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Abstract: 

Effective breast cancer screening is essential for early detection and treatment. Ultrasound (US) radio 

frequency (RF) data offers a novel, equipment-independent approach. However, class imbalance and 

limited interpretability hinder its application in clinical practice. This study proposes a hybrid deep learning 

model combining a pre-trained convolutional neural network (CNN) based on VGG16 and capsule neural 

networks (CapsNets) to classify breast lesions. The model was evaluated using an RFTSBU dataset, 

comprising 220 data points from 118 patients, acquired on the SuperSonic Imagine Aixplorer® system with 

a linear transducer. To address data imbalance, the synthetic minority over-sampling technique (SMOTE) 

was employed to generate synthetic samples while preserving data distribution. Furthermore, Gaussian 

process (GP) was applied to fine-tune CapsNet hyperparameters, improving classification performance. 

Three experiments were conducted to classify breast lesions into two, three, and four classes: (I) CapsNet 

with balanced datasets based on class weight, (II) CapsNet with balanced datasets using SMOTE, and (III) 

CapsNet with hyperparameters optimized using GP on SMOTE-balanced datasets. The proposed model 

achieved average accuracies of 98.81%, 97.89%, and 95.94% for two-, three-, and four-class classifications, 

respectively. The hybrid VGG16-CapsNet model effectively addresses class imbalance and captures critical 
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lesion attributes such as size, perspective, and orientation. Integrating GP optimization achieves superior 

accuracy in multi-class breast lesion classification. The proposed approach can serve as a valuable aid in 

breast tumor classification using US RF B-mode images. Its enhanced interpretability and efficiency enable 

clinicians to move beyond binary classification, facilitating identifying and differentiating a broader 

spectrum of breast lesions.  
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1. Introduction 

Breast cancer is a significant health concern worldwide, with its prevalence particularly notable among 

Iranian women, where it constitutes a substantial portion of cancer cases [1]. Globally, it is projected that 

by 2040, the burden of breast cancer will exceed 3 million new cases and 1 million deaths annually [2]. At 

the national level in Iran, breast cancer was the most prevalent cancer among women in 2020, accounting 

for 28.1% of all reported cases in the country [3].  

Mammography screening, although common, often necessitates additional procedures for women with 

abnormal results [4, 5]. The breast imaging-reporting and data system (BI-RADS) method is a valuable tool 

in decision-making, helping to determine the need for further sampling. Minimizing unnecessary 

procedures is essential for patient well-being, healthcare access, and reducing screening costs [6-9].  

Breast sonography presents advantages over mammography, being radiation-free [10, 11] and more 

convenient for routine screenings, making it a cost-effective option for various regions [12]. It exhibits 

higher sensitivity, particularly in dense breast tissue, proving valuable for women under 35 [10, 13]. Breast 

sonography also reduces false positives compared to mammography, minimizing unnecessary biopsies 

[14]. Breast sonography demonstrates high accuracy, particularly in detecting simple cysts, with success 

rates ranging from 96% to 100% [15]. However, its effectiveness relies on the operator's skills and 

https://doi.org/10.22060/eej.2024.23500.5621


AUT Journal of Electrical Engineering 
10.22060/EEJ.2024.23377.5609 

 

subjective interpretation by experienced radiologists [11]. Consequently, this paper propounded a pressing 

need to enhance the effectiveness of current diagnostic approaches. 

The rest of the paper is organized as follows: Related works are described in Section 2. Preliminary and 

fundamental information is covered in Section 3, along with details on the data collection, capsule neural 

networks (CapsNets), suggested method, and process for classifying breast lesions. In Section 4, the 

performance of the proposed approach is analyzed, and the experimental results are detailed. Section 5 

addresses the techniques, corresponding outcomes, limitations, and directions for future works. Finally, 

Section 6 concludes the paper. 

2. Related Works 

Jarosik et al. conducted a study using convolutional neural networks (CNNs) for classifying radio frequency 

(RF) signals from the OASBUD dataset [1]. The research explored three approaches—CNN-1D, CNN-2D, 

and CNN-1D-2D—focusing on processing small 2D patches of RF signals and their amplitude samples. 

While this method allows the creation of parametric maps to assess breast mass malignancy, it is limited to 

classifying benign and malignant lesions only. The final CNN-1D-2D model achieved a modest 70% 

accuracy in two-class classification and required significant pre-processing and network training time. 

In 2020, faster region-based CNN (Faster R-CNN) models were implemented to detect and classify breast 

lesions in ultrasound (US) images, marking a significant step forward in deep learning-based diagnostics 

[16]. The algorithm successfully identifies lesions by generating bounding boxes and classifying them as 

malignant or benign, offering an alternative to traditional methods. It is optimized for CPU and GPU 

platforms, improving efficiency and reducing training and testing times. However, the study lacks detailed 

reporting of the network's evaluation parameters, only stating an accuracy rate above 95%, and no validation 

was conducted due to the limited dataset. 

In 2021, Behboodi et al. investigated deep learning for breast cancer classification using US images, 

focusing on multi-tasking learning (MTL) techniques [17]. Due to the limited training data and significant 
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inter-class variations, training the network from scratch was impractical. Therefore, they used two pre-

trained networks, ResNet-34 and MobileNet-v2, as backbone feature extractors with task-specific 

modifications. The method's key advantage was classifying breast lesions into four categories. However, 

the accuracy for the two-class classification did not surpass 84%, and for the four-class classification, it 

stayed at 90%. The study also lacked justification for including the background as a class and did not discuss 

its impact on the results. 

