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Abstract: 

In the realm of millimeter-wave communications, despite their promise of high data rates and expansive 

bandwidths, channel estimation encounters formidable challenges due to conspicuous path loss and the 

limited multipath components. This paper presents an innovative method that leverages the inherent 

sparsity of millimeter-wave channels by operating within the two-dimensional transformed domain, this 

approach treats the channel as a sparse image representation. We advance the accuracy of sparse 

equivalent vectorized channel recovery by optimizing the measurement matrix. The proposed 

optimization method significantly reduces the requisite measurements and accelerates the estimation 

process and minimizes the mean squared error between the true and estimated channel matrices. Through 

comprehensive simulations, we evaluate our method against two scenarios: one where the compression 

rate is zero, and the sparse channel matrix recovery relies on the number of observations equating the 

number of channel matrix elements, and another where the compression rate is non-zero, but the 

measurement matrix remains unoptimized and randomly selected. Results demonstrate that our method 

outperforms the latter scenario and achieves accuracy comparable to the former, with significantly 

reduced computational overhead and accelerated computation speed. 
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1. Introduction 

With the advent of fifth and sixth generation wireless communication networks, improving coverage 

range and enhancing service quality will become essential requirements for the advancement of wireless 

communications. Even though many systems are operating near their Shannon limit, the fifth generation 

(5G) still demands significantly higher data rates, approximately 100 to 1000 times greater than previous 

generations. Researchers have identified three strategies to achieve several orders of magnitude 

throughput gain: firstly, increasing the density of deployed devices compared to current levels; secondly, 

utilizing new bandwidths, particularly those in the Millimeter-wave spectrum; and thirdly, deploying a 

wide array of antennas (massive MIMO( to leverage spatial dimensions for higher data rates. Millimeter-

wave (mmWave) communications offer significant advantages for these future wireless communication 

networks, such as high data rates, large bandwidths, massive antenna arrays, and reduced interference[1]. 

However, mmWave communications also pose several challenges, such as high path loss, the limited 

number of multipath components leading to channel sparsity in the angular domain, hardware complexity, 

and beam alignment[2]. These challenges make estimating the mmWave channel in such a high-

frequency band a difficult task.  

Various observations have shown that the multipath waves of the received signal in a massive MIMO 

mm-wave link are distributed into several dominant clusters, exhibiting sparse behavior[3, 4]. Typically, 

three to four scattering clusters can be observed in urban environments, predominantly in non-line-of-

sight (NLOS) conditions. Traditional channel estimation methods are not suitable for such sparse 

conditions due to the large channel dimensions and the often negligible received components. A common 

approach for estimating and recovering the limited non-zero elements is utilizing compressive sensing 

(CS) techniques, which represent the channel with significantly fewer samples than required by the 

Shannon-Nyquist theorem. Significant research efforts have been dedicated to this area. 

https://doi.org/10.22060/eej.2024.23500.5621


AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.23570.5625 

 

There are numerous papers focused on the recovery of sparse signals. Here, we will only address those 

specifically aimed at channel estimation for massive MIMO mm-wave systems. Orthogonal matching 

pursuit (OMP) is a greedy algorithm used as CoSaMP in [5] for channel estimation. Additionally, multi-

grid OMP (MG-OMP) is proposed in [6] as a modified version of OMP to reduce computational burden 

and enhance reconstruction adaptability. A generalized version of OMP, known as generalized OMP 

(GOMP), is presented in[7], which selects more than one index corresponding to the largest correlation in 

magnitude with the residual in each iteration, thereby accelerating the channel estimation algorithm. A 

similar idea is explored in [8] with the development of a joint OMP algorithm to perform channel state 

information reconstruction at the transmitter side, exploiting joint sparsity due to cross-correlation among 

different user channel matrices. In[9], a traditional OMP algorithm is further developed to propose a new 

channel estimation scheme named projection-based orthogonal matching pursuit (POMP) to find the 

minimum number of ADC bits that still offer optimal performance. Greedy methods are also employed 

in[10-12]. 

Although basis pursuit (BP) methods and their generalized counterparts, such as least absolute shrinkage 

and selection operator (LASSO), are rarely implemented in real-time wireless applications due to their 

high computational complexity, references like [13] have utilized them in channel estimation because 

they offer much greater accuracy than greedy algorithms. Inspired by the fast iterative shrinkage-

thresholding algorithm, [13]presents an accelerated gradient descent algorithm to improve the speed of 

BP algorithms for channel estimation. To further reduce computational burden, [14]demonstrates that if 

the angle of arrival (AoA) and angle of departure (AoD) share angular spreads, it is possible to utilize 

both the sparse nature of the channel and its low-rank structure. In this scenario, [14]proves that the 

complexity of channel recovery is lower than in cases where only sparsity is considered. In[15], more 

information is provided about various methods used to estimate the mm-wave channel. 

