
تعداد نشریات | 7 |
تعداد شمارهها | 404 |
تعداد مقالات | 5,423 |
تعداد مشاهده مقاله | 5,529,867 |
تعداد دریافت فایل اصل مقاله | 5,024,391 |
Influence of infill settings on the flexural properties of 3D printed ABS plus polymer parts in bending loading | ||
AUT Journal of Mechanical Engineering | ||
دوره 9، شماره 1، فروردین 2025، صفحه 83-96 اصل مقاله (1.18 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22060/ajme.2025.23310.6121 | ||
نویسندگان | ||
Moein Moradi1؛ Ramin Hashemi* 1؛ Ali Hosseinzadeh2؛ Mehdi Kasaeian-Naeini1 | ||
1School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran | ||
2Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
چکیده | ||
One of the most commonly used techniques in 3D printing is Fused Deposition Modeling (FDM). Despite its widespread adoption, creating functional parts with suitable mechanical properties remains a significant challenge. Previous studies have often focused on various aspects of FDM. Still, there remains a lack of comprehensive research addressing the flexural properties of 3D-printed ABS plus polymer parts under bending loads. This gap in the literature motivated the current study. The manufacturing parameters in the FDM process, such as infill density (ID) (20, 50, and 80 percent), layer thickness (LT) (0.1, 0.2, and 0.3 mm), and raster angle (RA) (0, 45, and 90 degrees) were investigated to understand their mutual influence on the bending mechanical properties at ambient temperature through experimental design and analysis of variance. Reinforced ABS polymer filament was utilized in this research. The parameters were studied using the response surface method (RSM) based on the central composite design (CCD), employing quadratic regression equations for all responses to determine the model coefficients. Analysis of variance revealed that the raster angle is the most critical factor influencing the bending response, as it directly affects load transfer to the specimen. The optimal parameters identified for maximum bending strength were ID = 78.277%, LT = 0.295 mm, and RA = 1.599 degrees. The bending strength is maximum in thick layers and low raster angles. | ||
کلیدواژهها | ||
Fused Deposition Modeling؛ Test Design؛ Mechanical Properties؛ Three-Point Bending | ||
مراجع | ||
[1] M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Business Horizons, 60(5) (2017) 677-688.
[2] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143 (2018) 172-196.
[3] Y.L. Yap, W.Y. Yeong, Additive manufacture of fashion and jewellery products: a mini review, Virtual and Physical Prototyping, 9(3) (2014) 195-201.
[4] N. Mohan, P. Senthil, S. Vinodh, N. Jayanth, A review on composite materials and process parameters optimisation for the fused deposition modelling process, Virtual and Physical Prototyping, 12(1) (2017) 47-59.
[5] T.N.A.T. Rahim, A.M. Abdullah, H. Md Akil, Recent Developments in Fused Deposition Modeling-Based 3D Printing of Polymers and Their Composites, Polymer Reviews, 59(4) (2019) 589-624.
[6] V. Shanmugam, D.J.J. Rajendran, K. Babu, S. Rajendran, A. Veerasimman, U. Marimuthu, S. Singh, O. Das, R.E. Neisiany, M.S. Hedenqvist, F. Berto, S. Ramakrishna, The mechanical testing and performance analysis of polymer-fibre composites prepared through the additive manufacturing, Polymer Testing, 93 (2021) 106925.
[7] O.A. Mohamed, S.H. Masood, J.L. Bhowmik, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Advances in Manufacturing, 3(1) (2015) 42-53.
[8] A. Garg, A. Bhattacharya, An insight to the failure of FDM parts under tensile loading: finite element analysis and experimental study, International Journal of Mechanical Sciences, 120 (2017) 225-236.
[9] M. Dawoud, I. Taha, S.J. Ebeid, Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques, Journal of Manufacturing Processes, 21 (2016) 39-45.
