
تعداد نشریات | 7 |
تعداد شمارهها | 404 |
تعداد مقالات | 5,423 |
تعداد مشاهده مقاله | 5,529,948 |
تعداد دریافت فایل اصل مقاله | 5,024,460 |
Flexoelectric Cantilever Beam Mass Sensors: A Theoretical Investigation | ||
AUT Journal of Mechanical Engineering | ||
دوره 9، شماره 1، فروردین 2025، صفحه 53-64 اصل مقاله (1.56 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22060/ajme.2024.23410.6130 | ||
نویسنده | ||
Hossein Vaghefpour* | ||
Department of Mechanical Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran | ||
چکیده | ||
This research explores a novel technique for precise mass sensing, involving the detection of an object's position and mass when affixed to a flexoelectric cantilever Euler-Bernoulli microbeam. Third-order relation of the curvature is considered to obtain the nonlinear governing equations and the related boundary conditions, from Hamilton’s principle on the basis of size-dependent piezoelectricity theory. The Galerkin method is employed to discredit the partial differential equation of motion into ordinary differential equations. The Lindstedt-Poincare technique is employed to derive a concise mathematical expression that describes the frequency alteration resulting from the presence of a concentrated mass on the microbeam's exterior. By applying direct current voltage, the natural frequency shift of the flexoelectric cantilever Euler-Bernoulli microbeam under an added mass is examined. Finally, after validation of the results, the effects of size-dependent parameters, input voltage, and flexoelectric coefficient on static deformation and frequency behavior are shown. It can be found that the maximum sensitivity for l/h = 0.0 is at V0 = 2600v, By adjusting the material length scale factor relative to the beam thickness ratio, the sensitivity is observed to diminish. Also, by increasing the position of the added mass, the sensitivity is decreased and, where the flexoelectric effect is small, the increment in the position of added mass decreases the first and second frequency shift. | ||
کلیدواژهها | ||
Piezoelectricity Theory؛ Mass and Position Determination؛ Frequency Shift؛ Flexoelectricity | ||
مراجع | ||
[1] M. Baghelani, A. Hosseini-Sianaki, Z. Behzadi, A. Lavasani, Simulation of capacitive pressure sensor based on microelectromechanical systems technology, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232 (2017) 095440621770609.
[2] S. Faroughi, E.F. Rojas, A. Abdelkefi, Y.H. Park, Reduced-order modeling and usefulness of non-uniform beams for flexoelectric energy harvesting applications, Acta Mechanica, 230(7) (2019) 2339-2361.
[3] M. Fan, H. Tzou, Vibration control with the converse flexoelectric effect on the laminated beams, Journal of Intelligent Material Systems and Structures, 30 (2019) 1045389X1984401.
[4] A. Moura, Combined piezoelectric and flexoelectric effects in resonant dynamics of nanocantilevers, Journal of Intelligent Material Systems and Structures, 29 (2018) 1045389X1880344.
[5] D.-P. Zhang, Y. Lei, S. Adhikari, Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory, Acta Mechanica, 229 (2018).
[6] J. Li, H. Huang, T. Morita, Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review, Sensors and Actuators A: Physical, 292 (2019) 39-51.
[7] S.F. Dehkordi, Y.T. Beni, On the size-dependent electromechanical layered beam-type porous functionally graded flexoelectric energy harvesters, Engineering Analysis with Boundary Elements, 165 (2024) 105801.
[8] P. Joshi, S. Kumar, V. Jain, J. Singh, Distributed MEMS Mass-Sensor Based on Piezoelectric Resonant Micro-Cantilevers, Journal of Microelectromechanical Systems, PP (2019).
[9] E. Habibi, M. Nematollahi, Position and mass identification in nanotube mass sensor using neural networks, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233 (2019) 095440621984107.
[10] K.M. Hansen, T. Thundat, Microcantilever biosensors, Methods (San Diego, Calif.), 37(1) (2005) 57-64.
[11] B. Ilic, H.G. Craighead, S. Krylov, W.Senarante, C. Ober, O.Neuzil, Attogram detection using nanoelectromechanical oscillators, Journal of Applied Physics, 95 (2004).
[12] T. Burg, A. Mirza, N. Milovic, C. Tsau, G. Popescu, J. Foster, S. Manalis, Vacuum-Packaged Suspended Microchannel Resonant Mass Sensor for Biomolecular Detection, Microelectromechanical Systems, Journal of, 15 (2007) 1466-1476.