Recently, another category of algorithms based on deep learning networks, such as shown in[16, 17], has 

been proposed for channel estimation. Instead of modeling the sparsity of the channel, these algorithms 
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learn channel features in deep layers. These methods excel in addressing highly complex practical issues 

like limited RF chains, power leakage, and beam squint, which are challenging for CS-based 

mathematical modeling techniques. However, these approaches require substantial training data and 

initial computational resources, differing from the current article's focus on reducing computations by 

leveraging the channel's statistical properties. Bayesian learning, utilizing approximate message passing 

with unitary transformation (UTAMP-SBL), as described in[18], has demonstrated effective performance 

with minimal pilot overhead. 

The innovation of this paper lies in optimizing the measurement matrix to minimize correlation with the 

channel dictionary matrix. This idea can be generalized to all CS methods for massive MIMO mm-wave 

channel estimation, complementing all previously mentioned works. Additionally, as far as the authors 

are aware, this idea, along with the revised presentation of the channel as a virtual channel, has not yet 

been applied for massive MIMO mm-wave channel estimation. 

The main contribution made in this paper is the optimization of the sensing model's measurement matrix 

to enhance the quality of this recovery. It is proven that to achieve successful compressed sensing, we 

must choose a measurement matrix with the least possible coherence with the representing dictionary[19-

21]. Recently, there has been significant interest in using optimized matrices to enhance CS-based 

estimation results[22-24]. Therefore, to reduce the number of required measurements and speed up the 

estimation process, we propose a new technique in this paper that optimizes the measurement matrix 

using a gradient descent algorithm to improve the accuracy of sparse equivalent vectorized channel 

recovery. In other words, the goal is to develop an algorithm for mm-wave channel estimation that 

maximizes the use of the inherent sparsity of such channels by introducing a coherence-optimized 

measurement matrix. 

For mmWave channel generation using computer simulations, we have used the Saleh-Valenzuela 

model[1], which is designed for entirely NLOS (urban) paths. In this paper, we first demonstrate that 
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assuming the channel follows the Saleh-Valenzuela model and considering the limited number of 

significant paths at the receiver (which is a valid assumption due to the severe attenuation on path loss of 

millimeter waves), the resulting virtual channel, obtained from the 2D Fourier transform of the mmWave 

channel, is equivalent to a sparse image. Recovering the locations of the few peaks in this image and 

finding the corresponding amplitudes is equivalent to estimating the mmWave channel. Consequently, by 

utilizing compressed sensing algorithms such as a basis pursuit (BP) or a least absolute shrinkage and 

selection operator (LASSO), we can recover this sparse representation and ultimately estimate the 

mmWave channel. The notations used in the paper are presented in Table 1. 

The paper is organized as follows.  The mmWave channel and its virtual channel modeling is described in 

Section 2. The received observations matrix at the receiver is also modeled in this section. In Section 3, 

we formulate a CS-based channel estimation method as either a basis pursuit (BP) or a least absolute 

shrinkage and selection operator (LASSO) problem. Then, we propose a novel method to use an 

optimized measurement matrix to reduce the number of observations required for the sparse estimation 

process and to increase the estimation accuracy. Finally, the complexity analysis is presented at the end of 

Section 3. In Section 4, we evaluate our proposed method under different scenarios and compare it with 

existing methods. Finally, we conclude the paper in Section 5. 

Table 1: Notations Used in the Paper 

Symbol Description 

𝑁𝑡 Number of transmitting antennas 

𝑁𝑟 Number of receiving antennas 

𝐇 Channel matrix 

𝐑 Received signal matrix 

𝒓 Vectorized 𝐑 

𝐒 Pilot signal matrix from the transmitter 

𝐍 Complex AWGN noise matrix 

𝐇v Virtual sparse channel representation 
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𝐅𝑟 Fourier transform matrix at the receiver side 

𝐅𝑡 Fourier transform matrix at the transmitter side 

𝛼𝑖 Multipath fading coefficient for the 𝑖-th path 

𝜃𝑖
𝑡, 𝜃𝑖

𝑟 
Angles of departure and arrival for the 𝑖-th path 

at transmitter and receiver 

𝒂(𝜃) Steering vector at an angle 𝜃 

𝚽 Measurement matrix used in compressed sensing 

𝚿 Dictionary matrix  

𝐃 Product matrix used in optimization 

𝐃̃ Column-normalized version of 𝐃 

𝜆 Wavelength of carrier signal 

𝛾 Regularization parameter in LASSO 

𝑑 Distance between antenna elements 

𝒉v Vectorized virtual channel 𝐇v 

K Number of iterations in gradient descent 

optimization 
 

 

2. mmWave channel and virtual channel modeling 

For a wireless link with 𝑁𝑡 antennas at the transmitter and 𝑁𝑟 antennas at the receiver, the accordingly 

modeled mmWave channel is represented as an 𝑁𝑟 × 𝑁𝑡 matrix. The goal of this paper is to propose an 

appropriate algorithm for estimating this channel matrix by leveraging the inherent properties of the 

channel. Generally, all its entries may have considerable values, keeping it from being a sparse matrix. 

