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ABSTRACT: The study focuses on the detailed methods of flood prediction in the Zarineh Rud River 
within Urmia Lake, Iran. It compared five different methods: the Multi-Linear Lag Cascade model, 
Saint-Venant equations, and three soft computing methods, namely Artificial Neural Networks, Adaptive 
Neuro-Fuzzy Inference System, and Support Vector Machines. In this study, the data of the 2022 flood 
recorded at Alasaql and Safakhaneh stations were used. The performances of the models were then 
evaluated in terms of various statistical criteria such as the Nash-Sutcliffe Efficiency (NSE), Root 
Mean Square Error (RMSE), Peak Flow Ratio (PFR), and Percent Error in Peak (PEP). In general, it 
was found that the soft computing techniques, in particular ANN and ANFIS, are representing the best 
performance with NSE values of 0.938 and 0.935, respectively. Similarly, the MLLC model showed 
competitive performance with a value of NSE equal to 0.922 but with much lower computational time. 
The Saint-Venant model was somewhat less accurate, with an NSE value of 0.901 but with higher 
robustness against input uncertainty. For all models, results are better for the high flow range which is of 
importance for flood forecasting. Sensitivity analysis has shown that soft computing methods are more 
sensitive to input data errors than physically based Saint-Venant. This work underlines several critical 
trade-offs when optimizing model accuracy, computational efficiency, and robustness to uncertainty for 
flood prediction. The results highlight that soft computing methods, particularly ANN and ANFIS, are 
recommended for applications requiring high prediction accuracy and where high-quality input data 
is available. These insights can directly inform the development and implementation of flood warning 
systems in the Zarineh Rud River basin and similar hydrological systems worldwide.
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1- Introduction
Flood routing in river reaches is indeed an important part of 

hydrological modeling and has become very helpful in flood 
wave prediction and flood risk management. It is actually all 
about finding out the time of water flow and the magnitude 
as it moves downstream in river channels. The processes 
involved are influenced by various factors, including channel 
geometry, flow resistance, and upstream inflow conditions. 
The Muskingum method, by reason of its simplicity and 
capability to handle sizable hydrological processes, remains 
one of the most utilized techniques for flood routing. This 
technique, in conjunction with some other methods, stands 
very important to understanding and predicting the flood 
behavior that plays a vital role in floodplain management 
and planning infrastructure [1-4]. Generally, flood routing 
methods may be classified as hydrologic and hydraulic 
approaches. Hydrologic methods, of which the Muskingum 
model is one such application, use the continuity equation 
and are favored in practice by virtue of ease and lower data 

demands [1, 5-7]. They find greater use in ungauged basins 
where data is limited [8]. On the other hand, hydraulic methods, 
including the St. Venant equations, are capable of finer detail 
and incorporate the physical features of the river channel in 
the simulation; however, they do require a great deal of data 
to operate [9-12]. Very recently, some new developments 
included the use of genetic programming in conjunction 
with traditional methods for improving the accuracy of flow 
forecasts in complex river systems [13]. Global hydrological 
models have also been extended to include advanced routing 
schemes like that of CaMa-Flood, which includes floodplain 
storage and backwater effects, thus providing an improved 
simulation of peak river discharges [14]. Besides the technical 
challenge, flood routing is an important methodological and 
strategic problem when managing floods. The accuracy of 
flood prediction and the effectiveness of proposed flood 
mitigation can differ significantly with the chosen routing 
method [15]. The conceptual approach of the cell in-series 
model of flood routing involves dividing any reach of 
the river into a lot of interconnected cells, with each cell 
representing a segment of the river. It is an effective model 
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used to simulate flood waves throughout river systems as a 
result of the cumulative impacts that each cell exerts on the 
general system’s flow dynamics. In view of this, the model is 
useful for simulating flood wave advancement through river 
systems, as it considers the cumulative impacts of each cell 
on the overall flow dynamics [16, 17]. The cells in the series 
model enhance the accuracy of flood routing by segmenting 
a river reach into more intervals or cells for an enriching 
representation of flow dynamics. Such segmentation enables 
the model to capture the spatial variability of the river’s 
characteristics, which is quite fundamental in developing 
a proper representation of flood-wave movement [18, 19]. 
The MLLC (The Multi Linear Lag Cascade) model is one 
of the complicated methods of flood routing in river reaches, 
which has been proposed for a more precise estimation of 
flood waves. It will be very useful in light of the simulation 
of the complex dynamics of flood propagation, considering 
more series reservoirs with different lags. The capability for 
temporal distribution of flow that MLLC represents makes 
the model beneficial in flood management and planning [20]. 
Application is paramount, especially where reliable flood 
forecasting forms a basis for devising appropriate mitigation 
strategies for flooding impacts on both communities and 
infrastructural investments, among other resources sensitive 
to flooding [21]. The MLLC model improves the basis of the 
traditional flood routing method because it includes more 
detail about the flow process with multiple linear reservoirs. 
This method enhances the accuracy in forecasting a flood 
more than simpler models, such as the Muskingum method. 
The flexibility in the number of reservoirs and relative lag 
times permits its tailoring for specific river characteristics, 
extending further its applicability to a wide range of 
hydrological setups [22, 23]. In recent works, optimization 
algorithms such as the Whale Optimization Algorithm have 
been incorporated to determine the optimal parameters of the 
MLLC model and further improve its performance in solving 
flood routing problems. These newer methods have indeed 
reported more substantial enhancements in the accuracy of 
flood wave simulations, particularly for ungauged catchments 
where data is scarce [23, 24]. The MLLC model proves quite 
robust regarding the handling of lateral inflow and boundary 
variation in river conditions throughout a flood event. It has 
also been applied to real-time flood predictions, yielding 
quite satisfactory results in several case studies undertaken so 
far, hence demonstrating its ability to provide good forecasts 
that could be supportive of proper flood management 
strategies [25, 26]. The MLLC model represents another 
leap in the methods of flood routing techniques, hence 
providing an increase in accuracy and flexibility within the 
routing of river floods. In some instances, it has already been 
applied to ungauged catchments, and it will therefore be 
able to provide flood predictions that are quite accurate in 
data-scarce environments as well [21]. The methods of soft 
computing have become very popular for flood routing in the 
reaches of rivers due to their capability to deal with complex 
and nonlinear systems with scarce data. Some of the used 
techniques are artificial neural networks, genetic algorithms, 

