| تعداد نشریات | 8 |
| تعداد شمارهها | 439 |
| تعداد مقالات | 5,658 |
| تعداد مشاهده مقاله | 7,726,598 |
| تعداد دریافت فایل اصل مقاله | 6,359,864 |
Solving the optimum control problem constrained with Volterra integro-differential equations using Chebyshev wavelets and particle swarm optimization | ||
| AUT Journal of Mathematics and Computing | ||
| دوره 7، شماره 1، فروردین 2026، صفحه 45-61 اصل مقاله (823.2 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22060/ajmc.2024.23406.1254 | ||
| نویسنده | ||
| Asiyeh Ebrahimzadeh* | ||
| Department of Mathematics Education, Farhangian University, P. O. Box 14665-889, Tehran, Iran | ||
| چکیده | ||
| To handle a type of optimum control problems (OCP) for systems controlled described by Volterra integro-differential equations (VIDE), we introduce in this study a direct Chebyshev wavelet collocation approach, which is utilized in applied science and engineering. The proposed direct approach turns the OCP into a nonlinear programming (NLP) problem, in which the wavelet coefficients are the optimization variables. To solve the resulting NLP, we use the particle swarm optimization (PSO) technique. In addition, we illustrate the suggested method's convergence. Under certain sufficient conditions, it is shown that a sequence of optimal solutions for the finite-dimensional optimization problems corresponding to $\overline{\mathcal{P}}$ approximates the optimal solution of the original problem $\mathcal{P}$ in a desirable manner. To demonstrate the method's applicability and efficiency, we provide several numerical examples that emphasize the PSO algorithm's effectiveness in solving the resulted NLP. | ||
| کلیدواژهها | ||
| Chebyshev wavelet؛ Optimal control؛ Particle swarm optimization؛ Collocation method؛ Volterra integro-differential equation | ||
| مراجع | ||
|
[1] J. T. Betts, Practical methods for optimal control using nonlinear programming, vol. 3 of Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.
[2] J. T. Betts and S. O. Erb, Optimal low thrust trajectories to the moon, SIAM J. Appl. Dyn. Syst., 2 (2003), pp. 144–170.
[3] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods in fluid dynamics, Springer Series in Computational Physics, Springer-Verlag, New York, 1988.
[4] M. Diehl, H.-G. Bock, and J. P. Schl¨oder, A real-time iteration scheme for nonlinear optimization in optimal feedback control, SIAM J. Control Optim., 43 (2005), pp. 1714–1736.
[5] R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, pp. 39–43.
[6] A. Ebrahimzadeh, A robust method for optimal control problems governed by system of fredholm integral equations in mechanics, Iran. J. Numer. Anal. Optim., 13 (2023), pp. 243–261.
[7] A. Ebrahimzadeh and E. Hashemizadeh, Optimal control of non-linear Volterra integral equations with weakly singular kernels based on Genocchi polynomials and collocation method, J. Nonlinear Math. Phys., 30 (2023), pp. 1758–1773.
[8] M. Ghasemi and M. Tavassoli Kajani, Numerical solution of time-varying delay systems by Chebyshev wavelets, Appl. Math. Model., 35 (2011), pp. 5235–5244.
[9] Q. Gong, I. M. Ross, W. Kang, and F. Fahroo, On the pseudospectral covector mapping theorem for nonlinear optimal control, in Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp. 2679– 2686.
[10] , Connections between the covector mapping theorem and convergence of pseudospectral methods for opti- mal control, Comput. Optim. Appl., 41 (2008), pp. 307–335.
[11] A. Hashemi Borzabadi, A. Abbasi, and O. Solaymani Fard, Approximate optimal control for a class of nonlinear Volterra integral equations, J. Amer. Sci, 6 (2010), pp. 1017–1021.
[12] S. G. Hosseini and F. Mohammadi, A new operational matrix of derivative for Chebyshev wavelets and its applications in solving ordinary differential equations with non analytic solution, Appl. Math. Sci. (Ruse), 5 (2011), pp. 2537–2548.
[13] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95 – International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.
[14] X. Li, F. Xu, and G. Xu, Redundant Inertial Measurement Unit Reconfiguration and Trajectory Replanning of Launch Vehicle, Springer Nature Singapore, Singapore, 2023, ch. Optimal Control Problems and Common Solutions, pp. 35–60.
[15] D. G. Luenberger and Y. Ye, Linear and nonlinear programming, vol. 116 of International Series in Operations Research & Management Science, Springer, New York, third ed., 2008.
[16] K. Maleknejad and H. Almasieh, Optimal control of volterra integral equations via triangular functions, Mathematical and Computer Modelling, 53 (2011), pp. 1902–1909.
[17] K. Maleknejad and A. Ebrahimzadeh, An efficient hybrid pseudo-spectral method for solving optimal control of Volterra integral systems, Math. Commun., 19 (2014), pp. 417–435.
[18] K. Maleknejad and A. Ebrahimzadeh, The use of rationalized Haar wavelet collocation method for solving optimal control of Volterra integral equations, Journal of Vibration and Control, 21 (2015), pp. 1958–1967.
[19] S. Mashayekhi, Y. Ordokhani, and M. Razzaghi, Hybrid functions approach for optimal control of systems described by integro-differential equations, Appl. Math. Model., 37 (2013), pp. 3355–3368.
[20] L. Moradi, D. Conte, E. Farsimadan, F. Palmieri, and B. Paternoster, Optimal control of system governed by nonlinear Volterra integral and fractional derivative equations, Comput. Appl. Math., 40 (2021), pp. Paper No. 157, 15.
[21] J. M. Murray, Optimal control for a cancer chemotherapy problem with general growth and loss functions, Math. Biosci., 98 (1990), pp. 273–287.
[22] A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order differential equa- tions, Comput. Math. Appl., 59 (2010), pp. 1326–1336.
[23] Y. Shi and R. Eberhart, A modified particle swarm optimizer, in 1998 IEEE International Confer- ence on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), 1998, pp. 69–73.
[24] S. Sohrabi, Comparison Chebyshev wavelets method with bpfs method for solving Abel’s integral equation, Ain Shams Engineering Journal, 2 (2011), pp. 249–254.
[25] E. Tohidi and O. R. N. Samadi, Optimal control of nonlinear Volterra integral equations via Legendre polynomials, IMA J. Math. Control Inform., 30 (2013), pp. 67–83.
[26] F. Yassin, Z. Ali, A. Asma, and B. A. Ridha, Enhancement neural control scheme performance using PSO adaptive rate: experimentation on a transesterification reactor, J. Vib. Control, 29 (2023), pp. 3769–3782.
[27] Y. Zhang, A. Chi, and S. Mirjalili, Enhanced jaya algorithm: A simple but efficient optimization method for constrained engineering design problems, Knowledge-Based Systems, 233 (2021), p. 107555. | ||
|
آمار تعداد مشاهده مقاله: 275 تعداد دریافت فایل اصل مقاله: 62 |
||