Qiao et al. developed a deep learning framework for detecting calcifications using multi-channel US RF 

signals, offering a promising approach for enhancing breast cancer diagnosis [18]. The study introduced a 

unique integrated framework, where multi-channel RF signals were merged through beamforming and then 

transformed using short-time Fourier transform (STFT) to extract frequency domain features. They 

proposed the RF signal spectrogram-calcification-detection-net (SCD-Net), a CNN based on the YOLOv3 

model, enhanced with convolutional short-term memory (ConvLSTM) for detecting calcifications from 

spectrograms. While the framework showed promise in accurately detecting tumor calcifications and 

assisting radiologists, it involved complex preprocessing and detection processes and lacked 

straightforward interpretability. Additionally, the study's focus was limited to calcification detection, 

suggesting that expanding to include mass screening and tumor classification could further benefit 

radiologists. 

Kim et al. undertook a comprehensive approach in their study, developing an end-to-end CNN framework 

to analyze breast US images using multiparametric images derived from RF signals. This thorough research 

approach provides reassurance about the validity and reliability of the study's findings [19]. The study 

utilized entropy and phase images, which offer fine structural and anatomical details, along with 

conventional B-mode images in the temporal domain. Additionally, attenuation images estimated from the 

frequency domain of RF signals were used to capture spectral features. The proposed ensemble architecture 

integrates these diverse parametric images from both time and spectral domains, enhancing the 

representation of tissue echogenicity and reducing the risk of overfitting by creating a richer dataset for 
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deep neural network training. The architecture's strength lies in combining various image types, 

significantly improving classification performance compared to single parametric or B-mode images. 

However, the study's effectiveness is limited by its relatively small dataset. Allowing voting algorithm 

weights during training could improve classification accuracy if a larger dataset were available. 

In 2022, Byra et al. used US RF data in deep learning methods, achieving a higher area under the curve 

(AUC) than B-mode imaging for breast lesion classification and segmentation [20]. Their approach 

distinguishes between benign and malignant lesions and segments them, using RF data from the mass and 

surrounding tissue for a more comprehensive analysis. However, limitations include a small training dataset 

and less robustness compared to quantitative ultrasound (QUS) techniques. Additionally, their algorithm 

underperformed in classification, leading to the development of an improved Naive Bayes-based algorithm, 

which enhanced classification performance [21]. Similarly, Gare et al. combined RF data with B-mode 

images in CNNs, achieving a higher AUC than B-mode alone, highlighting the benefits of incorporating 

RF data in breast lesion classification [22]. 

In 2022, researchers explored deep learning methods using QUS multiparameter maps to predict breast 

treatment response, achieving an 88% accuracy rate [23]. The approach involved extracting intrinsic 

features from raw US RF data and integrating them with QUS image features in a CNN-based structure. 

This method effectively classifies individuals as responders or non-responders to therapeutic interventions 

by capturing spatial heterogeneity across multiple QUS image channels. However, the model faced 

overfitting issues due to small datasets, leading the researchers to use early stopping during training to 

improve generalizability. Table 1 provides a concise overview of relevant previous studies. 

Table 1. Method comparison of related breast lesion classification experiments   

Study Database Proposed 

Model 

Data 

Preprocessing 

Evaluation 

Metrics 

Results Advantages Disadvantages 

Jarosik et al. 

[1] 

OASBUD 

(78 subjects and 

100 US RF 

Data) 

2 Class 

CNN-1D, 

CNN-2D, 

and 

CNN-1D-2D 

1. Extract 2D RF 

data patches. 

2. Develop 1D 

convolutional 

layers to process 

Accuracy 

AUC 

Best results: 

Accuracy=70%, 

AUC=77% 

1. Creating 

parametric maps to 

assess potential 

malignancy in breast 

masses. 

 

1. Limited 

differentiation 

between benign and 

malignant lesions. 
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RF signals for 

CNN-1D. 

3. Train CNN-1D 

based on the 

envelope of RF 

signals. 

4. Combine CNN-

1D with CNN-2D 

to create the 

CNN-1D-2D 

model. 

2. Providing an 

expressive approach 

for analyzing breast 

masses. 

2. Low accuracy 

(Only 70% by CNN-

1D-2D model) 

despite using three 

CNN-based 

approaches and RF 

2D patches.  

3. Requiring 

considerable time for 

both pre-processing 

and network training. 

Wei et al. 

[16] 

OASBUD 

(78 subjects and 

100 US RF 

Data) 

2 Class 

Faster R-

CNN 
- Accuracy Accuracy>95% 

1. Identifying breast 

lesions and the 

region of interest 

(ROI). 

2. Compatible with 

both CPU and GPU 

platforms. 

3. Reducing the time 

required for training 

and testing. 

1. Evaluation lacks 

detailed metrics 

(Offering only a 

general accuracy 

statement above 

95%). 

2. Lack of complete 

validation due to 

limited dataset 

(Hindering 

comprehensive 

assessment of the 

method's 

effectiveness). 

Behboodi et 

al. [17] 

Publicly 

available US 

dataset (40 

invasive ductal 

carcinomas 

(IDC), 65 cysts 

(CYST), and 39 

fibroadenomas 

(FA)) 

4 class 

MTL 

(ResNet34-

MobileNet-

V2) 

1. Crop images 

and resize them. 

2. Normalize 

image. 

3 Augment data 

(Apply random 

on-the-fly). 