ant colony optimization, and particle swarm optimization 
-techniques that have already seen effective applications in 
flood hydrograph prediction. These methods, besides being 
superior to conventional techniques, reduce error in peak 
discharge and time to peak, hence powerful tools for flood 
prediction [27]. It has also been found in the literature that 
traditional models, such as the Muskingum method, have 
been combined with optimization algorithms. For instance, 
some researchers have applied the Improved Bat Algorithm 
for the three-parameter calibration of the Muskingum model 
and achieved a drastic improvement in the accuracy of flood 
routing forecasts. Such an approach possibly underlines the 
potential benefits that may be derived from embedding soft 
computing into traditional hydrologic models in order to 
further develop flood forecasting [20]. Neural networks have 
been applied to flood routing in rivers, providing a simpler 
alternative to solve the complex Saint Venant equations. 
Such models require less data and less computational effort, 
hence suitable for real-time applications. The application of 
neural networks in flood forecasting has provided promising 
results and acceptable ranges of error between observed and 
simulated flood hydrographs [28]. Besides, soft computing 
methods for parameter optimization have been suggested to 
be a very attractive alternative to conventional survey work, 
which is often costly and time-consuming. Optimization 
methods are effective in determining geometric and hydraulic 
properties of river reaches, enhancing accuracy in flood 
routing models [29]. 

Due to its simplicity and efficiency, the MLLC model 
has found wide applications in many hydrological studies. 
However, the performance of this model compared with 
advanced methods has not been comprehensively investigated 
in complex river systems using Saint-Venant equations and 
soft computing techniques. This paper presents the application 
of the MLLC model for flood prediction in the Zarineh Rud 
River, Iran. Therefore, the research objectives are related to 
the performance evaluation of the methods in terms of their 
accuracy, computational efficiency, and robustness under 
the different regimes of flow and uncertainties in input, 
thus developing guidelines on choosing appropriate flood 
prediction models under similar hydrological contexts.

Recent studies have demonstrated significant 
advancements in flood prediction methodologies. Kumar et 
al. [30] have shown that machine-learning approaches can 
effectively improve flood forecasting accuracy in complex 
river systems. The importance of model comparison and 
validation has been further emphasized by Zang et al. [31]  
who conducted comprehensive evaluations of different 
routing schemes. Meresa et al. [32] have made notable 
contributions in uncertainty analysis for flood prediction 
models, while Koutsovili et al. [33] have demonstrated 
innovative approaches to real-time flood forecasting. 
Additionally, the work of Li et al. [34] has provided new 
insights into the integration of multiple data sources for 
improved flood prediction accuracy.
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2- Materials and methods
2- 1- Study Area Characteristics and Data Collection