[10] J. Nomani, D. Wilson, M. Paulino, M.I. Mohammed, Effect of layer thickness and cross-section geometry on the tensile and compression properties of 3D printed ABS, Materials Today Communications, 22 (2020) 100626.
[11] A. Rodríguez-Panes, J. Claver, A.M. Camacho, The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis, Materials, 11(8) (2018) 1333.
[12] S. Kannan, M. Ramamoorthy, Mechanical characterization and experimental modal analysis of 3D Printed ABS, PC and PC-ABS materials, Materials Research Express, 7(1) (2020) 015341.
[13] A. Khalili, A. Kami, V. Abedini, Tensile and Flexural Properties of 3D-Printed Polylactic Acid/Continuous Carbon Fiber Composite, Mechanics of Advanced Composite Structures, 10(2) (2023) 407-418.
[14] Y. An, L. Zhang, C. Chang, Z. Zhu, L. Xiong, C. Tang, X. Chen, G. Zhang, W. Gao, Research on the surface quality improvement of 3D-printed parts through laser surface treatment, Optics & Laser Technology, 181 (2025) 111711.
[15] P. Rendas, L. Figueiredo, M. Geraldo, C. Vidal, B.A. Soares, Improvement of tensile and flexural properties of 3D printed PEEK through the increase of interfacial adhesion, Journal of Manufacturing Processes, 93 (2023) 260-274.
[16] S. Zou, S. Cao, E. Yilmaz, Enhancing flexural property and mesoscopic mechanism of cementitious tailings backfill fabricated with 3D-printed polymers, Construction and Building Materials, 414 (2024) 135009.
[17] M.H. Esfe, S.N.H. Tamrabad, H. Hatami, S. Alidoust, D. Toghraie, Using the RSM to evaluate the rheological behavior of SiO2 (60%) - MWCNT (40%)/SAE40 oil hybrid nanofluid and investigating the effect of different parameters on the viscosity, Tribology International, 184 (2023) 108479.
[18] M. Hemmat Esfe, S. Alidoust, S.N. Hosseini Tamrabad, D. Toghraie, H. Hatami, Thermal conductivity of MWCNT-TiO2/Water-EG hybrid nanofluids: Calculating the price performance factor (PPF) using statistical and experimental methods (RSM), Case Studies in Thermal Engineering, 48 (2023) 103094.
[19] M.H. Esfe, S.M. Motallebi, H. Hatami, M.K. Amiri, S. Esfandeh, D. Toghraie, Optimization of density and coefficient of thermal expansion of MWCNT in thermal oil nanofluid and modeling using MLP and response surface methodology, Tribology International, 183 (2023) 108410.
[20] N. Vidakis, M. Petousis, A. Vairis, K. Savvakis, A. Maniadi, A parametric determination of bending and Charpy’s impact strength of ABS and ABS-plus fused deposition modeling specimens, Progress in Additive Manufacturing, 4(3) (2019) 323-330.
[21] Z. Raheem, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials 1, 2019.
[22] M. Samykano, S.K. Selvamani, K. Kadirgama, W.K. Ngui, G. Kanagaraj, K. Sudhakar, Mechanical property of FDM printed ABS: influence of printing parameters, The International Journal of Advanced Manufacturing Technology, 102(9) (2019) 2779-2796.
[23] S. Mahendran, S. Selvamani, K. Kadirgama, W. Ngui, K. Ganesan, Mechanical property of FDM printed ABS: influence of printing parameters, The International Journal of Advanced Manufacturing Technology, 102 (2019).
[24] T.Q. Tran, F.L. Ng, J.T.Y. Kai, S. Feih, M.L.S. Nai, Tensile Strength Enhancement of Fused Filament Fabrication Printed Parts: A Review of Process Improvement Approaches and Respective Impact, Additive Manufacturing, 54 (2022) 102724. | ||
آمار تعداد مشاهده مقاله: 118 تعداد دریافت فایل اصل مقاله: 146 |