Accuracy, 

Precision, 

Recall, F1-

Score 

For 2-class: 

Accuracy=84%, 

Precision=100%, 

Recall=25%,  

F1-Score=40% 

For 4-class: 

Accuracy=90%, 

Precision=80%, 

Recall=50%, 

 F1-Score=62% 

1. Classifying breast 

lesions into four 

classes. 

 

2. Utilizing 

background as an 

additional class. 

1. Lack of 

justification for 

including the 

background as a 

class. 

2. Lack of discussion 

on the impact of 

including the 

background class. 

Qiao et al. 

[18] 

US RF signals 

of 337 breast 

tumors with 

calcifications 

2 class 

Deep 

learning 

architecture 

based on the 

YOLOv3 

model and 

integrated 

features 

through 

ConvLSTM 

1. Apply 

beamforming. 

2. Utilize STFT to 

extract frequency 

domain features. 

Accuracy, 

Precision, 

Recall, F1-

Score, 

Precision-

Recall (PR) 

Accuracy=84.13%, 

Precision=88.47%, 

Recall=94.5%,  

F1-Score=91.38%, 

Precision-Recall 

(PR)=88.25% 

1. Performing 

strongly in 

accurately 

diagnosing tumor 

calcification. 

1. Complex 

framework steps. 

2. Less clear network 

interpretability. 

3. Focusing only on 

calcification 

detection. 

Kim et al. 

[19] 

OASBUD 

(78 subjects and 

100 US RF 

Data) 

2 Class 

End-to-end 

ensemble 

CNN 

 

1. Extract the 

entropy and phase 

images. 

 

2. Construct the 

B-mode images. 

 

3. Extract the 

attenuation image. 

Accuracy, 

Precision, 

Recall, F1-

Score, AUC 

Accuracy=83%, 

Precision=79.57%, 

Recall=91.33%,  

F1-Score=85.05%, 

AUC=91.61% 

1. End-to-end 

ensemble 

architecture for 1D 

time series 

classification of RF 

signals. 

2. Utilizing multiple 

parametric images 

from time and 

spectral domains. 

1. Relatively small 

dataset. 

 

 

2. Enhancing 

classification with 

voting algorithm 

weights. 

Byra et al. 

[20] 

273 breast 

masses 

2 Class 

Y-Net 

architecture 

1. Resize image. 

 

2. Segment 

manually. 

Accuracy, 

Sensitivity, 

Specificity, 

AUC 

Accuracy=86.50%, 

Sensitivity=82%, 

Specificity=90.60%, 

AUC=87.40% 

1. Classifying 

benign/malignant 

lesions and 

performing 

segmentation for 

detailed analysis. 

2. Utilizing RF data 

characteristics from 

breast mass and 

surrounding regions 

for informed 

decisions. 

1. Requiring 

significant time. 

 

2. Hindering 

effectiveness due to 

a small number of 

data samples. 

 

3. Less robust than 

traditional QUS 

techniques. 
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Taleghamar 

et al. [23] 

181 patients 

2 class 

Deep 

convolutional 

neural 

network 

(DCNN) and 

residual 

attention 

network 

(RAN) 

1. Resize images. 

 

2. Normalize 

images. 

 

3. Augment data 

(Flipping 

horizontally and 

shifting 

horizontally and 

vertically). 

Accuracy, 

Sensitivity, 

Specificity, 

AUC 

Accuracy=88%, 

Sensitivity=70%, 

Specificity=92.50%, 

AUC=86% 

1. Extracting 

essential information 

by analyzing the 

entire image during 

feature extraction. 

2. Quantifying 

spatial heterogeneity 

across multiple QUS 

image channels for 

enhanced analysis. 

3. Including tumor 

core and periphery 

improves accuracy in 

predicting treatment 

responses. 

1. Network structure 

overfitting with 

small datasets, 

compromising 

generalizability. 

 

2. Using early 

stopping to improve 

generalizability and 

reduce overfitting. 

Unlike previous studies [1, 16, 18-20, 23] that primarily focus on benign and malignant lesions, this 

research expands its scope to include a broader range of lesions. The classification process in this study is 

conducted across four distinct classes, with the primary objective of developing a method that not only 

achieves high accuracy in two-, three-, and four-class classifications with reduced complexity-unlike [1, 

20] but also serves as a supportive system for radiologists in diagnosing breast lesions. Unlike [1, 19, 20, 

23], the proposed approach effectively avoids overfitting due to the carefully selected strategies and 

appropriate dataset size for this method. Evaluating data across three proposed scenarios allows for a 

thorough assessment of the technique, with the best approach for each classification mode being identified 

and presented. 

One of the research's fundamental strengths and innovations is using the Gaussian process (GP) 

optimization, which enables the optimal performance of the VGG16 and CapsNet networks through fine-

tuned hyperparameters. This is noteworthy because the need to optimize hyperparameters is not addressed 

in [16, 17, 20], with only [19] highlighting this concern. Additionally, this study goes beyond [16, 17] by 

providing a comprehensive set of evaluation criteria for each approach, demonstrating the superiority of 

the proposed method. The comparison between the VGG16 and CapsNet methods and the proposed 

approach is also detailed, with the best scenario for each classification mode identified and discussed. In 

summary, the main contributions of this paper are as follows: 
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 The proposed approach extends its performance beyond benign and malignant lesions, offering a 

more comprehensive classification capability, by utilizing a more comprehensive range of lesions. 

 The GP was employed to optimize the parameters, leading to an improvement in classification 

accuracy. 