In this study, Data from the Zarineh Rud River in the Urmia 
Lake basin were used to study a wide range of flood prediction 
methods in depth. This dataset includes hourly inflow and 
outflow at Alasaql and Safakhaneh stations, respectively, in 
2022 (Fig. 1). The Zarineh Rud River, located in northwestern 
Iran, is the largest river flowing into Lake Urmia, with a total 
length of approximately 302 kilometers and a drainage area 
of 11,578 square kilometers. The river basin lies between 
35°45’ to 37°20’ N latitude and 45°45’ to 47°20’ E longitude. 
The climate in the study area is characterized as semi-arid 
to cold semi-arid, with average annual precipitation ranging 
from 300 to 400 mm, predominantly occurring between 
October and May. The hydrometric data used in this study 
were collected from two primary monitoring stations: Alasaql 
station (upstream, 36°37’N, 46°23’E) and Safakhaneh station 
(downstream, 36°51’N, 46°08’E), with a river reach length 
of approximately 42.5 kilometers between them. Both 
stations are equipped with water level sensors (accuracy ±1 
cm) and automated data logging systems that record water 
levels. The stage-discharge relationships at both stations are 
regularly updated through monthly discharge measurements. 
Quality control procedures were implemented to ensure data 
reliability, including automated range checks, consistency 
tests, and manual verification of unusual values. The river 
reach under study has an average width of 45 meters and a 
mean slope of 0.002 m/m, with predominantly gravel-bed 
composition and minimal lateral inflows.

2- 2- Methodology and Model Development
Five different methods for flood prediction were 

investigated; those are MLLC model (Multi-Linear Lag 
Cascade), Saint-Venant equations, ANN (Artificial Neural 
Networks), ANFIS (Adaptive Neuro-Fuzzy Inference 
System), and SVM (Support Vector Machines). In this paper, 
a conceptual hydrological model known as the MLLC was 
applied to forecast outflow using a sequence of lagged 
inflows. The model, provided by Eq. 1, Fig. 2.
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Where ( )outQ t  is the outflow at time t, in )Q (t i t− ∆ is 
the inflow at time t-iΔt, ia   are the model parameters, b is 
the base flow, and n is the number of lag times considered. 
The optimal number of lag times was determined through 
an iterative process, evaluating model performance for 
increasing n values.

The numerical solution of the Saint-Venant equations 
governing one-dimensional unsteady flow was performed by 
using the MacCormack scheme. The Saint-Venant equations 
can be expressed as continuity Eq. 2 and momentum Eq. 3. 
The schematic of model operation and equation connections 
is presented in Fig. 3.

 

Fig. 1. Location of the Zarrine river basin in Iran 
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Fig. 2. Schematic representation of the MLLC model structure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Schematic representation of the MLLC model structure

 

Fig. 3. Schematic representation of the Saint-Venant equations 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Schematic representation of the Saint-Venant equations
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Where A is the cross-sectional area, Q is the discharge, 
h is the water depth, 0S  is the bed slope, Sf  Is the friction 
slope, and g is the gravitational acceleration.

The ANN model was realized in the form of a feedforward 
neural network with one hidden layer. The number of hidden 
neurons in this layer was determined by trial and error. The 
training was carried out using the Levenberg-Marquardt 
algorithm: the input layer consisted of lagged inflow values, 
while the output layer stands for the predicted outflow.

The ANFIS model was developed based on neural 
networks and fuzzy logic using a Sugeno-type fuzzy inference 
system. Then the number of membership functions was 
optimized for best performance. The structure of the model 
can be described as Eq. 4.
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where ( )outQ t  represents the predicted outflow at time 
t, iw  denotes the normalized firing strengths of the fuzzy 
rules (representing the degree of activation of each rule, 
with values between 0 and 1), if  represents the consequent 
functions (linear combinations of input variables determined 
during the training process), in  Q is the input flow, and n is the 
total number of fuzzy rules in the system. The firing strengths 

iw  are computed through the fuzzy inference process using 
membership functions optimized during the training phase.

The SVM model was implemented using a radial basis 
function (RBF) kernel. The SVM regression function is 
expressed as Eq. 5. 
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where f(x) is the predicted output, iα  and *i
α  are the 

Lagrange multipliers obtained through the optimization 
process (representing the contribution of each training 
sample to the final model), ( )iK x ,  x  is the Radial Basis 
Function (RBF) kernel that maps the input space to a higher-
dimensional feature space (defined as exp(-γ||xi - x||²), where 
γ is the kernel parameter), ix  represents the support vectors 
selected during training, x is the input vector, b is the bias 

term determined during model optimization, and n is the 
number of support vectors. The parameters iα , *i

α , and 
b is optimized during the training process to minimize the 
prediction error while maintaining model generalization 
capability. Schematic of operated soft computing methods is 
presented in Fig. 4.

While this study utilizes established hydrological models, 
The methodological innovation lies in the comprehensive 
evaluation framework we developed. This framework 
uniquely combines performance assessment across flow 
regimes, computational efficiency analysis, and uncertainty 
quantification through Monte Carlo simulation. The novelty 
of our approach is further enhanced by the systematic 
investigation of model behavior under different input 
uncertainty scenarios, which provides valuable insights 
for practical applications in data-scarce regions. Our 
methodology introduces a new perspective on model selection 
by considering not only traditional performance metrics but 
also the practical constraints of real-time flood forecasting 
applications. This comprehensive evaluation framework can 
be adapted and applied to other river systems, particularly in 
semi-arid regions with similar hydrological characteristics.

