽(𝐶𝐶 ∣ 𝐺𝐺, 𝑊𝑊) ∥ 𝑝𝑝(𝐶𝐶))]
⏟

C-prior term

 (7)

𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)] ≈ 𝐸𝐸𝑧𝑧𝑔𝑔 ∼ 𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝𝜃𝜃(𝑋𝑋 ∣ 𝑧𝑧𝑔𝑔)] (8)

𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))] ≈
1
𝑀𝑀 ∑ ∑ 𝑝𝑝𝛽𝛽

𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑗𝑗=1 (𝑐𝑐𝑘𝑘 = 1 ∣ 𝑔𝑔𝑗𝑗, 𝑤𝑤𝑗𝑗)𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔 (𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑤𝑤𝑗𝑗, 𝑐𝑐𝑘𝑘 = 1))

 (9)

 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = − ∑ 𝑌𝑌𝑖𝑖
𝐿𝐿
𝑖𝑖=1 log(𝑌̂𝑌𝑖𝑖) (10)

 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜆𝜆1𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 (11)

 (10)

where ˆY Represents the class probabilities estimated by
the classifier for the input data and L is labeled data points.
Each element iY in Y is a one-hot vector representing the
true class of the i -th labelled node.

Finally, we combine the ELBO and classification losses to
train our GMM-VGAE as follows:

𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)]
⏟

Reconstruction term

 −𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))]
⏟

G-conditional prior term

 −𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑤𝑤 (𝑊𝑊 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝(𝑊𝑊))
⏟

W-prior term

 −𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓) [𝐾𝐾𝐾𝐾 (𝑝𝑝𝛽𝛽(𝐶𝐶 ∣ 𝐺𝐺, 𝑊𝑊) ∥ 𝑝𝑝(𝐶𝐶))]
⏟

C-prior term

 (7)

𝐸𝐸𝑞𝑞(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝(𝑋𝑋 ∣ 𝐺𝐺)] ≈ 𝐸𝐸𝑧𝑧𝑔𝑔 ∼ 𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺∣𝑧𝑧𝑓𝑓)[log𝑝𝑝𝜃𝜃(𝑋𝑋 ∣ 𝑧𝑧𝑔𝑔)] (8)

𝐸𝐸𝑞𝑞(𝑊𝑊∣𝑧𝑧𝑓𝑓)𝑝𝑝(𝐶𝐶∣𝐺𝐺,𝑊𝑊) [𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔(𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑊𝑊, 𝐶𝐶))] ≈
1
𝑀𝑀 ∑ ∑ 𝑝𝑝𝛽𝛽

𝐾𝐾
𝑘𝑘=1

𝑀𝑀
𝑗𝑗=1 (𝑐𝑐𝑘𝑘 = 1 ∣ 𝑔𝑔𝑗𝑗, 𝑤𝑤𝑗𝑗)𝐾𝐾𝐾𝐾 (𝑞𝑞𝜙𝜙𝑔𝑔 (𝐺𝐺 ∣ 𝑧𝑧𝑓𝑓) ∥ 𝑝𝑝𝛽𝛽(𝐺𝐺 ∣ 𝑤𝑤𝑗𝑗, 𝑐𝑐𝑘𝑘 = 1))

 (9)

 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = − ∑ 𝑌𝑌𝑖𝑖
𝐿𝐿
𝑖𝑖=1 log(𝑌̂𝑌𝑖𝑖) (10)

 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜆𝜆1𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 (11)

 (11)

where 1λ is a positive scalar weights that balance the
terms in the loss. The pseudo-code of the proposed model is
given in Algorithm 1.

4- 3- Training Procedure
The training procedure includes the following steps:

Initialize the parameters φ , β , and θ randomly. For each
iteration, encode the input data using the sequence of GCNs
to generate fz , gz , and wz . Sample from the latent
representations and decode them to reconstruct the input
feature matrix and generate GMM parameters. Calculate
the reconstruction loss and the GMM-based loss to optimize
the model parameters. Finally, update the model parameters
using the calculated losses.