However, the mmWave channel can be sparsely represented in another basis (i.e., Fourier).  

mmWave communications offer large bandwidths, resulting in a wireless channel that experiences 

frequency selective multipath fading. However, if we assume the use of OFDM modulation, the mmWave 

channel can be considered as flat-fading for each of the subcarriers. Given the use of MIMO technology 

in mmWave communications, for a subcarrier, the channel model is employed assuming omnidirectional 
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elements of the antenna arrays and a uniform linear array (ULA) configuration on both the transmitter and 

receiver sides, as follows[1, 25]: 

 𝐇𝑁𝑟×𝑁𝑡
= ∑ 𝛼𝑖𝒂𝑟(𝜃𝑖
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where the complex coefficient of multipath fading for the 𝑖th received path is denoted by 𝛼𝑖. The total 

number of multipath components received by the receiver is represented by 𝑁multipath. The angles of 

transmission and reception for the signal of the 𝑖th received path at the receiver are respectively denoted 

by 𝜃𝑖
𝑡 and 𝜃𝑖

𝑟. The steering vectors for these angles at the transmitter and receiver antenna arrays are 

denoted by 𝒂𝑡(𝜃𝑖
𝑡) and 𝒂𝑟(𝜃𝑖

𝑟), respectively. The conjugate transpose of 𝒂(𝜃) is defined to be 𝒂(𝜃)H. 

For a ULA with N elements, 𝒂(𝜃) is given by: 
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Fig. 1. An illustration of a mm-wave channel environment with two scatterers. In the angular domain, the virtual 

channel observes only 4 non-zero angles (two at the transmitter and two at the receiver), so it can be represented as 

sparse. It also considers only 2D wave penetration. 

where 𝑁 represents the number of antenna elements in the array (here, we denote the number of antenna 

elements for the transmitter and receiver as 𝑁𝑡 and 𝑁𝑟, respectively), 𝜆 corresponds to the wavelength of 

the carrier signal, and 𝑑 is the distance between two adjacent elements in the ULA. 

In mmWave communications, the significant path losses result in a very limited number of multipath 

components being received at the receiver, leading to a sparse representation of the channel in the angular 

domain. This means 𝑁multipath, which denotes the number of multipath components, is a small number. 

As most reflections are severely attenuated before reaching the destination, the channel can be effectively 

modeled as sparse in the angular domain, which is also referred to as the virtual channel[13]. This 

characteristic of mmWave channels necessitates a channel estimation approach that accounts for the 

inherent sparsity to accurately capture the channel’s properties.  
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In Fig. 1, a mm-wave channel environment with two scatterers is illustrated. It is assumed that there is no 

line-of-sight (LOS) and, due to the severe attenuation of millimeter waves, paths resulting from two 

consecutive scatterers are generally neglected due to significant weakening. The number of received 

angles at the receiver will also be limited.  

For each subcarrier, the transmitter sends a set of pilot signals 𝑁𝑡 times from the transmitter's antenna 

array with 𝑁𝑡 elements through the mmWave channel. These signals form a complex unitary matrix 

denoted as 𝐒 ∈ ℂ𝑁𝑡×𝑁𝑡 , 𝐒𝐒H = 𝐈𝑁𝑡
. The effect of the channel 𝐇 ∈ ℂ𝑁𝑟×𝑁𝑡, along with complex AWGN 

noise 𝐍 ∈ ℂ𝑁𝑟×𝑁𝑡 at the receiver, produces the received matrix 𝐑 ∈ ℂ𝑁𝑟×𝑁𝑡, which is given by the 

following relationship: 

 𝐑 = 𝐇𝐒 + 𝐍. 

R=HS+N  

The virtual channel, also known as the sparse channel in the angular domain, is represented by 𝐇v and is 

obtained by applying a two-dimensional discrete Fourier transform (2D DFT) to the channel matrix 𝐇 

defined in Eq. (1). To perform a 2D DFT on a matrix 𝐇 of size 𝑁𝑟 by 𝑁𝑡, we multiply it by two square 

Fourier matrices 𝐅𝑟 of size 𝑁𝑟 × 𝑁𝑟 and 𝐅𝑡 of size 𝑁𝑡 × 𝑁𝑡. The result is given by 𝐇v = 𝐅𝑟𝐇𝐅𝑡. The 

Fourier matrices 𝐅𝑟 and 𝐅𝑡 are complex matrices whose elements are given by 𝐅𝑟[𝑘, 𝑙] =

𝑒𝑥𝑝(−𝑗2𝜋 𝑘𝑙 𝑁𝑟⁄ ) and 𝐅𝑡[𝑘, 𝑙] = 𝑒𝑥𝑝(−𝑗2𝜋 𝑘𝑙 𝑁𝑡⁄ ), where 𝑘 and 𝑙 are the row and column indices, 

respectively. 