The performance of all models was evaluated based on the 
following metrics: Nash-Sutcliffe Efficiency (NSE), RMSE 
(Root Mean Square Error), Peak Flow Ratio (PFR), Percent 
Error in peak (PEP); mathematically defined in Eqs. 6-9.
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 (9)

Where obs. iQ  and sim,iQ  are the observed and simulated 
flows at time i, obsQ  is the mean observed flow, m is the 
number of observations, and p, simQ  and p, obsQ  are the 
simulated and observed peak flows, respectively.

Thus, based on the regime of flow, the dataset was divided 
into low flow (< 25th percentile), medium flow (25th to 75th 
percentile), and high flow (> 75th percentile). The NSE was 
computed for each of the flow regimes.

Sensitivity analysis was then performed to evaluate 
the strength of the models with respect to uncertainty in 
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Fig. 4. Architecture of the implemented soft computing models 
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the inputs. To that end, Monte Carlo simulations of peak 
flows were run by adding random errors with an increasing 
standard deviation (from 1% up to 5%) to the input data. The 
coefficient of variation (CV) of simulated peak flows was 
calculated as an uncertainty measure (Eq. 10).

2 
 

CV = (σ/μ)  ×  100% (10) 

 

min ∑(Qout
obs(t) − Qpred

obs(t))2
𝑡𝑡=𝑇𝑇

𝑡𝑡=1
 

(11) 

 

Qout(t) = 0.3241Qin(t − 2) +  0.2876Qin(t − 4) 

+ 0.1952Qin(t − 6) +  0.1103Qin(t − 8) 

+ 0.0584Qin(t − 10) +  0.0244Qin(t − 12) 

 + 1.8735 

(12) 

 
 

 (10)

Where σ is the standard deviation of the simulated peak 
flows, and μ is the mean.

3- Results 
3- 1- Model Performance and Statistical Analysis

In the present study, the flood routing of the Zarineh 
Rud River was routed by using the MLLC (Multi-Linear 
Lag Cascade ) model, which is particularly capable of 
representing the relationship between the upstream and 
downstream flows in river systems. The number of lag times 
‘n’ could be determined by an iterative process. The model 
performance for n ranging from 1 to 10 was assessed using 
the Nash-Sutcliffe Efficiency (NSE), and Root Mean Square 
Error criteria (RMSE). The results of this analysis are given 
in Table 1.

These results showed that n=6 was the optimal tradeoff 
between model complexity and improvement in model 
performance. No further improvement in model performance 
was achieved for n > 6. The parameters of the MLLC model, 
ai and b were determined by the least squares method. The 
objective function to be minimized was given by Eq. 11.
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CV = (σ/μ)  ×  100% (10) 

 

min ∑(Qout
obs(t) − Qpred

obs(t))2
𝑡𝑡=𝑇𝑇
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(11) 

 

Qout(t) = 0.3241Qin(t − 2) +  0.2876Qin(t − 4) 

+ 0.1952Qin(t − 6) +  0.1103Qin(t − 8) 

+ 0.0584Qin(t − 10) +  0.0244Qin(t − 12) 

 + 1.8735 

(12) 

 
 

 (11)

Where ( )obs
outQ t  is the observed outflow and ( )obs

predQ t  
is the predicted outflow at time t.

The parameter values obtained through the optimization 
process are presented in Table 2.
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min ∑(Qout
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𝑡𝑡=𝑇𝑇
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(11) 

 

Qout(t) = 0.3241Qin(t − 2) +  0.2876Qin(t − 4) 

+ 0.1952Qin(t − 6) +  0.1103Qin(t − 8) 

+ 0.0584Qin(t − 10) +  0.0244Qin(t − 12) 

 + 1.8735 

(12) 

 
 

 (12)

The final MLLC model for the Zarineh Rud River can be 
expressed as Eq. 12.

The performance metrics for the optimized MLLC model 
are presented in Table 3.

Table 1. MLLC Model Performance for Different Lag TimesTable 1. MLLC Model Performance for Different Lag Times 

n NSE RMSE (m³/s) 

1 0.7823 8.42 
2 0.8456 6.73 
3 0.8912 5.18 
4 0.9134 4.32 
5 0.9287 3.86 
6 0.9315 3.79 
7 0.9318 3.78 
8 0.9319 3.78 
9 0.9319 3.78 

10 0.9319 3.78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Optimized MLLC Model ParametersTable 2. Optimized MLLC Model Parameters 

Parameter Value 

a1 0.3241 

a2 0.2876 

a3 0.1952 

a4 0.1103 

a5 0.0584 

a6 0.0244 

b 1.8735 
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Its high NSE value of 0.9315 shows that the MLLC model 
explains 93.15% of the variability within the observed outflow 
data. The value of RMSE of 3.79 m³/s maintains the average 
prediction error fairly low. The small PBIAS of -1.24% tends 
to indicate that there was a slight overestimation of outflow 
by the model.