5- Experimental Results and Evaluations
To assess and analyze the performance of GMM-VGAE

in node classification on graphs with a limited number of
labelled nodes, several experiments are conducted in this
section. Five Citation graph datasets, namely Cora-full[16],
PubMed [17], CiteSeer [18], Cora [18], UAI2010 [19],
two Co-authorship graph data sets, namely Coauthor CS
[20] and Coauthor Physics [20] and two Social networks,
namely BlogCatalog [21] and Flickr [22] are selected for
the experiments. Table 2 summarizes the statistics of these
datasets.

Within the Citation datasets, each node represents an
article, and the presence of an edge between two nodes
indicates that one article cites the other. The topic of each
article is denoted by a label. In this context, class labels serve
as representations of the primary research area of the author,
and node features encapsulate the keywords associated with
the papers.

In the Co-authorship datasets, which derive from the

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

109

Microsoft Academic Graph in the KDD Cup 2016 challenge,
nodes represent authors. Each edge signifies that two
corresponding authors have collaborated in coauthoring an
article.

In social network datasets, we use Flickr and BlogCatalog
datasets. Flickr is a social network of the online photo-
sharing platform where nodes show users and edges represent
friendship among users through photo sharing. The labels
demonstrate the interest groups of the users, and features
are determined by a list of tags reflecting the interests of the
users. BlogCatalog is a Social network with bloggers and
their social connections from the BlogCatalog website where
nodes’ attributes are constructed by keywords generated
by the users as a short description of the blogs. The labels
represent the topic categories provided by the authors.

5- 1- Experimental Setup
In our GMM-VGAE, the first GNN has one graph

convolutional layer with 32 units and the other networks
have one convolutional layer with 16 hidden units. The
activation function of all layers is ReLU . We have trained
GMM-VGAE for a maximum of 200 epochs using the
Adam optimizer [23]. with an initial learning rate of 0.01,
L2 regularization weight of 45 10−× and dropout rates of 0.6
for CiteSeer, Cora and Pubmed and 0.5 for other datasets.
We stop training when validation accuracy does not increase,
and announce the accuracy on the test set when the accuracy
of the validation reaches its maximum. Every experiment is
carried out ten times.

Table 2 Datasets used for the experiments.

Dataset Type #Nodes #Edges #Classes #Features
CiteSeer Citation network 3327 4732 6 3703

Cora Citation network 2708 5429 7 1433

Pubmed Citation network 19717 44338 3 500

CoraFull Citation network 19793 65311 70 8710

UAI2010 Citation network 3067 28311 19 4973

Coauthor CS Co-authorship 18333 81894 15 6805

Coauthor Physics Co-authorship 34493 247962 5 8415

BlogCatalog Social network 5196 171743 6 8189

Flickr Social network 7575 239738 9 12047

Table 2. Datasets used for the experiments.

Table 2 Datasets used for the experiments.

Dataset Type #Nodes #Edges #Classes #Features
CiteSeer Citation network 3327 4732 6 3703

Cora Citation network 2708 5429 7 1433

Pubmed Citation network 19717 44338 3 500

CoraFull Citation network 19793 65311 70 8710

UAI2010 Citation network 3067 28311 19 4973

Coauthor CS Co-authorship 18333 81894 15 6805

Coauthor Physics Co-authorship 34493 247962 5 8415

BlogCatalog Social network 5196 171743 6 8189

Flickr Social network 7575 239738 9 12047

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

110

5- 1- 1- Results and Analysis
The proposed model’s performance is compared with that

of state-of-the-art models. We utilize the fixed data splits from
[24], as they represent the standard benchmark data splits,
and the results of other methods are predominantly reported
on these splits. In addition, an ablation study is undertaken to
verify the effect of GMM-VGAE.

5- 1- 2- Comparing the State-of-the-art Methods
In this experiment, we adopt the fixed data splits

recommended in [24]. For each class, 20 labelled nodes are
chosen as the fixed split for training. The training sets for
PubMed, CiteSeer, and Cora have sizes of 60, 120, and 140,
respectively. For all datasets have identical validation and test
sets, with 500 nodes for validation and 1000 nodes for testing.

The results of various methods on the standard splits are
presented in Table 3. The numbers indicate the classification
accuracies of the models on the test sets of the mentioned
three datasets, and the best results are highlighted in bold.
Additionally, we conduct a comparative analysis of various
supervised methods, broadly classified into two categories.
The first category encompasses shallow Graph Convolutional
Network (GCN) methods, such as GCN [3], G3NN[25],
Eigen-GCN [26], GNN-LF/HF [27] and OAGS [28].
Subsequently, we extend our comparison to include deep
GCN methods, namely JKNet[29], GCNII[30], ACMP[31]
and GM-VGAE[11] . The results of the aforementioned 9
competitive models are directly extracted from the related
papers.

