
تعداد نشریات | 7 |
تعداد شمارهها | 405 |
تعداد مقالات | 5,424 |
تعداد مشاهده مقاله | 5,542,899 |
تعداد دریافت فایل اصل مقاله | 5,027,051 |
پیکربندی سنجهای پلتفرم استوارت با ارائه یک شیوه محاسباتی با بازدهی بالا | ||
نشریه مهندسی مکانیک امیرکبیر | ||
دوره 56، شماره 6، شهریور 1403، صفحه 857-884 اصل مقاله (2.48 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2024.23053.7713 | ||
نویسندگان | ||
علی پاکدل نژاد؛ سینا جلیلی* | ||
دانشکده مهندسی مکانیک، دانشگاه صنعتی سهند، تبریز، ایران | ||
چکیده | ||
کاریرد اصلی پلتفرم استوارت برای تولید حرکتهای دلخواه با درجات آزادی بالای فضایی است. با اینحال میتوان از این بستر برای سنجش وضعیت سهبعدی یک جسم در فضا نسبت به جسم و یا سطح پایه دیگر نیز بهره برد که در این صورت کل این مجموعه همانند یک سنجه عمل کرده و خروجی آن، حالت قرارگیری یک جسم که به پلتفرم بالایی مکانیزم استوارت متصل است را بیان خواهد کرد. مشکل اصلی این پیکربندی بار محاسباتی بالا برای تعیین وضعیت پلتفرم متحرک نسبت به ثابت مبتنی بر خروجی شش سنسور طولی است که بهجای عوامل تحریککننده به کار گرفته میشوند. در این پژوهش، قابلیت سنجهای پلتفرم استوارت بررسی شده و دیدگاه سینماتیک مستقیم با بازدهی و سرعت عمل بالا مبتنی بر توسعه معادلههای جبری غیرخطی مرتبه دومِ گسترشیافته که آن را برای کاربردهای زمان واقعی مناسب میسازد، ارائه شده است. شیوه ارائه شده برای استخراج مختصات دکارتی سه نقطه از پلتفرم متحرک نسبت به پلتفرم ثابت بوده و نتایج حاکی از آن است که الگوریتم پیشنهادی تطابق خوبی با نتایج حاصل از تحلیل حاصل از نرمافزار طراحی سه بعدی مهندسی دارد. قابلیت دیدگاه پیشنهادی با تحلیل تاریخچه زمانی متناوب شش سنجه طولی که به صورت منظم و نامنظم بر روی پلتفرم ثابت توزیع شدهاند مورد ارزیابی قرار گرفت و بازدهی بالای محاسباتی آن به ویژه با در نظر گرفتن بهروزرسانی شرایط اولیه مشخص گردید. | ||
کلیدواژهها | ||
مکانیزم استوارت؛ پیکربندی سنجهای؛ سینماتیک مستقیم؛ مکانیزم موازی | ||
عنوان مقاله [English] | ||
Sensory Configuration of Stewart Platform by Pre-senting a High-Performance Computational Procedure | ||
نویسندگان [English] | ||
Ali Pakdelnejad؛ Sina Jalili | ||
Faculty of Mechanical Engineering, Sahand University of Technology | ||
چکیده [English] | ||
The Stewart platform is primarily used for generating arbitrary motions in three-dimensional space. However, it can also be utilized for measuring the three-dimensional position of an object attached to the moving platform. In this configuration, the Stewart platform functions as a sensory system. One challenge of this application is the high computational cost associated with determining the position of the moving platform relative to the fixed reference platform using data from six-length sensors. In this study, the sensory capabilities of the Stewart platform are investigated by introducing a high-performance and numerically agile approach. This approach involves developing an extended set of nonlinear algebraic equations that are well-suited for real-time applications. By applying this procedure to derive the Cartesian coordinates of three points on the moving platform and comparing the results with those obtained from computer-aided design software, a strong correlation is observed. To further evaluate the effectiveness of the approach, its performance is analyzed when subjected to harmonic time histories from six length sensors and when the legs' base positions are arranged regularly or non-regular on the fixed platform. The results demonstrate that the present method, particularly by updating initial conditions at every time increment, exhibits high computational efficiency. | ||
کلیدواژهها [English] | ||
Stewart mechanism, sensory configuration, forward kinematics, parallel mechanism | ||
مراجع | ||
[1] D. Stewart, A platform with six degrees of freedom, Proceedings of the institution of mechanical engineers, 180(1) (1965) 371-386. [2] M. Almonacid, R.J. Saltaren, R. Aracil, O. Reinoso, Motion planning of a climbing parallel robot, IEEE transactions on robotics and automation, 19(3) (2003) 485-489. [3] D. Galván-Pozos, F. Ocampo-Torres, Dynamic analysis of a six-degree of freedom wave energy converter based on the concept of the Stewart-Gough platform, Renewable Energy, 146 (2020) 1051-1061. [4] S. Jalili, F. Torabi, Study on Fatigue Life of Engine-Exhaust Pipe Flexible Couplings, in: The Biennial International Conference on Experimental Solid Mechanics (X-Mech-2020), Tehran, Civilica, Tehran, Iran, 2020. [5] A.A. Markou, S. Elmas, G.H. Filz, Revisiting Stewart–Gough platform applications: A kinematic pavilion, Engineering Structures, 249 (2021) 113304. [6] H. Tourajizadeh, O. Gholami, Z. Mehrvarz, H. B, Design, Modeling, and Optimal Position Control of a New Wrist Rehabilitation Robot Using the Stewart Platform, Amirkabir J. Mech Eng, 54(12) (2023) 2705-2724. [7] P.V. Lukianov, V.V. Kabanyachyi, Mathematical model of stable equilibrium operation of the flight simulator based on the Stewart platform, Aviation, 27(2) (2023) 119–128. [8] M. Hung Vu, N. Pham Van Bach, T. Nguyen Luong, T. Bui Trung, Kinematics design and statics analysis of novel 6-DOF passive vibration isolator with S-shaped legs based on Stewart platform, Journal of Vibroengineering, 26(1) (2023) 66-78. [9] O. Ma, J. Angeles, Architecture singularities of platform manipulators, in: Proceedings. 