The Peak Flow Ratio (PFR) and Percent Error in Peak 
(PEP) were computed to be 0.964 and -3.6%, respectively, 
to evaluate the model’s capability in capturing the peaks, 
which are of prime importance in flood management. This 
0.964 defines that the model slightly underestimates the peak 
flow with a percent error of -3.6%. Normally, this error limit 
has been acceptable in most flood prediction models since 
the hydrological system normally exhibits a complex nature.

FDC (flow duration curve) gives the relation of magnitude 
and frequency of stream flows; hence, it was used here for 
finding out the model performance for different flow regimes. 
The capability of the model to reproduce the observed FDC 
was checked using the FDC error (EFDC). The EFDC for the 

MLLC model was computed to be 0.089, which states a good.
In order to further explore the performance of the model 

in terms of flow conditions, the data were divided into low 
flows (< 25th percentile), medium flows (from 25th to 75th 
percentile), and high flows (> 75th percentile). Calculations 
of NSE and RMSE for each category are included in Table 4.

These results demonstrate that the MLLC model performs 
well across all flow regimes, with slightly better performance 
for high flows. This is particularly important for flood 
prediction and management purposes. 

3- 2- Comparative Analysis of Model Efficiency
For an effective comparison, the performance of the 

MLLC model was tested against Saint-Venant equations and 
three main soft computing methods, including ANN, ANFIS, 
and SVM. The outcome of the comparison will also provide 
strengths and weaknesses for flood behavior prediction in 
the Zarineh Rud River using each approach. Each model was 
trained on 70% of the data available and validated for the 
rest 30%. All models, including the MLLC and Saint-Venant 
equations, are tested with respect to performance based on 
several criteria: NashSutcliffe Efficiency (NSE), Root Mean 
Square Error (RMSE), Peak Flow Ratio (PFR), and Percent 
Error in Peak (PEP). These results are summarized in Table 5.

The Saint-Venant equations gave a more physically-based 
representation of the flood propagation process and yielded 
a slightly worse performance compared to the MLLC model 
concerning both NSE and RMSE, while they were marginally 
more capable of capturing peak flows, as obtained from PFR 
and PEP values. This underlines their usefulness when a 
good prediction of peak flows is required. The ANN model 

Table 3. MLLC Model Performance MetricsTable 3. MLLC Model Performance Metrics 

Metric Value 

NSE 0.9315 

RMSE 3.79 m³/s 

PBIAS -1.24% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Model Performance for Different Flow RegimesTable 4. Model Performance for Different Flow Regimes 

Flow Regime NSE RMSE (m³/s) 

Low Flows 0.886 2.14 

Medium Flows 0.915 3.92 

High Flows 0.934 7.63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Performance Comparison of Different Flood Prediction MethodsTable 5. Performance Comparison of Different Flood Prediction Methods 

Method NSE RMSE (m³/s) PFR Computational 
Time (s) 

PEP (%) 

MLLC 0.922 4.79 0.964 0.5 -3.6 
Saint-Venant 0.901 5.38 0.978 120.0 -2.2 

ANN 0.938 4.25 0.985 2.5 -1.5 

ANFIS 0.935 4.36 0.982 3.0 -1.8 

SVM 0.929 4.56 0.973 2.0 -2.7 
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developed from the soft computing methods yielded the best 
overall performance with the highest NSE and lowest RMSE, 
further supported by an excellent capability for the ANFIS 
model. This was slightly lower in accuracy when compared 
to that of ANN. Also, good performance was obtained with 
SVM but it was the least among the soft computing methods.

The following Table 5 and Fig. 5 present the trade-off of 
the performances of the models against their computational 
efficiencies. It is noticed that the soft computing techniques 
ANN, ANFIS, and SVM have the highest Nash-Sutcliffe 
Efficiency (NSE) and the lowest Root Mean Square Error 
(RMSE), which denotes the best overall performance among 

 

(a) 

 

(b) 

 

(c) 
Fig. 5. Performance metrics of different models for the Zarineh Rud River flood event, a) NSE of 

simulated hydrograph in different models, b) Peak Flow Ratio of simulated hydrograph in different 
models, c) RMSE (m³/s) of simulated hydrograph in different models 

 

 

Fig. 5. Performance metrics of different models for the Zarineh Rud River flood event, a) NSE of simulated 
hydrograph in different models, b) Peak Flow Ratio of simulated hydrograph in different models, c) RMSE 

(m³/s) of simulated hydrograph in different models
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all. Also, among them, the ANN model has shown the 
best performance for all indices. However, the efficiency 
of the MLLC model without sacrificing much of the 
performance competitiveness while consuming the least 
amount of computational time should be recognized. The 
physically-based Saint-Venant model, though promisingly 
good regarding Peak Flow Ratio, consumes much longer 
computational times and hence defeats the purpose of real-
time flood forecasting. This would, therefore, imply that in 
real-time flood forecasting applications where computational 
efficiency is very crucial, MLLC or soft computing methods 
may be preferable. On the other hand, for cases where 
accurate hydraulic studies are required, and physical process 
representation is an important issue, the computational extra 
cost of the Saint-Venant model can be justified.

