تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,209 |
تعداد دریافت فایل اصل مقاله | 4,882,946 |
Almost complex structure over almost contact metric structures | ||
AUT Journal of Mathematics and Computing | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 02 دی 1403 | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2024.23677.1285 | ||
نویسنده | ||
Akbar Sadighi* | ||
Department of Mathematics, Tabriz Branch Islamic Azad University, Tabriz, Iran | ||
چکیده | ||
In this paper, we investigate the conditions under which a lifted almost complex structure $J$ on the tangent bundle $TM$ of a manifold $M$ exhibits various Kählerian properties. We establish several characterizations relating the geometry of $(TM, J)$ to the cosymplectic structure on $M$. Specifically, we show that $(TM, J)$ is Kählerian if and only if $(M, \eta, \xi, \varphi)$ is cosymplectic and $R = 0$. Similarly, we prove that $(TM, J)$ is nearly Kählerian under the same conditions on $M$. Furthermore, we present an alternative criterion for $(TM, J)$ to be Kählerian, involving a nearly cosymplectic condition on $M$ alongside a specific curvature relation. Finally, we demonstrate that $(TM, J)$ is semi-Kählerian if and only if $(M, \eta, \xi, \varphi)$ is semi-cosymplectic with $R(X, Y) \varphi Z = 0$. These results reveal intricate connections between cosymplectic structures on $M$ and Kählerian-type structures on $TM$, contributing to the broader understanding of almost complex geometry on tangent bundles. | ||
کلیدواژهها | ||
Almost complex structure؛ Cosymplectic structure؛ Nearly cosymplectic structures؛ Kählerian manifolds | ||
آمار تعداد مشاهده مقاله: 27 |