On the other hand, the channel matrix 𝐇 itself, in terms of the virtual channel representation 𝐇v, is 

obtained by computing the inverse DFT (IDFT) as follows:  

 𝐇 =
𝐅𝑟

H

𝑁𝑟
𝐇v

𝐅𝑡
H

𝑁𝑡
. 

H=
HH

tr
v

r t

FF
H

N N
 

https://doi.org/10.22060/eej.2024.23500.5621


AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.23570.5625 

 

 

 

 

Fig. 2. An illustration sparse image representation of the virtual channel matrix created by padding virtual channel 

matrix with trailing zeros to form an 128-by-128 matrix and then computing its two-dimensional Fourier transform 

for only two scatters with 𝜃1
𝑡 = 13, 𝜃2

𝑡 = 95, 𝜃1
𝑟 = 5, 𝜃2

𝑟 = 45, and 𝜆 = 2.5𝑑, 𝑁𝑟 = 4 , 𝑁𝑡 = 64. 

 

Fig. 3. An illustration sparse image representation of the virtual channel matrix created by padding virtual channel 

matrix with trailing zeros to form an 𝑁𝑟-by-𝑁𝑡 matrix and then computing its two-dimensional Fourier transform 

will parameter setting similar of Fig. 2. 

As mentioned in the abstract, this method represents the virtual channel as a sparse image. In Fig. 2 and 

Fig. 3, the sparse images of the virtual channel are depicted for two different strategy of zero padding in 

Fig. 2 and no zero padding in Fig. 3. To avoid ambiguities in the spatial sampling of the array, 𝜆 is set to 

https://doi.org/10.22060/eej.2024.23500.5621


AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.23570.5625 

 

2.5𝑑. According to Fig. 2 and Fig.3, each angle at the transmitter (receiver) corresponds to a peak on the 

vertical (horizontal) axis of the sparse image representation of the virtual channel matrix. This matrix is 

the Fourier transform of the millimeter-wave channel, calculated according to Eq. (4).  

By substituting Eq. (4) into Eq. (3), the model for the received observations matrix 𝐑 in terms of the 

sparse virtual channel matrix 𝐇v is expressed as:  

 𝐑 =
𝐅𝑟

H

𝑁𝑟
𝐇v

𝐅𝑡
H

𝑁𝑡
𝐒 + 𝐍. 

 

R S+N
HH

tr
v

r t

FF
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N N
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3. CS-Based Channel Estimation 

Here, we aim to improve and innovate the use of compressed sensing algorithms to enhance channel 

estimation accuracy with a fixed number of observations. Generally, in a mmWave channel, OFDM 

modulation is used to overcome frequency-selective fading, ensuring that each of its subcarriers 

experiences flat fading.  

3-1- Problem formulation 

The concept of using compressive sensing (CS) in channel estimation is to first estimate the virtual 

channel matrix 𝐇v. 

As explained, in mmWave channels, due to high signal absorption in the environment, only a few paths 

remain that can reach the receiver. Therefore, the number of received angles (and correspondingly, the 

number of transmitted angles) in the channel is small. This means that the channel 𝐇v is sparse, and it is 

not necessary to estimate all its 𝑁𝑡𝑁𝑟 components. Moreover, to recover the non-zero values, the number 

of measurements (the number of solvable equations) does not need to equal the number of entries of 𝐇v. 

It is possible to uniquely recover 𝐇v with fewer measurements than the number of unknowns 𝑁𝑡𝑁𝑟. 
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However, since the location of the non-zero elements in 𝐇v is not known, the number of observations 

cannot be too low for the recovery of 𝐇v to be possible. To find the relationships between the degree of 

sparsity and the number of measurements required for a successful sparse vector recovery, please refer 

to[26]. 

To exploit the sparsity of the mmWave channel in the angular domain, we use the sparse equivalent 

vectorized channel model 𝒉v =  vec(𝐇v). We can also use the Kronecker product to vectorize the 2D 

DFT in Eq. (5) as: 

 𝒓 = (𝐅𝑡
H𝐒 𝑁𝑡 ⊗ 𝐅𝑟

H 𝑁𝑟⁄⁄ )𝒉v + 𝒏. 