[13] S. Dohn, R. Sandberg, W. Svendsen, A. Boisen, Enhanced functionality of cantilever based mass sensors using higher modes and functionalized particles, 2005.
[14] A.R. Hadjesfandiari, Size-dependent piezoelectricity, International Journal of Solids and Structures, 50(18) (2013) 2781-2791.
[15] S. Dehkordi, Y. Tadi Beni, Electro-mechanical free vibration of single-walled piezoelectric/flexoelectric nano cones using consistent couple stress theory, International Journal of Mechanical Sciences, 128 (2017).
[16] R. Maranganti, N.D. Sharma, P. Sharma, Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions, Physical Review B - PHYS REV B, 74 (2006).
[17] G.-F. Wang, S.-W. Yu, X.-Q. Feng, A piezoelectric constitutive theory with rotation gradient effects, European Journal of Mechanics - A/Solids, 23(3) (2004) 455-466.
[18] A. Hadjesfandiari, G. Dargush, Couple stress theory for solids, International Journal of Solids and Structures - INT J SOLIDS STRUCT, 48 (2011) 2496-2510.
[19] Z. Yan, L. Jiang, Size-dependent bending and vibration behavior of piezoelectric nanobeams due to flexoelectricity, Journal of Physics D: Applied Physics, 46 (2013) 355502.
[20] Y. Tadi Beni, A Nonlinear Electro-Mechanical Analysis of Nanobeams Based on the Size-Dependent Piezoelectricity Theory, Journal of Mechanics, -1 (2016) 1-13.
[21] A. Bouchaala, A. Nayfeh, N. Jaber, M. Younis, Mass and position determination in MEMS mass sensors: A theoretical and an experimental investigation, Journal of Micromechanics and Microengineering, 26 (2016).
[22] M. Shaat, S.A. Mohamed, Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories, International Journal of Mechanical Sciences, 84 (2014) 208-217.
[23] K. Park, L.J. Millet, N. Kim, H. Li, X. Jin, G. Popescu, N.R. Aluru, K.J. Hsia, R. Bashir, Measurement of adherent cell mass and growth, Proceedings of the National Academy of Sciences, 107(48) (2010) 20691-20696.
[24] G. Wu, R.H. Datar, K.M. Hansen, T. Thundat, R.J. Cote, A. Majumdar, Bioassay of prostate-specific antigen (PSA) using microcantilevers, Nature biotechnology, 19(9) (2001) 856-860.
[25] L.G. Carrascosa, M. Moreno, M. Álvarez, L.M. Lechuga, Nanomechanical biosensors: a new sensing tool, TrAC Trends in Analytical Chemistry, 25(3) (2006) 196-206.
[26] R. Raiteri, M. Grattarola, H.-J. Butt, P. Skládal, Micromechanical cantilever-based biosensors, Sensors and Actuators B: Chemical, 79(2) (2001) 115-126.
[27] W. Lacarbonara, Nonlinear Structural Mechanics Nonlinear Structural Mechanics. Theory, Dynamical Phenomena and Modeling, 2013.
[28] A. Najafi Sohi, P.M. Nieva, Size-dependent effects of surface stress on resonance behavior of microcantilever-based sensors, Sensors, and Actuators A: Physical, 269 (2018) 505-514.
[29] Y. Solyaev, S. Lurie, Pure bending of a piezoelectric layer in second gradient electroelasticity theory, Acta Mechanica, 230 (2019).
[30] H. Vaghefpour, H. Arvin, Nonlinear free vibration analysis of pre-actuated isotropic piezoelectric cantilever Nano-beams, Microsystem Technologies, 25 (2019).
[31] M.I. Younis, A.H. Nayfeh, A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation, Nonlinear Dynamics, 31 (2003) 91-117.
[32] A. Barari, H. Dadashpour Kaliji, M. Ghadimi, D. domiri ganji, Non-Linear Vibration of Euler-Bernoulli Beams, Latin American Journal of Solids and Structures, 8 (2011) 139-148.
[33] Y. Tadi Beni, Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams, Journal of Intelligent Material Systems and Structures, 27 (2016).
[34] H. Arvin, Free vibration analysis of micro rotating beams based on the strain gradient theory using the differential transform method: Timoshenko versus Euler-Bernoulli beam models, European Journal of Mechanics - A/Solids, 65 (2017). | ||
آمار تعداد مشاهده مقاله: 109 تعداد دریافت فایل اصل مقاله: 115 |