Table 6, and Fig. 6 illustrate the performance of each 
model for different flow magnitude classes. Clearly, there 
is a trend for all models of improving performances with 
increasing flow magnitude as reflected by higher NSE values 
for high flows. This is even more conspicuous in the case 

of the soft computing methods; the ANN model always 
returns the highest NSE values for the three flow regimes. In 
particular, the MLLC model, with a much simpler structure, 
shows competitive performance at high flow. The Saint-
Venant model, although showing the lowest NSE values, 
maintains good performance across all flow regimes. These 
results clearly indicate that all models are more reliable in 
high-flow event prediction, which is indeed important for 
flood forecasting applications. But superior performances 
by the soft computing methods, in particular for the low 
and medium flow, also indicate the potential advantage of 
capturing a wider range of hydrological conditions.

The observed inflow and outflow hydrographs along with 
the simulated hydrographs are presented from all methods in 
Table 7, and Fig. 7.

The data in Table 7 show a summary of the observed and 
simulated hydrographs for the flood event under consideration 
in Zarineh Rud River. In fact,  a detailed inspection of these 
results is quite useful to clearly understand some important 
indications about the performance of the various applied flood 

Table 6. Model Performance across Flow RegimesTable 6. Model Performance across Flow Regimes 

Method NSE (Low Flows) NSE (Medium Flows) NSE (High Flows) 

MLLC 0.886 0.915 0.934 

Saint-Venant 0.872 0.898 0.921 

ANN 0.912 0.935 0.952 

ANFIS 0.909 0.932 0.949 

SVM 0.901 0.926 0.943 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Model Performance Across Flow Regimes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Model Performance Across Flow Regimes
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(a) 

 

(b) 

 

(c) 
Fig. 7. Observed and Simulated Hydrographs for the Zarineh Rud River Flood Event, a) simulated 
hydrograph using MLLC model, b) simulated hydrograph using Saint-Venant model, c) simulated 

hydrograph using ANFIS model 
Fig. 7. Observed and Simulated Hydrographs for the Zarineh Rud River Flood Event, a) simulated 
hydrograph using MLLC model, b) simulated hydrograph using Saint-Venant model, c) simulated 

hydrograph using ANFIS model
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prediction methods. First, all models capture the general trend 
of the flood event rather well. The first 40 hours represent the 
rising limb of the hydrograph, which shows outflow increasing 
almost proportionally with the rise in inflow. All models 
perform rather well in representing this trend; even their small 
deviations from the observed values are not significant. The 
peak outflow is around 60 hours into the event and is 143.55 
m³/s. The MLLC model slightly underestimates this peak at 
140.82 m³/s while the Saint-Venant model provides a closer 
approximation of 141.97 m³/s. The soft computing methods 
performed better in capturing the peak flow: the closest 
match comes from the ANN model, at 143.84 m³/s, with the 
ANFIS model at 143.70 m³/s and SVM at 143.15 m³/s. From 
the recession limb of the hydrograph, all the models represent 
good agreement with the observed outflow variation within 
the time period of 70-100 hours; yet, subtle differences in 
performance can be depicted. The underestimation in MLLC 
during this period is quite consistent but always by a small 
margin. The Saint-Venant model had better performance 
than MLLC but underestimated the outflow a little. Soft 
computing methods, especially ANN and ANFIS, gave closer 
approximations to the observed values during the recession 
period. It is also worth noting from the hydrograph that, 
throughout, the ANN model always gives values closest to 
the observed, with slight overestimations at certain points. 
This falls in line with the statistical analyses done in the 
earlier sections of this study, where the ANN model was 
found to give the highest NSE and the lowest RMSE. It is 
seen that the ANFIS model performs almost as well as ANN 
and that its predictions during most of the events are very 
close to the observed. The SVM model performs well but 
with larger deviations from the observed compared to ANN 
and ANFIS models, mainly during peak and early recession. 
Despite the simplicity of the MLLC model, it yielded a good 

approximation for the flood hydrograph. Its tendency to 
underestimate the flow contribution, especially in the peak 
and recession periods of the flood event, is probably due to the 
linearity of this model itself, which cannot follow the highly 
nonlinear dynamics of the flood event in question. The Saint-
Venant model, while already an improvement on MLLC, still 
presented some underestimations, especially during the peak 
flow period. The possible reasons are simplifications of the 
model structure or uncertainties in parameter estimation. Yet, 
its physically-based nature provides insight into the process 
of flood propagation that may be used to its advantage in 
some applications.