 / /H H

t t r r vr F S N F N h n  
 

where 𝒓 =  vec(𝐑), 𝒏 =  vec(𝐍) and ⊗ denotes the Kronecker product. In the literature of compressive 

sensing, if we denote (𝐅𝑡
H𝐒 𝑁𝑡 ⊗ 𝐅𝑟

H 𝑁𝑟⁄⁄ ) as 𝚿 ∈ ℂ𝑁𝑟𝑁𝑡×𝑁𝑟𝑁𝑡, then 𝚿 is referred to as the “representing 

dictionary matrix”, so 

 𝒓 = 𝚿𝒉v + 𝒏. 

vr h n 
 

Based on the principles of compressive sensing, we aim to identify 𝑁𝑐 measurements, each being a linear 

function of the elements of the vector 𝚿𝒉v to recover 𝒉v. The number of measurements 𝑁𝑐 should be less 

than, and preferably much less than, 𝑁𝑟𝑁𝑡. Therefore, we multiply the vector 𝚿𝒉v from the left by the 

matrix 𝚽 ∈ ℝ𝑁𝑐×𝑁𝑡𝑁𝑟, which we refer to as the “measurement matrix”, to reduce the number of 

measurements used for estimating 𝒉v from 𝑁𝑟𝑁𝑡 to 𝑁𝑐. 

 𝒓𝑐  = 𝚽𝚿𝒉v + 𝚽𝒏. 

c vr h n  
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where𝒓𝑐 denotes the reduced size (compressed) measurements. In general, the entries of the observation 

matrix 𝚽 are generated completely at random, following a distribution such as the standard Gaussian 

distribution[27]. 

The basis pursuit (BP) relaxed with 𝑙1 norm minimization problem, [26], and the least absolute shrinkage 

and selection operator (LASSO), [28], are both methods used in the context of sparse recovery. 

The BP relaxed with 𝑙1 norm minimization problem focuses solely on the minimization of the 𝑙1 norm of 

the coefficient vector where the goal is to recover a sparse signal from a small number of linear 

measurements which is subject to constraints that ensure the solution is consistent with the observed data. 

This problem can be represented as: 

 𝒉v
∗  = min

 
‖𝒉v‖1 

subject to  𝒓𝑐  = 𝚽𝚿𝒉v
*

1
min

. .

v v

c v

h h

s t r h



 
 

The LASSO is a regression method that involves adding a 𝑙1 norm penalty to the sum squared error (SSE) 

loss function. The objective function for LASSO is given by: 

 𝒉v
∗  = arg min

𝒉v

(‖ 𝒓𝑐 − 𝚽𝚿𝒉v‖2
2 + 𝛾‖𝒉v‖1) 

 2*

2 1
arg min

v

v c v v
h

h r h h  



𝛾 is the regularization parameter that controls the strength of the penalty. The LASSO method aims to 

both minimize the residual sum of squares and enforce sparsity in the coefficients. The regularization 

parameter 𝛾 that needs to be chosen, which balances the trade-off between the loss function (noise 

reduction) and the penalty term (sparse recovery). 

3-2- Measurement Matrix Design and Optimization 
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Numerous studies have established that a low mutual coherence between the measurement matrix and the 

representing dictionary matrix is essential for the successful application of compressive sensing[29], 

[20],[30]. Consequently, it is advantageous to design measurement matrices that exhibit minimal 

coherence with the representing dictionary to enhance the efficacy of compressive sensing in mmWave  

channel estimation. 

In our pursuit of optimal mmWave channel estimation, we must select a measurement matrix, 𝚽, that 

exhibits the lowest possible coherence with the sparsity basis (or representing dictionary), 𝚿. This implies 

that if we define 𝐃 = 𝚽𝚿, the columns of 𝐃 should have minimal correlation. Consequently, the ideal 

scenario is that the Gramian matrix of the column-normalized version of 𝐃, denoted as 𝐃̃, is equal to the 

identity matrix 𝐈𝑁𝑡𝑁𝑟
.  

The Gramian matrix of 𝐃̃, is given by 𝐃̃H𝐃̃. Note that 𝐃̃H𝐃̃ is not full-rank because it has 𝑁𝑡𝑁𝑟 − 𝑁𝑐  

eigenvalues equal to zero. It follows that 𝐃̃H𝐃̃ cannot be equal to 𝐈𝑁𝑡𝑁𝑟
, but we can select 𝚽 such that for 

a given 𝚿, the Gramian matrix of 𝐃̃ is as close to the identity matrix 𝐈𝑁𝑡𝑁𝑟
 as possible. One approach to 

achieve this objective is to solve the following optimization problem: 