As evident from the results, our proposed model

consistently outperforms the base-line GCN method,
demonstrating improvements of 2.6%, 4.3%, and 2.2%
on Cora, CiteSeer, and PubMed, respectively. These
improvements reflect the differences compared to the basic
GCN method. When compared to other advanced methods,
such as GCNII and JKNet, the improvements, while present,
are not as pronounced. Specifically, our model achieved
improvements of 1.2% and 1.0% on CiteSeer and PubMed,
respectively, compared to GCNII. However, it should be
noted that for the Cora dataset, GCNII outperforms our model
slightly by 1.4%.

Table 4 shows classification accuracies on Co-authorship
datasets for some baseline methods and the proposed model.
To guarantee a fair comparison with baselines, we execute
100 runs for random training/validation/test splits and use
20 labelled nodes per class for the training set, 30 nodes
per class for the validation set, and the remaining nodes for
the test set. The results of the baselines are obtained from
[33]. We have divided all models into two categories: GNN
variants (GCN [3], MoNet[34], GAT[35], GraphSAGE[36],
DAGNN[33], GraphMix[37]), and baseline methods (MLP,
LogReg, LabelProp, LabelProp NL[38]).

From the results of Table 4, it can be concluded that GNN-
based approaches which combine the structural information
and feature information have better performances compared
to the baseline methods that only consider the features or the
structure. Among the GNN variants, GraphSAGE and GCN
provide the same performance for almost all datasets. As
evident from the results, our proposed model, GMM-VGAE,
achieves the best performance on the Coauthor CS dataset. On

Table 3. Node classification accuracies on the standard data splits of the three test datasets. The results are
reported as mean accuracy ± standard deviation over multiple runs.Table 3 Node classification accuracies on the standard data splits of the three test datasets. The results are reported

as mean accuracy ± standard deviation over multiple runs.

Method Cora CiteSeer PubMed
GCN[3] 81.5 70.3 79.0
G3NN[25] 82.5 ± 0.2 74.4 ± 0.3 77.9 ± 0.4
Eigen-GCN [26] 78.9 ± 0.7 66.5 ± 0.3 78.6 ± 0.1
GNN-LF/HF [27] 84.0 ± 0.2 72.3 ± 0.3 80.5 ± 0.3
OAGS[28] 83.9 ± 0.5 73.7 ± 0.7 81.9 ± 0.9
GAUG+GCN[32] 83.6 73.11 —-
JKNet[29] 82.7 ± 0.4 73.0 ± 0.5 77.9 ± 0.4
GCNII[30] 85.5 ± 0.5 73.4 ± 0.6 80.2 ± 0.4
ACMP[31] 84.9 ± 0.6 74.5 ± 1.0 79.4 ± 0.4
GM-VGAE[11] 81.9 ± 0.7 72.1 ± 0.6 80.4 ± 0.3

GMM-VGAE 84.1 ± 0.4 74.6 ± 0.2 81.2 ± 0.1

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

111

Table 4. Classification accuracies on Co-authorship datasets.The results are reported as mean accuracy ±
standard deviation over multiple runs.Table 3 Node classification accuracies on the standard data splits of the three test datasets. The results are reported

as mean accuracy ± standard deviation over multiple runs.

Method Cora CiteSeer PubMed
GCN[3] 81.5 70.3 79.0
G3NN[25] 82.5 ± 0.2 74.4 ± 0.3 77.9 ± 0.4
Eigen-GCN [26] 78.9 ± 0.7 66.5 ± 0.3 78.6 ± 0.1
GNN-LF/HF [27] 84.0 ± 0.2 72.3 ± 0.3 80.5 ± 0.3
OAGS[28] 83.9 ± 0.5 73.7 ± 0.7 81.9 ± 0.9
GAUG+GCN[32] 83.6 73.11 —-
JKNet[29] 82.7 ± 0.4 73.0 ± 0.5 77.9 ± 0.4
GCNII[30] 85.5 ± 0.5 73.4 ± 0.6 80.2 ± 0.4
ACMP[31] 84.9 ± 0.6 74.5 ± 1.0 79.4 ± 0.4
GM-VGAE[11] 81.9 ± 0.7 72.1 ± 0.6 80.4 ± 0.3

GMM-VGAE 84.1 ± 0.4 74.6 ± 0.2 81.2 ± 0.1

Table 5. Node classification results on UAI, CoraFull datasets.