 The proposed model has been empirically demonstrated to outperform other classification methods 

across all evaluation metrics. Its high efficiency makes it particularly applicable in real-world 

scenarios, especially for analyzing breast US RF B-mode images. This capability holds significant 

potential for various medical applications, particularly in the clinical classification of breast tumors. 

 Unlike [18], the proposed method is more understandable and interpretable for radiologists because 

it utilizes US RF B-mode images, making it easier to comprehend than studies that employed US 

RF signals. This enhanced clarity contributes to the method's accessibility and usability in clinical 

practice. 

In this study, the motivation behind developing the VGG16-CapsNet model for breast cancer classification 

is to achieve a more efficient and accurate diagnostic tool by leveraging the strengths of both CNNs and 

CapsNets. Despite its power in image classification, CNN struggles with capturing spatial relationships and 

feature orientations, leading to potential misclassifications, particularly with rotated or differently angled 

objects [24-28]. It also requires large labeled datasets and is prone to overfitting on smaller ones [28-30].  

CapsNets address these limitations by preserving spatial hierarchies and orientations, improving object 

recognition regardless of pose, and reducing overfitting [24-26]. This study developed the VGG16-CapsNet 

model for breast cancer classification, combining the strengths of CNNs and CapsNets. While CNNs often 

rely on handcrafted features, CapsNets employ end-to-end training, extracting more intricate features. 

Integrating VGG16 with CapsNet enhances feature recognition and model accuracy, offering a more 

efficient and reliable diagnostic tool for breast cancer classification. 

3. Theoretical Modeling 
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This study concentrates on the non-invasive classification of breast lesions into benign, probably benign, 

suspicious, and malignant classes using VGG16-CapsNet and three scenarios. The classification process is 

demonstrated in Fig. 1. 

3-1- Data Collection  

This study utilizes the RF time series breast US (RFTSBU) dataset, comprising 220 RF signal frames and 

corresponding B-mode images, collected at Dezashib Imaging Center in Tehran, Iran, using a 

SuperLinearTM SL18-5 linear transducer (18.5 MHz) and the US SuperSonic Imagine Aixplorer® medical 

and research system. 

 

Fig. 1. The proposed VGG16-CapsNet-based breast cancer classification process  

 

With participant consent, ethical approval was obtained from the committee of ethics of the Islamic Azad 

University, Science and Research Branch, Tehran, Iran. Mammography and biopsies were conducted to 

confirm malignancy and assess suspicious lesions, with additional data collected for some cases. Patient 

information, including family history and reproductive details, was recorded. The overall data collection 

framework and the number of registered data in each group are illustrated in Fig. 2. 

3-2- Data Preprocessing: RF Data Parser 
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The RF signals captured by the Supersonic Imagine are saved in a specific format, which requires 

conversion to the .MAT file for readability in Matlab. A graphical user interface (GUI) named "RF Data 

Parser" was employed to facilitate this conversion process. This GUI is responsible for converting each 

recorded RF data into a .MAT file. Additionally, it can generate a B-mode image from each recorded US 

RF signal and present the user with both the B-mode image and the RF signal. This article utilizes B-mode 

images derived from US RF data. 

 

 

Fig. 2. The data collection framework and the number of records in each class 

 

3-3- Proposed GP Optimized CapsNet based on VGG16 

A GP is completely defined by its mean function, m(x)=E[f(x)], and co-covariance, k(x, x')=E[(f(x)-

m(x))(f(x')-m(x'))]. So, write the GP as [31]:  

(1) ~ ( ( ), ( , '))( ) GP m x k x xf x 
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The Bayesian model represents a primary instantiation of a GP, the foundation for Bayesian optimization, 

a widely used approach in general optimization. This iterative method operates by sequentially refining its 

search for optimal solutions. A probabilistic surrogate model and an acquisition function that directs the 

choice of the subsequent evaluation point are components of the GP framework. During each iteration, the 

surrogate model is updated based on all previous evaluations of the target function. The acquisition function 

then makes use of the predictive distribution derived from the probabilistic model to evaluate the relative 

usefulness of different candidate points, striking a balance between exploration (i.e., looking for less-

explored areas) and exploitation (i.e., concentrating on areas that are most likely to produce high 

performance). The acquisition function can be thoroughly optimized because it is computationally 

inexpensive, in contrast to the costly evaluation of the black box function [31, 32]. The acquisition function 

is the expected improvement (EI), which is derived from Eq. (2)  [33]. 

(2) min[ ( )] [max( ,0)]E I E f Y  
 

Eq. (3) defines the prediction of the model Y at configuration λ according to a normal distribution, and EI 

is computed in the closed form. 

(3) 

min min
min

( ) ( )
[ ( )] ( ( )) ( ) ( ))

f f
E I f

   
    

 

 
  

 

where fmin is the best-observed value, φ(·) is the standard normal density, and Φ(·) is the standard normal 

distribution function. 

3-4- Breast Cancer Classification Procedure 

The proposed breast cancer classification model comprises four main phases: data preparation, pre-training, 

classification and optimization, and evaluation. The ensuing subsections describe each step in detail. 

3-4-1- Data Preparation Step 
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In order to properly model the training data, a network must learn a high-variance function, which leads to 

overfitting. Three essential steps are involved in this phase: balancing the dataset, data augmentation, and 

dividing the data into training and testing sets. Considering its novelty, we found two main problems with 

the dataset: the small number of US RF B-mode data in each class and the imbalance in the data. There 

aren't many images in the medical dataset, but deep learning methods need a lot of samples to prevent 

overfitting. This study used image data augmentation techniques, such as rotating images by 10 degrees to 

the left and right. 