 𝐃̃∗  = arg min
𝐃̃

(‖ 𝐃̃H𝐃̃ − 𝐈𝑁𝑡𝑁𝑟
‖

𝐹

2
), 

 
2

* H

D

D arg min D D I
t rN N

F
 

 

where ‖ ∙‖𝐹 denotes the Frobenius norm. In this paper we propose to employ a numerical method- i.e., 

gradient descent, to solve Eq. (11) iteratively. A feasible initial value for 𝐃̃ can be obtained by 

generating𝚽 from the standard multivariate normal distribution and then multiplying it with 𝚿. Then, in 

𝐾 successive iterations, the value of 𝐃̃ can be updated according to the following formula: 

 𝐃̃𝑛+1  = 𝐃̃𝑛 − 𝛼∇𝐃̃ (‖ 𝐃̃𝑛
H

𝐃̃𝑛 − 𝐈𝑁𝑡𝑁𝑟
‖

𝐹

2

), 
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 
2

H

1 DD D D D I
t rn n N N

F
    

 

where 𝛼 is the step size in the gradient descent method and for the scaler function 𝐺(∙), ∇𝐃̃𝐺(𝐃̃𝑛) is the 

gradient of 𝐺(∙) with respect of 𝐃̃ at 𝐃̃𝑛. The final updated 𝐃̃𝑛 is chosen to be the solution of Eq. (11), 

denoted as 𝐃̃∗. The gradient of ‖ 𝐃̃H𝐃̃ − 𝐈𝑁𝑡𝑁𝑟
‖

𝐹

2
 with respect to 𝐃̃ is given by the following formula[31]: 

 ∇𝐃̃ (‖ 𝐃̃H𝐃̃ − 𝐈𝑁𝑡𝑁𝑟
‖

𝐹

2
)  = 4𝐃̃(𝐃̃H𝐃̃ − 𝐈𝑁𝑡𝑁𝑟

) 

   
2

H H

D D D I 4D D D I
t r t rN N N N

F
   

 

By plugging Eq. (13) into Eq. (12), we complete the solution of the optimization problem in Eq. (11). 

Finally, we obtain the measurement matrix 𝚽 as 𝐃̃∗𝚿−1. We can then apply it to the received observation 

𝒓 in Eq. (7) to obtain reduced size 𝒓𝑐 in Eq. (8) and solve either the relaxed basis pursuit problem in Eq. 

(9) or the LASSO in Eq. (10) to estimate the virtual channel coefficients 𝒉v
∗ . The pseudo code for the 

proposed massive MIMO mm-Wave channel estimation methods with non-optimized 𝚽 and with 

optimized 𝚽 are presented in Algorithm 1. 
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Algorithm 1: Pseudo code for the proposed massive MIMO mm-Wave 

Channel Estimation methods  

1. For 𝑵𝒕 iterations, transmit the pilot vector 𝒔𝑖 ∈ ℂ𝑁𝑡×1 from the 

transmitter antennas such that [𝒔1, ⋯ , 𝒔𝑖, ⋯ , 𝒔𝑁𝑡
] forms the unitary 

matrix 𝐒. 

2. Since the matrix 𝐒 is known at the receiver, compute the representing 

dictionary Ψ according to (𝐅𝑡
H𝐒 𝑁𝑡 ⊗ 𝐅𝑟

H 𝑁𝑟⁄⁄ ). 

3. Upon receiving the matrix 𝐑 at the receiver, vectorize it to form 𝒓, then 

compute 𝒓𝑐 using Eq. (8). 

4. If the problem is to be solved with optimized 𝚽, compute the matrix 

𝐃̃∗ according to equation Eq. (12) recursively, and then obtain the 

measurement matrix Φ as 𝐃̃∗𝚿−1. 

5. Calculate the recovered vector 𝒉v
∗  by solving the optimization problem 

BP in equation Eq. (9) or the LASSO optimization problem (assuming an 

appropriate 𝛾 is chosen) in equation Eq. (10). 

6. Obtain 𝐇v
∗ , the matrix equivalent of the vector 𝒉v

∗ , and finally estimate 

the mmWave channel 𝐇∗ using equation Eq. (4). 

 

 

3-3- Complexity analysis  

The gradient computation involves matrix multiplications and subtractions. As 𝐃̃ is an 𝑁𝑐 × (𝑁𝑡𝑁𝑟) 

matrix, the complexity of computing 𝐃̃H𝐃̃ is 𝒪(𝑁𝑐(𝑁𝑡𝑁𝑟)2), and the complexity of computing the 

gradient is also 𝒪(𝑁𝑐(𝑁𝑡𝑁𝑟)2). The gradient descent update step involves matrix addition and 

subtraction, which is 𝒪(𝑁𝑐𝑁𝑡𝑁𝑟). So, the total complexity per iteration is dominated by the gradient 

computation, which is 𝒪(𝑁𝑐(𝑁𝑡𝑁𝑟)2). The overall complexity also depends on the number of iterations 

required for the algorithm to converge, which can vary based on the learning rate and the specific 

properties of the objective function. 