Table 5 Node classification results on UAI, CoraFull datasets.

Dataset UAI CoraFull
L/C 20 40 60 20 40 60

Metric ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1
DeepWalk 42.0 32.9 51.2 46.0 54.3 44.4 29.23 28.05 36.23 33.2 46.6 37.9

LINE 43.7 37.0 45.3 39.6 51.0 43.7 17.7 18.2 25.0 25.4 29.6 30.8
Cheby shev 50.0 33.6 58.1 38.8 59.8 40.6 53.3 74.5 58.2 53.4 59.8 54.1

GCN 49.8 32.8 51.8 33.8 54.4 34.1 56.6 52.4 60.6 55.5 62.0 56.2
KNN-GCN 66.06 52.43 68.74 54.45 71.64 54.78
AMGCN 70.10 55.61 73.14 64.88 74.40 65.99

GAT 56.9 39.6 63.7 45.0 68.4 48.9 58.4 54.4 62.9 58.3 64.3 59.6
DEMO Net 23.4 16.8 30.2 26.3 34.1 29.0 54.5 50.4 60.2 56.2 61.5 57.2

MixHop 61.5 49.1 65.0 53.8 67.6 56.3 47.4 45.0 57.2 53.5 60.1 56.4
GRACE 65.54 48.38 66.67 49.50 68.68 51.51

GMI 60.69 46.75 63.14 49.10 64.73 44.36
SLAPS 46.82 41.60 34.62 25.28 62.51 51.81
GCA 72.55 56.97 73.27 54.55 73.60 56.00

GM-VGAE 71.0 55.4 72.1 53.1 71.4 53.9 58.3 54.2 62.6 57.3 63.4 58.9
GMM-VGAE 73.5 57.15 74.3 55.0 74.2 56.8 61.4 56.4 65.0 60.1 66.1 61.7

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

112

the Coauthor Physics dataset, while GMM-VGAE performs
exceptionally well, GraphMix slightly outperforms it with
an accuracy of 94.4 0.8%± compared to GMM-VGAE’s
94.5 0.9%±

To assess the performance of our model in greater detail,
the effect of different numbers (rates) of training nodes on our
model is investigated on four other datasets.

We chose 1000 nodes as the test and three label rates
(20, 40, and 60 labelled nodes per class) for the training set
from [39]. The same parameters specified by the arti- cles’
authors are used to initialize all baselines. Tables 5 and 6
show classification accuracies and F1 scores where L/C
refers to the number of labeled nodes per class. We compare
GMM-VGAE with seven graph neural network algorithms
(Chebyshev [40], GCN[3],kNN-GCN [39], GAT [35],
DEMO-Net[41], MixHop[42], AMGCN[39]), two network

embedding methods (DeepWalk[43], LINE[44]) and four
self-supervised models (GRACE[45], GCA [46], GMI [47],
SLAPS [48]).

As the results show, the proposed model almost gets
the best performance on all datasets with all label rates.

5- 1- 3- Further analysis
Table 5 summarizes the results of the proposed model

for different values of the hyperparameter K in node
classification tasks. As can be seen, the best value of K
depends on the target dataset. For example, the best value
of K for Cora ,Citetseer and Pubmed are 2, 3, and 3,
respectively. It is clear from the results, that GMMs (1K >
) outperform the single Gaussian model (1K =) and the
best results for citation datasets are obtained for 2K = and

3K = .

Table 6. Node classification results on Flickr, and BlogCatalog datasets.Table 6 Node classification results on Flickr, and BlogCatalog datasets.