To address the imbalance in the dataset, we employed two approaches. The first approach is based on class 

weights, assigning higher costs to misclassifications of the minority class. For manual calculation, the 

weight for each class can be set as: 

(4) 

( _ _ _ )

( _ _ ) ( _ _ _ _ _ )
i

Total Number of Samples
w

Number of Classes Number of Samples in Class i


 

The second approach utilizes the synthetic minority over-sampling technique (SMOTE), which includes 

generating synthetic instances of the minority class to balance the dataset. The SMOTE balances the class 

distribution by introducing synthetic samples to the minority class, which improves the dataset's suitability 

for machine learning model training [34, 35]. Additionally, we split the RFTSBU into training, testing, and 

validation sets, with a 70%, 15%, and 15% ratio, to facilitate the proper evaluation of the model. 

3-4-2- Pre-training and CapsNet Optimizing Steps 

The three steps in the training process are as follows: 

Step (1): VGG16 CNN Structure: An essential aspect of CNNs is weight sharing, where similar feature 

detectors are applied across the entire object. To handle variations in the dataset, CNNs incorporate 

subsampling layers that address the significance of the precise location of features [36]. Deep feature 

extraction is further enhanced through transfer learning with pre-trained models like VGG16, which 
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captures activation values from various layers as features [37]. VGG16, with its five-block structure, 

facilitates immediate feature extraction and is integrated into the CapsNet architecture [38].  

Step (2): CapsNet (Breast-caps): In the CapsNet primary capsule (PC) layer, each capsule takes in a tiny 

subset of the receptive field as input and tries to figure out the pose of a given pattern [39]. A capsule's 

output is a vector dynamically routed to the layer below the relevant parent capsule. This output vector is 

used to predict the output of capsules in the next layer (parent capsules) through a learned transformation 

matrix. The dynamic routing mechanism then calculates the agreement between these predictions and the 

actual outputs of the parent capsules. Capsules with higher agreement have increased routing weights, 

ensuring their contributions are emphasized. This process dynamically routes the output vectors to the most 

relevant parent capsules, enabling accurate information flow through the network. Fig. 3 demonstrates the 

CapsNet architecture. 

 

Fig. 3. The CapsNet architecture 

Step (3): CapsNet Hyperparameter Optimization: Finding a D-dimensional hyperparameter setting x that 

minimizes the CapsNet's validation loss/error f is the goal of hyperparameter optimization. The function f 

maps the validation error of a CapsNet algorithm with learned parameters to a hyperparameter choice x of 

G configurable hyperparameters. Eq. (5), which illustrates optimizing f, looks for a way to find the ideal 

hyperparameters automatically: 

(5) 

min ( , ; )

. . arg min ( ; )

G valx R

train

f x S

s t f S




 




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The enormous complexity of the function f makes it challenging to solve the problem in Eq. (5). In this 

case, Sval stands for the validation dataset and Strain for the training dataset. The value of x falls inside a 

bounded set, and the learning procedure lowers the training loss/error. Among the algorithms for Bayesian 

optimization is the GP. Bayesian optimization algorithms approximate the costly error function using a 

low-cost probabilistic surrogate model. As a result, we utilize the GP to optimize the CapsNet's 

hyperparameters. The specific steps of the breast CapsNet classification model are displayed in Table 2. 

Table 2. The breast CapsNet classification model 

Input data: 

Breast lesions US RF B-mode images (X, Y); 

where Y={y|y∈{Benign, Probably Benign, Suspicious, and Malignant}} 

Output data:  

The CapsNet model that classified Breast lesions US RF B-mode images x ∈ X 

Begin: 

// Pre-processing steps: 

{Resize US RF B-mode images to 128×128 dimensions 
Generate US RF B-mode images using data preparation operations 
Balance the RFTSBU dataset using the SMOTE method  
Split into train, valid, and test dataset}  

// Deep feature extraction step: 

{Utilize pre-trained transfer model VGG16 
Extract features using VGG16} 

// CapsNet hyperparameter optimization 𝜃 (routing No, capsule No) 

{Initialize the search space routing No [1, 5]], and capsule No [5, 20]—with random values   

while j∈i+1 …., N 

            Perform search space exploration. 

            Update posterior distribution by incorporating prior information. 

            Select the following sample, the θ minimizing error/loss 

            Train CapsNet (θ) 

            Evaluate 𝑦𝑗=f (𝑥𝑗, θ)) //objective function 

           Update the GP model of f(x) to refine posterior estimation. 

End 

Return optimized hyperparameters  

Retrain the CapsNet (θ) 
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Test the CapsNet 

Output the classification 

 

4. Results 

The experiments used tensor flow and Keras with a TPU Google COLAB environment. To assess the 

effectiveness of the proposed approach, its performance was evaluated using several metrics, including 

accuracy, recall, precision, F-score, and AUC. 

Experiment Scenario (I): In this approach, class weights were assigned as follows to address class 

imbalance: for the four-class scenario (benign, probably benign, suspicious, and malignant), the weights 

were 0.9545, 1.0758, 1.0892, 1.05, and 0.9242, respectively. The weights in the three-class scenario 

(benign, suspicious, and malignant) were 1.0697, 1.1358, and 0.8440, respectively. In the two-class 

scenario (benign and malignant), the weights were 1.0627 and 0.9442, respectively.  