The computed 𝐃̃ is then utilized by either BP or LASSO. Basis Pursuit is typically solved using linear 

programming (LP) techniques such as the interior point method, where its complexity is 𝒪((𝑁𝑐 +

𝑁𝑡𝑁𝑟)1.5(𝑁𝑡𝑁𝑟)2). Given 𝑁𝑡𝑁𝑟 is much larger than 𝑁𝑐, the complexity is dominated by 𝑁𝑡𝑁𝑟, leading to 

𝒪((𝑁𝑡𝑁𝑟)3.5). Basis pursuit has a higher complexity and is generally more suitable for smaller problems. 
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LASSO can be solved using techniques such as coordinate descent. The complexity of solving the 

LASSO problem using coordinate descent is 𝒪(𝑁𝑐𝑁𝑡𝑁𝑟 log(𝜖−1)), where 𝜖 is the desired accuracy of the 

solution. LASSO is typically more efficient for larger problems due to its linear complexity in terms of 𝑁𝑐 

and (𝑁𝑡𝑁𝑟). 

It is also insightful to compare the above results with those of SPC[13], a method that will be used as a 

counterpart algorithm in the simulation section.  

The SPC[13] algorithm primarily involves DFT and IDFT of size 𝑁𝑡 × 𝑁𝑟 for virtual channel 

representation. The complexity of each transformation is 𝒪(𝑁𝑡𝑁𝑟 log2(𝑁𝑡𝑁𝑟)). It also involves iterative 

steps for the identification of peaks and cancellation of corresponding sinc functions. At each iteration, 

the algorithm identifies the maximum magnitude element in the 𝑁𝑡 × 𝑁𝑟 matrix with complexity 

𝒪(𝑁𝑡𝑁𝑟). For each detected path, a sinc function is computed and subtracted. The complexity per 

iteration is 𝒪(𝑁𝑡𝑁𝑟). The number of iterations 𝐼 corresponds to the number of paths to be estimated, so 

the total iterative complexity becomes 𝐼𝒪(𝑁𝑡𝑁𝑟) = 𝒪(𝐼𝑁𝑡𝑁𝑟). Finally, the total complexity is computed 

by adding the contributions as 2𝒪(𝑁𝑡𝑁𝑟 log2(𝑁𝑡𝑁𝑟)) + 𝒪(𝐼𝑁𝑡𝑁𝑟). 

4. Simulation results 

We assume that the antennas are arranged in a uniform linear array (ULA) and that the number of 

antennas at the UE is limited, i.e., 𝑁𝑟 = 4. For mmWave, we consider the carrier frequency to be 30 GHz,  

𝜆 =
3𝑒8

30𝑒9
, 𝑑 = 𝜆/2.5.  

We set 𝑁𝑡 = 64 as the number of antennas at the BS. All the results are obtained by averaging over 200 

independent runs for each scenario. We assume that there are only two multipath components in the 

channel, i.e., two angles of departure and two angles of arrival. In practice, both the number of paths and 

the angles are random, but we simplify the channel scenario to focus on the performance of the 

algorithms. The simulation parameters are presented in Table 2.  
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Table 2: Simulation Parameters 

Symbol Value Description 

Carrier Frequency 30 GHz Frequency used in mmWave simulation 

Antenna Spacing 𝑑 𝜆/2.5 Distance between adjacent elements in ULA 

Number of 

Receiver Antennas 

𝑁𝑟 

4 
Number of antennas at the User Equipment 

(UE) 

Number of 

Transmitter 

Antennas 𝑁𝑡 

64 Number of antennas at the  Base Station (BS) 

SNR 10 dB Signal-to-Noise Ratio during simulations 

Compression Rate 
0%, 20%, 

50%, 75% 
Rates at which observations are reduced 

LASSO 

Regularization 

Parameter 𝛾 

10 Regularization parameter used in LASSO  

optimization 
 

Number of 

Independent Runs 

200 Number of simulations per scenario for 

averaging results 

Number of Paths 
2 Number of multipath components in the 

mmWave channel 
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Fig. 4. The effect of compression rate 𝑁𝑐 on RMSE of mm-wave channel estimation. 