Dataset Flickr BlogCatallog
L/C 20 40 60 20 40 60

Metric ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1
DeepWalk 24.3 21.3 28.7 26.9 30.1 27.2 38.6 34.9 50.8 48.6 55.0 53..5

LINE 33.2 31.1 36.6 37.1 38.5 37.7 58.7 57.7 61.1 60.7 64.5 63.8
Cheby shev 23.2 21.2 35.1 33.5 41.7 40.1 38.0 33.3 56.2 53.8 70.0 68.3

GCN 41.4 39.9 45.4 43.2 47.9 46.5 69.8 68.7 71.2 70.7 72.6 71.8
kNN-GCN 69.28 70.33 75.08 75.40 77.94 77.97 75.49 72.53 80.84 80.16 82.46 81.90
AMGCN 75.26 74.63 80.06 79.36 82.10 81.81 81.89 81.36 84.94 84.32 87.30 86.94

GAT 38.5 37.0 38.4 36.9 38.9 37.3 64.0 63.3 67.4 66.3 69.9 69.0
DEMO Net 34.8 33.5 46.5 45.2 57.3 56.4 54.1 52.7 63.4 63.0 76.8 76.7

MixHop 39.5 40.1 55.1 56.2 64.9 65.7 65.4 64.8 71.6 70.8 77.4 76.3
GRACE 49.42 48.18 53.64 52.61 55.67 54.61 76.56 75.56 76.66 75.88 77.66 77.08

GMI 49.17 28.43 52.74 30.94 53.78 31.50 66.46 39.2 68.01 40.42 72.59 43.24
SLAPS 72.20 72.48 79.00 78.90 76.20 76.50 87.80 87.34 88.50 87.57 89.50 89.22
GCA 63.44 63.26 63.90 64.60 64.43 64.64 80.51 81.28 84.89 84.04 86.34 86.19

GM-VGAE 58.4 61.5 61.8 62.9 63.5 62.8 87.1 86.5 87.6 86.5 84.3 84.0
GMM-VGAE 64.3 66.6 64.0 65.0 66.4 65.4 88.9 88.5 89.1 88.1 86.9 86.4

Table 7. The results of different values of the hyperparameter K for GMM-VGAE.
Table 7 The results of different values of the hyperparameter 𝐾𝐾 for GMM-VGAE.

Dataset k=1 k=2 k=3 k=4 k=5 k=6 k=7
Cora 0.833 0.844 0.8303 0.8395 0.8376 0.831 0.830

Citeseer 0.733 0.741 0.746 0.707 0.716 0.720 0.722

Pubmed 0.801 0.809 0.812 0.80 0.798 0.792 0.797

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

113

6- Conclusions
In this paper, we proposed an efficient framework,

namely GMM-VGAE, for node classification in graphs by
combining Graph Convolutional Networks and Variational
Autoencoders. By assuming the Gaussian mixture models
as the prior distribution of VGAE to capture the inherent
complex data distributions, the GMM-VGAE profits from
both labelled and unlabeled data to learn continuous latent
representations for the nodes. The classification losses of
the model improve the separation of the classes in the latent
space while the ELBO regularize and smooth this space.

Competing Interests
The authors declare that they have no known competing

financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Authors’ Contribution Statement
Mohadeseh ghayekhloo: Data curation, Writing- Original

draft preparation, Software, Validation, Visualization,
Investigation, Conceptualization, Methodology, Software
Ahmad Nickabadi: Writing- Reviewing and Editing,
Visualization, Investigation, Supervision.

Ethical and Informed Consent for Data Used
The present study involving human subjects strictly adhered

to ethical guidelines. Informed consent was obtained from all
participants involved in the study, specifically for tasks related
to graph-based representation learning and node classification.
For the purpose of this research, all data used were
anonymized and handled in compliance with data protection
regulations. Confidentiality and privacy of the participants
were maintained throughout the study.

Data Availability Statement
The data used in this study, the “Cora, Citeseer and

Pubmed dataset” are available at the following public
repository: https://github.com/tkipf/gcn/tree/master/gcn/data.

Funding declaration
The authors state that no funding is involved.

References
[1] 	Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., & Zhang, C.

(2018). Adversarially regularized graph autoencoder for
graph embedding. arXiv preprint arXiv:1802.04407.

[2]  Kipf, T. N., & Welling, M. (2016). Variational graph
auto-encoders. arXiv preprint arXiv:1611.07308.

[3] Kipf, T. N., & Welling, M. (2016). Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.