A custom function was implemented to calculate network error, allowing for different weights for each 

class and adjusting the impact of each class's examples on the final error calculation. In CapsNet, "Routing" 

refers to the process by which capsules in one layer dynamically send their outputs to the next layer based 

on how well the predictions align [27, 38]. It uses algorithms like dynamic routing by agreement to refine 

connections iteratively. The "Dimension of Capsules" pertains to the length of the vectors that capsules 

output, which encodes complex feature attributes such as pose and orientation, allowing for a richer 

representation of data than traditional scalar outputs. The CapsNet parameters were optimized through 20 

experimental repetitions, resulting in a capsule dimension of ten and a routing number of 5. The evaluation 

results of two-, three-, and four-class classifications are presented in Table 3. Fig. 4 shows the training, 

testing, and validation accuracy and loss for experiment scenario (I) across two-, three-, and four-class 

classifications. 
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Table 3. Result assessment of two-, three, and four-class classification using experiment scenario (I) 

Class/Parameters 
Accuracy  

(%) 
Precision  

(%) 
Recall  

(%) 
F-Score 

(%) 

Macro 
Average 

AUC  
(%) 

2 98.36 98.41 98.36 98.36 100 

3 94.94 94.99 94.94 94.91 99.33 

4 94.22 94.23 94.22 94.20 99.50 

  

 

Fig. 4. The training, testing, and validation accuracy and loss for (a) two-, (b) three-, (c) four-class classifications and ROC for 

(d) two-, (e) three-, (f) four-class classifications in experiment scenario (I) 

Experiment Scenario (II): In this approach, the minority class was augmented to match the size of the 

majority class, yielding 63 images per class, and the SMOTE method was used to balance the dataset. 

CapsNet parameters were optimized through 20 experimental repetitions, yielding a capsule dimension of 

ten and a routing number of 5. Table 4 visually represents the experiment scenario (II) evaluation results. 
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Fig. 5 shows the training, testing, and validation accuracy and loss for experiment scenario (II) across two-

, three-, and four-class classifications. 

Table 4. Result assessment of two-, three, and four-class classification using experiment scenario (II) 

Class/Parameters 
Accuracy 

 (%) 
Precision  

(%) 
Recall  

(%) 
F-Score 

(%) 

Macro 
Average 

AUC  
(%) 

2 97.87 97.88 97.87 97.87 100 

3 97.02 97.16 97.02 97.04 100 

4 94.29 94.53 94.29 94.24 98.50 

 

 

Fig. 5. The training, testing, and validation accuracy and loss for (a) two-, (b) three-, (c) four-class classifications and ROC for 

(d) two-, (e) three-, (f) four-class classifications in experiment scenario (II) 

Experiment Scenario (III): The CapsNet hyperparameters were optimized using the GP method. Optimal 

performance was achieved with different routing and capsule dimensions for two-, three-, and four-class 

classifications, followed by a final investigation using 20 epochs. This approach identified the most accurate 

configurations for each classification task. For four-class classification, the optimal results were achieved 
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with a routing number of four and a capsule dimension of eight. The best performance was obtained in the 

three-class classification with a routing number of five and a capsule dimension of 14. For two-class 

classification, the optimal settings were a routing number of five and a capsule dimension of 20. The 

evaluation results of two-, three-, and four-class classifications of experiment scenario (III) are depicted in 

Table 5. Fig. 6 presents the training, testing, and validation accuracy and loss for experiment scenario (III) 

across two-, three-, and four-class classifications. 

Table 5. Result assessment of two-, three, and four-class classification using experiment scenario (III) 

Class/Parameters 
Accuracy  

(%) 
Precision  

(%) 
Recall  

(%) 
F-Score 

(%) 

Macro 
Average 

AUC  
(%) 

2 98.51 98.56 98.51 98.51 100 

3 97.51 97.61 97.51 97.52 99.33 

4 95.05 95.08 95.05 95.06 99.50 

 
 

 

Fig. 6. The training, testing, and validation accuracy and loss for (a) two-, (b) three-, (c) four-class classifications and ROC for 

(d) two-, (e) three-, (f) four-class classifications in experiment scenario (III) 
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5. Discussion 

The primary objective of this research was to explore three scenarios for classifying breast lesions across 

two, three, and four classes, which include benign, probably benign, suspicious, and malignant lesions. The 

proposed method addresses the challenges of data imbalance and the limited number of images in the 

RFTSBU dataset, which can impact classification results. It combines a pre-trained VGG16 CNN with 

CapsNet for breast cancer classification. Model accuracy is enhanced by applying GP optimization to fine-

tune the CapsNet hyperparameters for two- and three-class classifications. In addition to Tables 3-5, Fig. 

4, Fig. 5, Fig. 6, and Fig. 7 demonstrate that scenario (III) yields the best classification results on average, 

primarily due to the use of the GP method and the optimization of hyperparameters across two-, three-, and 

four-class classifications. In relative terms, scenario (III) has shown an average improvement of 0.009% 

and 0.005% over the (I) and (II) scenarios, respectively. 

In this study, beyond evaluating the accuracy, precision, recall, and F-score, we employed the ROC curve 

to assess the model's discriminative capability, with AUC as a crucial performance metric. Scenario (III) 

achieved exceptional macro average AUC values of 100%, 99.33%, and 99.50% for two-class, three-class, 

and four-class classifications, respectively. These results underscore the model's discriminative strong 

power, demonstrating its effectiveness in distinguishing between the target classes. Compared to previous 

studies [1, 19, 20, 23], our model exhibits a marked improvement, likely due to the innovative approaches 

we implemented.   