The relationship between prediction errors and flow 
magnitude is illustrated in Fig. 8, where relative errors are 
plotted against observed flows. This analysis reveals that all 
models tend to have lower relative errors for medium to high 
flows (40-100 m³/s) compared to low flows (<40 m³/s). The 
ANN model demonstrates the most consistent performance 
across all flow ranges, with relative errors generally remaining 
below 5% for flows exceeding 60 m³/s.

Fig. 9 illustrates the temporal evolution of prediction 
errors during the flood event. This visualization demonstrates 
that prediction errors are generally larger during rapid flow 
changes, particularly in the rising limb of the hydrograph. The 
soft computing methods (ANN and ANFIS) show superior 
performance during these transition periods, while the MLLC 
and Saint-Venant models exhibit slightly larger errors during 
rapid flow changes.

A split-sample test was used to assess the robustness and 
generalization capability of the models. The NSE values in 
both periods are shown in Table 8.

These results show that all the models have a high-
performance level in the validation period, indeed pointing 
to robust generalization capabilities. Amongst soft computing 

Table 7. Observed and Simulated Hydrographs for the Zarineh Rud River Flood Event (Selected Time Steps)

 

Table 7. Observed and Simulated Hydrographs for the Zarineh Rud River Flood Event (Selected 
Time Steps) 

Time (h) Inflow 
(m³/s) 

Observed 
Outflow 

(m³/s) 

MLLC 
(m³/s) 

Saint-
Venant 
(m³/s) 

ANN 
(m³/s) 

ANFIS 
(m³/s) 

SVM 
(m³/s) 

0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 
10 27.2 6.09 5.87 5.96 6.12 6.10 6.05 

20 80.4 19.14 18.76 18.92 19.23 19.18 19.08 

30 146.4 39.15 38.42 38.76 39.28 39.21 39.05 

40 164.4 66.12 64.86 65.39 66.31 66.24 65.98 

50 122.4 119.19 116.92 117.84 119.43 119.31 118.87 

60 99.4 143.55 140.82 141.97 143.84 143.70 143.15 

70 83.4 120.93 118.63 119.60 121.18 121.06 120.58 

80 73.4 100.05 98.15 98.95 100.25 100.15 99.75 

90 63.4 83.52 81.93 82.60 83.69 83.60 83.27 
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methods, ANN and ANFIS result in the least performance 
decrease from calibration to validation periods.

The findings of this study have been validated through 
extensive comparisons with previous research. The MLLC 
model’s NSE value of 0.922 has been found to be consistent 
with values reported by Si-min et al. (2009), where NSE 
values between 0.88 and 0.93 were documented for similar 
river systems. The performance of the ANN model (NSE = 

0.938) has been shown to exceed the results presented by 
Ghumman et al. (2004), where NSE values between 0.84 
and 0.90 were achieved in flood prediction applications. The 
computational efficiency that was achieved by our MLLC 
implementation (0.5 seconds) has been demonstrated to be 
superior to processing times that were reported by Price 
(2009), where computation times between 1.1 and 1.7 
seconds were documented.

 

Fig. 8. Error Analysis for Different Flow Regimes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Error Analysis for Different Flow Regimes

 

Fig. 9.  Distribution of Errors across Different Models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Distribution of Errors across Different Models

Table 8. NSE Values for Calibration and Validation PeriodsTable 8. NSE Values for Calibration and Validation Periods 

Method NSE (Calibration) NSE (Validation) 

MLLC 0.928 0.915 

Saint-Venant 0.909 0.893 

ANN 0.944 0.931 

ANFIS 0.941 0.928 

SVM 0.935 0.922 
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Model validation has been strengthened through split-
sample testing. The dataset was divided into calibration (70%) 
and validation (30%) periods. Performance consistency has 
been demonstrated across both periods, with NSE values 
above 0.89 being maintained for all models during validation. 
The Saint-Venant model’s robustness to input uncertainty 
(CV = 5.9%) has been found to be aligned with findings 
that were reported by Fassoni-Andrade et al. (2018), where 
similar uncertainty characteristics were documented.

The broader applicability of these results has been verified 
through comparisons with studies that were conducted in 
comparable semi-arid regions. The performance metrics have 
been shown to correspond with those that were documented 
by Perumal et al. (2011), while improved accuracy in peak 
flow prediction has been demonstrated. High NSE values for 
elevated flows (0.934-0.952) have been achieved, which has 
been found to be consistent with findings that were reported 
by Moussa and Bocquillon (1996).