[4] Wang, C., Pan, S., Long, G., Zhu, X., & Jiang, J. (2017).
MGAE: Marginalized graph autoencoder for graph
clustering, 889–898.

[5] Li, F., Zhu, Z., Zhang, X., Cheng, J., & Zhao, Y. (2019).
Diffusion-induced graph representation learning.

Neurocomputing, 360, 220–229.
[6] Park, J., Lee, M., Chang, H. J., Lee, K., & Choi, J. Y.

(2019). Symmetric graph convolutional autoencoder for
unsupervised graph representation learning, 6519–6528.

[7] Rezende, D. J., Mohamed, S., & Wierstra, D. (2014).
Stochastic backpropagation and approximate inference
in deep generative models. In International Conference
on Machine Learning (pp. 1278–1286). PMLR.

[8] Xie, Q., Huang, J., Du, P., & Peng, M. (2021). Graph
relational topic model with higher-order graph attention
auto-encoders, 2604–2613.

[9] He, L., Bai, L., Yang, X., Du, H., & Liang, J. (2023).
High-order graph attention network. Information
Sciences, 630, 222–234.

[10] Li, B., Jiao, P., He, D., Zhang, W., & 0001, D. J. (2019).
Network-specific variational autoencoder for embedding
in attribute networks, 2663–2669.

[11] Niknam, G., Molaei, S., Zare, H., Clifton, D., & Pan,
S. (2023). Graph representation learning based on deep
generative Gaussian mixture models. Neurocomputing,
523, 157–169.

[12] Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., &
Tomczak, J. M. (2018). Hyperspherical variational auto-
encoders. arXiv preprint arXiv:1804.00891.

[13] Zheng, S., Zhu, Z., Zhang, X., Liu, Z., Cheng, J., &
Zhao, Y. (2020). Distribution-induced bidirectional
generative adversarial network for graph representation
learning, 7224–7233.

[14] Dilokthanakul, N., Mediano, P. A., Garnelo, M., Lee,
M. C., Salimbeni, H., Arulkumaran, K., & Shanahan,
M. (2016). Deep unsupervised clustering with Gaussian
mixture variational autoencoders. arXiv preprint
arXiv:1611.02648.

[15] Kingma, D. P., & Welling, M. (2013). Auto-encoding
variational Bayes. arXiv preprint arXiv:1312.6114.

[16] Bojchevski, A., & Günnemann, S. (2017). Deep
Gaussian embedding of graphs: Unsupervised inductive
learning via ranking. arXiv preprint arXiv:1707.03815.

[17] Namata, G., London, B., Getoor, L., & Huang, B.
(2012). Query-driven active surveying for collective
classification, 8(1).

[18] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher,
B., & Eliassi-Rad, T. (2008). Collective classification in
network data. AI Magazine, 29(3), 93–93.

[19] Wang, W., Liu, X., Jiao, P., Chen, X., & Jin, D. (2018).
A unified weakly supervised framework for community
detection and semantic matching, 218–230. Springer.

[20] Shchur, O., Mumme, M., Bojchevski, A., & Günnemann,
S. (2018). Pitfalls of graph neural network evaluation.
arXiv preprint arXiv:1811.05868.

[21] Tang, L., & Liu, H. (2009). Relational learning via

https://github.com/tkipf/gcn/tree/master/gcn/data

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

114

latent social dimensions, 817–826.
[22] Huang, X., Li, J., & Hu, X. (2017). Label informed

attributed network embedding, 731–739.
[23] Kingma, D. P., & Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.
[24] Yang, Z., Cohen, W., & Salakhudinov, R. (2016).

Revisiting semi-supervised learning with graph
embeddings, 40–48. PMLR.

[25] Ma, J., Tang, W., Zhu, J., & Mei, Q. (2019). A flexible
generative framework for graph-based semi-supervised
learning. Advances in Neural Information Processing
Systems, 32.

[26] Zhang, Z., Cui, P., Pei, J., Wang, X., & Zhu, W. (2021).
Eigen-GNN: A graph structure preserving plug-in for
GNNs. IEEE Transactions on Knowledge and Data
Engineering.

[27] Zhu, M., Wang, X., Shi, C., Ji, H., & Cui, P. (2021).
Interpreting and unifying graph neural networks with
an optimization framework. In Proceedings of the Web
Conference 2021 (pp. 1215–1226).