First, we find the appropriate value of 𝛾 for solving the LASSO problem for the case where the 

compression rate is zero. In other words, we assume that the measurement matrix 𝚽 is equal to the 

identity matrix 𝐈𝑁𝑡𝑁𝑟
. The best value for 𝛾 was obtained as 10. In the following simulations, we 

investigate the effect of compressive sensing, or the reduction of observations, by multiplying the 

measurement matrix 𝚽 with the dictionary matrix 𝚿 for different values of 𝑁𝑐. We consider the SNR to 

be 10 dB, and we set 𝑁𝑐 to 𝑁𝑡𝑁𝑟 (no reduction of observations and 𝚽 = 𝐈𝑁𝑡𝑁𝑟
), 𝑁𝑡𝑁𝑟 − 13𝑁𝑟 (20% 

reduction of observations), 𝑁𝑡𝑁𝑟 2⁄  (half of the channel matrix elements), and 16𝑁𝑟 (16 times the sparsity 

degree of the channel matrix in the angular domain, which is 4). We perform this analysis for both the 

LASSO and the BP optimization problems. For each value of 𝑁𝑐 and for each optimization problem, we 

generate the matrix 𝚽 in two ways. In the first method, which we call non-optimized, 𝚽 is generated 

from the standard multivariate normal distribution. In the second method, 𝚽 is optimized, as explained in 

Eq. (11) to Eq. (13). The RMSE values of the channel estimation obtained for the mentioned algorithms 

are shown in Fig. 4 as a function of 𝑁𝑐. An interesting point is that the BP algorithm is much more 

sensitive to the choice of 𝚽 than the LASSO algorithm, and its performance for the non-optimized case is 

much weaker than the optimized case.  
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Fig. 5. The effect of compression rate 𝑁𝑐 on computation time. 

Moreover, for the LASSO algorithm, increasing the compression rate does not cause much performance 

degradation, but as shown in Fig. 5, the computation speed increases by more than three times when 𝑁𝑐 is 

reduced to 16𝑁𝑟 compared to the case where the LASSO algorithm only reduces the observations by 

20%.  

The average computation time for each solution is plotted in Fig. 5 for all these scenarios. It is natural that 

the computation time increases as the compression rate decreases, i.e., as 𝑁𝑐 increases. Moreover, Fig. 5 

indicates that the LASSO method requires more computation time than the BP method. In the last 

simulation, we observe the effect of SNR changes (from -5 dB to 20 dB) on the performance metric of 

mmWave channel estimation, i.e., RMSE. 

We set 𝑁𝑐 to the minimum value from the previous simulation, i.e., 16𝑁𝑟, to achieve the maximum 

computation speed. For each SNR value, we generate the matrix 𝚽 in two ways, non-optimized and 

optimized, for both the LASSO and the BP optimization problems. Along with these simulations, we also 

plot the RMSE of the channel estimation as a function of SNR for the least square (LS) algorithm and 

SPC[13]. The results of these simulations are shown in Fig. 6. 
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Fig. 6. The effect of SNR on RMSE of mm-wave channel estimation. 

As shown in Fig. 6, the performance generally improves as the SNR increases, which is expected. The LS 

method has the worst performance among all the algorithms, especially at low SNRs. The data presented 

in Fig. 6 indicates that, despite their lower computational burden and higher speed compared to the our 

proposed algorithms, the LS and SPC[13] methods exhibit inferior performance in retrieving sparce mm-

wave channel. 

 The BP algorithm performs much better when the matrix 𝚽 is optimized than when it is not optimized. In 

general, due to the regularization term in the objective function of the LASSO problem (which takes into 

account the noise effect), the LASSO method performs better than the BP method, regardless of whether 

the matrix 𝚽 is optimized or not. However, the BP algorithm also achieves a performance close to the 

LASSO method, if it uses the matrix 𝚽 that is optimized. A surprising point is that for the LASSO 

problem, using the matrix 𝚽 that is not optimized gives a better performance than using the one that is 

optimized. The authors speculate that perhaps the value of 𝛾 used in this method needs to be updated and 

is not optimal. This is because the value obtained was for the case of no compression, i.e., for 𝚽 = 𝐈𝑁𝑡𝑁𝑟
. 

Greedy algorithms like OMP are computationally efficient but require prior knowledge of the sparsity 

level for effective performance. Without this, OMP may either stop prematurely or continue 

unnecessarily, impacting recovery performance. In contrast, optimization-based methods like basis 
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pursuit (BP) do not require knowledge of the sparsity level, as they enforce sparsity through 𝑙1-norm 

minimization. However, BP methods are generally more computationally intensive than greedy 

algorithms due to the need to solve convex optimization problems. 

5. Conclusion 

In this paper, we propose a novel method for estimating the mmWave channel by exploiting its inherent 

sparsity. In this method, we optimize the measurement matrix 𝚽 such that it has the lowest coherence 

with the representing dictionary matrix 𝚿. The result of this idea is a significant improvement in the 

mmWave channel estimation algorithm using the BP method, and a much lower computational 

complexity than the case where the compression rate is zero, i.e., 𝚽 = 𝐈. However, this method does not 

benefit much from using the LASSO algorithm. In general, utilizing sparsity in mmWave channel 

estimation, whether by using BP or LASSO, leads to higher estimation accuracy than the conventional LS 

method, which does not use the channel sparsity. 
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