The computational complexity of various breast cancer detection models varies significantly due to their 

different approaches and model architectures. Jarosik et al.'s research is computationally intensive due to 

the direct processing of raw US RF signals [1]. Their CNN-based model requires extensive parameter 

optimization during training and inference, leading to high computational costs, especially with iterative 

epochs. Wei et al.'s method also demands substantial resources during training and inference because it 
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uses deep network layers, region proposal processes, and bounding box refinement for lesion detection and 

classification [16]. 

For MTL-based models, the computational complexity increases with the number of classification 

categories, the challenge of managing limited training data, and the need for extensive optimization 

processes [17]. Qiao et al.'s framework adds complexity with signal preprocessing (beamforming and 

STFT), running deep models like SCD-Net with YOLOv3 and ConvLSTM, and performing temporal 

tracking with the Kalman filter [18]. This multi-step approach requires high-performance hardware for 

practical training and deployment. 

Kim et al. system also demonstrates high computational demands, with image preprocessing steps (entropy, 

phase, and attenuation image generation), CNN training, and inference, all compounded by multiple input 

data channels, convolution operations, and data augmentation strategies [19]. Similarly, Byra et al.'s method 

requires significant computational resources due to large RF input sizes, MTL architecture, and intensive 

convolution operations coupled with data augmentation and interpretability steps [20]. 

Lastly, Taleghamar et al.'s methodology involves deep learning models (ResNet and RAN), attention 

mechanisms, large input image sizes, and multi-parametric data, increasing computational complexity [23]. 

Training and evaluation become progressively more demanding with deeper networks, input channels, and 

larger datasets. 

Compared to these approaches, the VGG16-CapsNet with GP optimization method, while computationally 

expensive due to its deep architecture and optimization techniques, is designed to handle complex tasks like 

hierarchical feature extraction and multi-class classification more effectively than simpler models. While 

methods like CNNs are computationally cheaper, they may not achieve the same level of performance in 

nuanced tasks such as breast lesion classification. Thus, a trade-off between computational cost and model 

performance must be considered when selecting a model for clinical applications. 
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Results were obtained independently using VGG16 and CapsNet to compare VGG16, CapsNet, and the 

VGG16-CapsNet combination comprehensively. Fig. 8 illustrates the average performance of these three 

approaches across scenarios (I), (II), and (III). On average, the VGG16-CapsNet approach demonstrates a 

performance improvement of 4.31% compared to the VGG16 approach and 9.06% compared to CapsNet. 

Moreover, Fig. 8 highlights the impact of incorporating the GP method (scenario (III)) with the VGG16-

CapsNet approach. This optimization method enhances performance across all three approaches—VGG16, 

CapsNet, and VGG16-CapsNet. Compared to scenarios (I) and (II), scenario (III) incorporates GP 

optimization, which offers a more comprehensive solution by balancing the dataset and fine-tuning the 

model's hyperparameters for optimal performance. This approach enhances the model's ability to capture 

complex data patterns, improves its generalization capabilities, reduces the time required to find optimal 

hyperparameters, and ultimately results in higher accuracy and robustness in breast lesion classification. 

The findings demonstrate that incorporating CapsNet into the VGG16 architecture significantly improves 

feature detection and classification accuracy. The synergy between VGG16's ability to extract dense, 

hierarchical features and CapsNet's strength in modelling spatial relationships and preserving feature 

hierarchies made this combination particularly effective for classifying breast lesions. Other pre-trained 

networks, while powerful, may not provide the same balance of simplicity, detailed feature extraction, and 

compatibility with CapsNet's architecture. The dynamic routing between capsules in CapsNet is crucial in 

enhancing the model's ability to accurately classify breast cancer cases by emphasizing the most relevant 

features during the classification process. This integration results in a more efficient and accurate diagnostic 

tool, particularly in scenarios requiring complex classifications. 

In this study, we selected the CapsNet architecture for its ability to capture spatial hierarchies of features 

essential for accurate breast lesion classification. The network's dynamic routing mechanism helps 

prioritize and apply these features across various classification tasks as follows: 
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Two-Class Classification (Benign vs. Malignant): CapsNet focuses on key features like lesion size, 

boundary irregularity, and echogenicity to differentiate benign (smoother, uniform) from malignant 

(irregular, complex) lesions. Dynamic routing emphasizes lesion shape and structural integrity. 

Three-Class Classification (Benign, Suspicious, Malignant): In this task, CapsNet considers additional 

features like internal texture and lesion orientation to distinguish "suspicious" lesions, which share traits 

with both benign and malignant categories. Dynamic routing emphasizes subtler features like lesion 

homogeneity and internal echoes. 

Four-Class Classification (Benign, Probably Benign, Suspicious, Malignant): For this detailed 

classification, CapsNet focuses on finer features like microcalcifications, margin clarity, and small 

histological changes. Dynamic routing is adjusted to distinguish "probably benign" from "suspicious" 

lesions by recognizing intricate patterns in lesion structure. 

CapsNet adapts its dynamic routing as the classification complexity increases to focus on progressively 

finer details, highlighting the most distinguishing features. This flexibility makes CapsNet highly effective 

and allows it to refine its performance across various classification scenarios. Table 6 provides a 

comparison of the approaches proposed by other researchers.  