[28] Song, Z., Zhang, Y., & King, I. (2022). Towards an
optimal asymmetric graph structure for robust semi-
supervised node classification. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (pp. 1656–1665).15 161616

[29] Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi,
K.-i., & Jegelka, S. (2018). Representation learning
on graphs with jumping knowledge networks. In
International Conference on Machine Learning (pp.
5453–5462). PMLR.

[30] Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y.
(2020). Simple and deep graph convolutional networks.
In International Conference on Machine Learning (pp.
1725–1735). PMLR.

[31] Wang, Y., Yi, K., Liu, X., Wang, Y. G., & Jin, S. (2022).
ACMP: Allen-Cahn message passing with attractive
and repulsive forces for graph neural networks. In
The Eleventh International Conference on Learning
Representations.

[32] Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M.,
& Shah, N. (2021). Data augmentation for graph neural
networks. In Proceedings of the AAAI Conference on
Artificial Intelligence, 35, 11015–11023.

[33] Liu, M., Gao, H., & Ji, S. (2020). Towards deeper graph
neural networks, 338–348.

[34] Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda,
J., & Bronstein, M. M. (2017). Geometric deep learning
on graphs and manifolds using mixture model CNNs,
5115–5124.

[35] Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., & Bengio, Y. (2017). Graph attention networks.

stat, 1050, 20.
[36] Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive

representation learning on large graphs. Advances in
Neural Information Processing Systems, 30.

[37] Verma, V., Qu, M., Kawaguchi, K., Lamb, A., Bengio,
Y., Kannala, J., & Tang, J. (2021). GraphMix: Improved
training of GNNs for semi-supervised learning. In
Proceedings of the AAAI Conference on Artificial
Intelligence, 35, 10024–10032.

[38] Chapelle, O., Scholkopf, B., & Zien, A. (2009). Semi-
supervised learning (Chapelle, O. et al., eds.; 2006)[book
reviews]. IEEE Transactions on Neural Networks, 20(3),
542–542.

[39] Wang, X., Zhu, M., Bo, D., Cui, P., Shi, C., & Pei,
J. (2020). AM-GCN: Adaptive multi-channel graph
convolutional networks. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (pp. 1243–1253).

[40] Defferrard, M., Bresson, X., & Vandergheynst, P.
(2016). Convolutional neural networks on graphs with
fast localized spectral filtering. Advances in Neural
Information Processing Systems, 29.

[41] Wu, J., He, J., & Xu, J. (2019). Net: Degree-specific
graph neural networks for node and graph classification,
406–415.

[42] Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard,
N., Lerman, K., Harutyunyan, H., Ver Steeg, G., &
Galstyan, A. (2019). MixHop: Higher-order graph
convolutional architectures via sparsified neighborhood
mixing, 21–29. PMLR.

[43] Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk:
Online learning of social representations, 701–710.

[44] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., &
Mei, Q. (2015). LINE: Large-scale information network
embedding, 1067–1077.

[45] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., & Wang, L.
(2020). Deep graph contrastive representation learning.
arXiv preprint arXiv:2006.04131.

[46] Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., & Wang,
L. (2021). Graph contrastive learning with adaptive
augmentation. In Proceedings of the Web Conference
2021 (pp. 2069–2080).

[47] Peng, Z., Huang, W., Luo, M., Zheng, Q., Rong, Y., Xu,
T., & Huang, J. (2020). Graph representation learning
via graphical mutual information maximization. In
Proceedings of The Web Conference 2020 (pp. 259–270).

[48] Fatemi, B., El Asri, L., & Kazemi, S. M. (2021).
SLAPS: Self-supervision improves structure learning for
graph neural networks. Advances in Neural Information
Processing Systems, 34, 22667–22681.

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

115

HOW TO CITE THIS ARTICLE
M. Ghayekhlou, A. Nickabadi, A Guassian Mixture Variational Graph Autoencoder for Node
Classification, AUT J. Model. Simul., 56(1) (2024) 103-116.

DOI: 10.22060/miscj.2024.23107.5358

https://dx.doi.org/10.22060/miscj.2024.23107.5358

M. Ghayekhlou and A. Nickabadi, AUT J. Model. Simul., 56(1) (2024) 103-116, DOI: 10.22060/miscj.2024.23107.5358

116