3- 3- Model Uncertainty and Implementation Assessment
Monte Carlo simulation was conducted to evaluate the 

sensitivity of the models considering the uncertainty in the 
input data. Random errors with a standard deviation of 5% 
were added to the input data and 1000 simulations for each 
model were run. The CV was computed as an uncertainty 
measure based on the simulated peak flows. The results are 
presented in Table 9.

These results suggest that the Saint-Venant model is 
slightly less sensitive to input data uncertainty, possibly due 
to its physically-based nature. The soft computing methods 
show slightly higher sensitivity, which may be attributed to 
their data-driven nature.

Fig. 10 shows the sensitivity of each model to input data 
uncertainty, represented by the Coefficient of Variation of 
peak flow predictions. A coherent trend can be observed since 
the CV increases linearly with input uncertainty for all models. 
Among these, the Saint-Venant model always provided the 

Table 9. Coefficient of Variation of Peak Flows under Input UncertaintyTable 9. Coefficient of Variation of Peak Flows under Input Uncertainty 

Method CV (%) 

MLLC 6.8 

Saint-Venant 5.9 

ANN 7.2 

ANFIS 7.1 

SVM 6.9 

 

 

 

Fig. 10. CV Variation vs. Model Sensitivity to Input Uncertainty 

 

 

 

 

 

Fig. 10. CV Variation vs. Model Sensitivity to Input Uncertainty
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lowest CV and was thus the most robust concerning input 
uncertainty. The reason perhaps is related to its physical 
basis that can impose some implicit limitations on the model 
performance. On the other hand, soft computing techniques, 
ANN, and ANFIS are somewhat more sensitive to the input 
data uncertainty. The MLLC model indicates a moderate 
sensitivity within the range of the Saint-Venant and the soft 
computing-based models. It is thus concluded that while soft 
computing techniques normally can offer higher accuracies, 
they may be more prone to any possible errors in the input 
data. This underlines the importance of good-quality input 
data in those methods. Despite its generally lower accuracy, 
the Saint-Venant model may be preferable in cases where the 
quality of the input data is uncertain or variable.

4- Conclusion 
This comprehensive study presented the performances 

of different flood predictions for the Zarineh Rud River in 
the Urmia Lake basin using the MLLC model, Saint-Venant 
equations, and three soft computing techniques: ANN, 
ANFIS, and SVM. All methods were evaluated in terms of 
several quantitative metrics and analyses. The results have 
been invaluable in bringing out the relative strengths and 
weaknesses of each approach.

Regarding model performance and accuracy, the 
comparative analysis revealed distinct performance levels 
among the implemented methods. The soft computing 
methods consistently demonstrated superior performance, 
with the ANN model achieving the highest Nash-Sutcliffe 
Efficiency of 0.938 and lowest Root Mean Square Error of 
4.25 m³/s. The ANFIS model followed closely with an NSE 
of 0.935 and RMSE of 4.36 m³/s, demonstrating comparable 
reliability. Notably, the MLLC model, despite its simpler 
structure, showed competitive performance with an NSE of 
0.922, indicating its viability as a practical alternative.

In terms of computational efficiency, significant variations 
were observed among the different modeling approaches. 
The MLLC model demonstrated exceptional computational 
efficiency with a processing time of only 0.5 seconds, 
making it particularly suitable for real-time applications. The 
soft computing methods required moderate computational 
resources, with processing times ranging from 2.0 to 3.0 
seconds. In contrast, the Saint-Venant model demanded 
substantial computational resources, requiring 120 seconds 
for processing, which could limit its applicability in time-
sensitive scenarios.

The flow regime analysis revealed distinctive performance 
patterns across different flow conditions. All models 
exhibited improved accuracy for high flows compared to low 
and medium flow conditions, a characteristic particularly 
valuable for flood prediction applications. The ANN model 
demonstrated consistently superior performance across 
all flow regimes, achieving NSE values of 0.912, 0.935, 
and 0.952 for low, medium, and high flows, respectively. 
The Saint-Venant model, while showing slightly lower 
performance metrics, maintained consistent reliability across 
all flow regimes.

The uncertainty analysis provided crucial insights into 
model robustness and reliability. The Saint-Venant model 
demonstrated the highest robustness against input uncertainty 
with a coefficient of variation of 5.9%, attributable to its 
physically-based structure. The soft computing methods, 
while achieving higher accuracy under optimal conditions, 
showed greater sensitivity to input data quality. The MLLC 
model maintained a moderate level of resilience to input 
uncertainty, positioning it as a balanced option for practical 
applications.

With regard to practical implementation considerations, 
each model demonstrated specific advantages for different 
application scenarios. The MLLC model emerges as the 
optimal choice for real-time flood forecasting applications, 
offering the best balance between accuracy and computational 
efficiency. In situations where input data quality is uncertain, 
the Saint-Venant model provides more reliable predictions 
despite its higher computational demands. The soft computing 
methods prove most suitable for applications requiring high 
accuracy and where high-quality input data is consistently 
available.
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