1991 IEEE International Conference on Robotics and Automation, IEEE Computer Society, 1991, pp. 1542-1547. [10] M.L. Husty, An algorithm for solving the direct kinematics of general Stewart-Gough platforms, Mechanism and Machine Theory, 31(4) (1996) 365-379. [11] P. Dietmaier, The Stewart-Gough platform of general geometry can have 40 real postures, in: Advances in robot kinematics: Analysis and control, Springer, 1998, pp. 7-16. [12] B. Dasgupta, T. Mruthyunjaya, Closed-form dynamic equations of the general Stewart platform through the Newton–Euler approach, Mechanism and machine theory, 33(7) (1998) 993-1012. [13] S.-H. Chen, L.-C. Fu, The forward kinematics of the 6-6 Stewart platform using extra sensors, in: 2006 IEEE International Conference on Systems, Man and Cybernetics, IEEE, 2006, pp. 4671-4676. [14] A. Nag, V. Safar, S. Bandyopadhyay, A uniform geometric-algebraic framework for the forward kinematic analysis of 6-6 Stewart platform manipulators of various architectures and other related 6-6 spatial manipulators, Mechanism and Machine Theory, 155 (2021) 104090. [15] T. Zhiyong, H. Ma, Z. Pei, L. Liu, J. Zhang, A new numerical method for Stewart platform forward kinematics, in: 35th Chinese Control Conference (CCC), Chengdu, China, 2016, pp. pp. 6311-6316. [16] S. Jalili, Effect of Irregular Distribution of Joints on Base Platform of Hexapodsʼ Sensory Configuration, in: International Conference of Iranian Society of Mechanical Engineers, Civilica, Tehran, Iran, 2020. [17] S. Shim, S. Lee, S. Joo, J. Seo, Denavit-Hartenberg notation-based kinematic constraint equations for forward kinematics of the 3–6 Stewart platform, Journal of Mechanisms and Robotics, 14(5) (2022) 054505. [18] P. Ji, H. Wu, A closed-form forward kinematics solution for the 6-6/sup p/Stewart platform, IEEE Transactions on robotics and automation, 17(4) (2001) 522-526. [19] K. Harib, K. Srinivasan, Kinematic and dynamic analysis of Stewart platform-based machine tool structures, Robotica, 21(5) (2003) 541-554. [20] H. Zhu, W. Xu, B. Yu, F. Ding, L. Cheng, J. Huang, A novel hybrid algorithm for the forward kinematics problem of 6 dof based on neural networks, Sensors, 22(14) (2022) 5318. [21] T. Charters, R. Enguica, P. Freitas, Detecting singularities of Stewart platforms, Mathematics-in-Industry Case Studies Journal, 1 (2009) 66-80. [22] J. Diebel, Representing attitude: Euler angles, unit quaternions, and rotation vectors, Matrix, 58(15-16) (2006) 1-35. [23] C. Gosselin, L.-T. Schreiber, Redundancy in Parallel Mechanisms: A Review, Applied Mechanics Reviews, 70(1) (2018). [24] X. Liang, X. Zeng, G. Li, T. Su, G. He, Kinematic analysis of three redundant parallel mechanisms for fracture reduction surgery, Mechanism and Machine Theory, 188 (2023) 105400. [25] Z. Wang, J. He, H. Shang, H. Gu, Forward kinematics analysis of a six‐DOF Stewart platform using PCA and NM algorithm, Industrial Robot: An International Journal, 36(5) (2009) 448-460. [26] F. Yang, X. Tan, Z. Wang, Z. Lu, T. He, A geometric approach for real-time forward kinematics of the general Stewart platform, Sensors, 22(13) (2022) 4829. [27] S. Jalili, F. Torabi, Sensory Configuration of Stewart Platform-A Numerical Study, in: The Biennial International Conference on Experimental Solid Mechanics, Civilica, Tehran, Iran, 2020. [28] Q. Zhu, Z. Zhang, An efficient numerical method for forward kinematics of parallel robots, IEEE Access, 7 (2019) 128758-128766. [29] S. Karmakar, C.J. Turner, Forward kinematics solution for a general Stewart platform through iteration based simulation, The International Journal of Advanced Manufacturing Technology, 126(1) (2023) 813-825. [30] Y. Zhang, H.-s.-a.-q.-e. Han, Z.-b. Xu, C.-y. Han, Y. Yu, A.-l. Mao, Q.-w. Wu, Kinematics analysis and performance testing of 6-RR-RP-RR parallel platform with offset RR-hinges based on Denavit-Hartenberg parameter method, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(18) (2021) 3519-3533. [31] G. Zhu, S. Wei, D. Li, Y. Wang, Q. Liao, Conformal Geometric Algebra–Based Geometric Modeling Method for Forward Displacement Analysis of 6-4 Stewart Platforms, Journal of Mechanisms and Robotics, 16(7) (2024). | ||
آمار تعداد مشاهده مقاله: 533 تعداد دریافت فایل اصل مقاله: 156 |