 

Fig. 7. Average results for scenario (I), scenario (II), and scenario (III) across two-, three-, and four-class classifications 

98.69 95.82 95.2798.29 97.64 95.1898.81 97.89 95.94
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Fig. 8. Comparison of average results for scenario (I), scenario (II), and scenario (III) using CapsNet, VGG16 and VGG16-

CapsNet approaches 

Table 6. Comparison of relevant RF time series and US RF B-mode methods 

Study Database 
Feature 

Extraction 
Method 

Classifier 
No. of 
classes 

Results 

Jarosik et 

al. [1] 

OASBUD 

(78 subjects 

and 100 US 
RF data) 

CNN-1D, 

CNN-2D, 

CNN-1D-2D 

CNN-1D, 

CNN-2D, 

CNN-1D-2D 
2 

Accuracy= 70.00% 

with CNN-1D-2D 

Kim et al. 

[19] 

OASBUD 

(78 subjects 

and 100 US 

RF data) 

Entropy and 

phase images, 

B-mode 

images, 

Attenuation 

images  

End-to-end 

ensemble 

CNN 

2 
Accuracy=83.00% 

with DenseNet-201 

Wei et al. 

[16] 

OASBUD 

(78 subjects and 

100 US RF 

data) 

Faster R-CNN Faster R-CNN 2 Accuracy>95% 

Proposed 

Method 

RFTSBU 

(118 subjects 

and 220 RF B-

mode data) 

VGG16 CapsNet 

2 

 
Accuracy=98.81% 

3 Accuracy=97.89% 

4 Accuracy=95.94% 
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The following is a summary of this investigation's main benefits: 

 Finding solutions for the balancing issues and the small number of US RF B-mode images in the 

RFTSBU dataset to improve the classification outcomes. 

 Using the VGG16 model as input for CapsNet to extract deep features. 

 Applying GP optimization to adjust the hyperparameters of CapsNet. 

 Creating a classifier for breast cancer using CapsNet. 

5-1- Limitations and Future Works 

The RFTSBU dataset used in this study is relatively small, comprising 220 data points from 118 patients, 

which may limit the model's robustness and generalizability to broader populations. This limited sample 

size poses challenges for training deep learning models. Additionally, the RFTSBU dataset originates from 

a specific US system (SuperSonic Imagine Aixplorer®), which could restrict the model's applicability to 

other medical centers, devices, or patient populations with different characteristics such as age or ethnicity. 

While GP optimization was employed to fine-tune hyperparameters and enhance performance, it can be 

computationally intensive and sensitive to kernel choices, potentially leading to suboptimal outcomes in 

some cases. Although the hybrid model demonstrates strong experimental results, its performance in real-

world settings is not guaranteed due to variations in US image quality, device calibration, and noise levels 

across healthcare environments. Moreover, its reliance on data from a specific US system highlights 

potential challenges in generalizing the model's effectiveness to data from other devices with differing 

imaging protocols, resolutions, and performance characteristics. 

Future works for improving the breast lesion classification model can focus on the following: 

Expanding the dataset is a critical step to improving the model's generalization and clinical applicability. 

Collecting more extensive and diverse datasets, including samples from various medical centers, US 

systems, and patient demographics (e.g., age and ethnicity), will help the model adapt to broader real-world 

https://doi.org/10.22060/eej.2024.23500.5621


AUT Journal of Electrical Engineering 
10.22060/EEJ.2024.23377.5609 

 

scenarios. This expansion reduces overfitting risks and enhances robustness, ensuring reliable performance 

across different clinical settings. 

Optimization methods also hold significant potential for future work. While this study utilized GP 

optimization, exploring alternative techniques such as Bayesian optimization, genetic algorithms, or 

reinforcement learning could yield better hyperparameter tuning while reducing computational overhead. 

Additionally, addressing real-world clinical challenges, such as robustness to noise and artifacts, is 

essential. Incorporating techniques like image denoising, adversarial training, and augmented datasets with 

simulated noise will ensure the model can withstand distortions commonly encountered in clinical practice. 

Multi-center trials with datasets from diverse hospitals will further enable comprehensive performance 

evaluation, providing the model's reliability across varying imaging conditions and patient populations.  

6. Conclusion 

Impressive breast cancer screening relies on early detection and treatment. While US RF B-mode provides 

a novel, equipment-independent approach, challenges like class imbalance and limited interpretability 

hinder its clinical application. This study presents a hybrid deep learning model for breast lesion 

classification that integrates a pre-trained CNN (VGG16) with a CapsNet to address critical challenges in 

breast cancer screening, including class imbalance and small sample sizes. The model leverages the 

SMOTE and data augmentation to mitigate data imbalance and enhance training stability. GP optimization 

was applied to fine-tune the hyperparameters of the CapsNet, ensuring optimal performance across various 

classification scenarios. 

The experimental results demonstrate that the proposed hybrid model achieves superior classification 

accuracy compared to alternative approaches. Specifically, it achieves average accuracies of 98.81%, 

97.89%, and 95.94% for two-, three-, and four-class classifications, respectively. This performance reflects 

the model’s robustness in handling complex, multi-class breast lesion data and accurately capturing key 

lesion characteristics, such as size, shape, orientation, and internal texture. 
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Integrating VGG16 with CapsNet allows for effective feature extraction and hierarchical representation of 

lesion attributes, while GP optimization fine-tunes the model’s hyperparameters to enhance diagnostic 

precision. This model improves classification accuracy and offers significant interpretability, making it a 

viable solution for clinical applications, particularly in classifying breast lesions using US RF B-mode 

images. The results underscore the potential of advanced hybrid deep learning models in real-world medical 

diagnostics, with promising implications for further research in improving breast cancer detection and 

classification. 
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