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Abstract: 

Kidney stones are solid crystals made of minerals and salts that form within the kidney, often creating a 

sharp, hard mass. These stones can block urine flow as they move into the urinary tract, making early 

detection crucial. Although deep neural networks (DNNs) have been used to diagnose kidney stones with 

some success, they still face performance and standardization issues. A new approach combines graph 

convolutional networks (GCNs) with DNNs to address these challenges. This method extracts orb 

features from images, converts them into graphs, and embeds nodes using a graph convolutional network, 

which includes a message-passing layer and node feature aggregation. The GCN updates node properties, 

enhancing efficiency and performance when integrated into a deep network. This approach enables more 

comprehensive and precise feature extraction from images, improving kidney stone diagnosis. The study 

highlights GCNs' potential in analyzing medical images for diagnosing kidney stones. The proposed 

architecture was tested using publicly available CT scan images and demonstrated outstanding accuracy, 

correctly identifying kidney stones or healthy conditions in 98.6% of cases. It outperformed other 

advanced techniques, especially in detecting stones of various sizes, including very small ones, proving 

its effectiveness in medical image analysis. 
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1. Introduction 

Kidney stones are hard mineral and salt deposits that form within the kidneys. They can cause severe pain 

and potentially block urine flow, leading to kidney damage if left untreated. Traditional methods for 

diagnosing kidney stones, such as ultrasound, CT scans, and X-rays, rely heavily on medical imaging 

techniques, but interpreting these images can be complex and time-consuming. Often, the process requires 

the expertise of specialist radiologists [1]. However, the advent of deep learning has significantly 

transformed medical image analysis. Convolutional neural networks (CNNs), a type of deep learning 

model, have proven highly effective in image classification and object recognition, enabling accurate 

disease diagnosis, including kidney stone detection, by learning intricate patterns from large datasets [2]. 

A newer class of neural networks, known as graph convolutional networks (GCNs), operates on graph-

structured data and excels in modeling spatial relationships within medical images. This ability to 

represent complex structures and relationships within the data can enhance diagnostic accuracy, offering a 

promising alternative or complement to traditional CNNs in medical imaging tasks. By capturing the 

connections between different kidney segments or stone features, GCNs provide valuable insights into 

kidney stone formation and distribution. The integration of deep learning models like CNNs and GCNs 

into kidney stone diagnosis offers the potential to improve both accuracy and speed while reducing 

radiologists’ workload, ultimately expediting patient treatment [3]. 

As deep learning technologies continue to evolve, GCNs, in particular, hold great promise for advancing 

the diagnosis of renal pathologies. With their ability to learn from large and diverse datasets, these models 

are well-positioned to generalize to new data, making them invaluable tools in the future of medical 

image analysis. This progress is expected to result in improved diagnostic accuracy and better healthcare 

outcomes for patients [4-6]. 

The integration of computer vision and deep learning into medical imaging has significantly enhanced the 

capabilities of diagnostic tools. Deep learning models have shown great success in various tasks, such as 

image segmentation, classification, and lesion detection, when applied to medical imaging techniques like 

MRI, CT scans[7], and X-rays[8]. Fig. 1 shows examples of renal CT scans, including normal images and 
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images with kidney stones. These advancements have improved diagnostic accuracy and reliability, 

aiding physicians in diagnosing and managing various medical conditions. Recent progress in artificial 

intelligence, particularly through deep neural networks (DNNs), has yielded significant achievements in 

interpreting medical images and biological signals[9]. These sophisticated algorithms have proven 

valuable across many medical applications, including the urology field, where deep learning is 

increasingly used for the automated identification of urinary tract stones[10]. 

 
  (a)                                                                                                (b)  

Fig. 1. Sample CT images: (a) kidney stone, and (b) healthy. 

This study combines Graph Convolutional Networks (GCNs) for node feature embedding and Deep 

Neural Networks (DNNs) for final learning. GCNs update nodes by incorporating information from 

neighboring nodes, integrating both local and neighboring data. This approach applies to various graph-

structured data, such as social networks and protein interactions. The refined node features from GCNs 

are then processed by the DNN to identify complex patterns, making the two-step method more effective 

at capturing node characteristics. 

Several studies have explored different deep learning approaches to improve the classification and 

detection of urinary tract stones. Nithya et al.[11], in 2020 achieved a 93.45% accuracy rate in classifying 

stone cases by using GLCM feature extraction models and analyzing 100 samples, despite the dataset 

being considered small. Wu et al[12]. in 2020 utilized a multi-feature fusion neural network, combined 

with Inception-V3, to achieve a 94.67% accuracy rate when analyzing ultrasound data. However, the 

complexity of the model presented challenges for practical application. Other studies, such as those by in 

2018 Thein et al[13]. and Cui et al. also focused on kidney stone segmentation and classification, 
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achieving varying degrees of accuracy. Each study highlighted limitations related to dataset size, model 

complexity, and generalizability. For instance, Yildirim et al[14]. in 2021 used the XResNet-50 method 

with a SoftMax classifier to achieve a 96.82% accuracy rate but noted the model's complexity as a 

potential barrier to practical use. In 2023, Chaohua Yan et al[15]. introduced an optimized Deep Belief 

Network (DBN) using a fractional coronavirus herd immunity optimizer (FO-CHIO). This method 

combines deep learning and meta-heuristics to create a customized DBN tailored for kidney stone 

detection. The approach is based on a fractional version of the coronavirus herd immunity enhancer, 

aiming to deliver an efficient and reliable detection system. Simulations demonstrate that the proposed 

DBN/FO-CHIO approach outperforms other studied methods, achieving an accuracy of 97.98%. 

The aim of the current research is to leverage Graph Convolutional Networks (GCNs) and deep neural 

networks to reduce missed kidney stone diagnoses in CT scans and minimize human error, particularly in 

emergency settings where specialist radiologists may not be available. The increasing availability of data 

has facilitated the integration of deep learning in medical applications, and graph-based techniques have 

shown promise in optimizing data usage for image analysis. This study proposes a novel model that 

combines GCNs with DNNs for the automated classification of kidney stones using CT imaging. The 

innovative model seeks to enhance the classification accuracy of kidney stones by utilizing features from 

coronary CT scans, offering a powerful tool for healthcare providers to make precise diagnoses and 

improve patient outcomes. Experiments were conducted to assess the impact of combining graph 

convolutional networks (GCN) with deep learning on improving recognition accuracy, specifically by 

integrating GCN with convolutional neural networks (CNN). This approach leverages the capabilities of 

GCNs in modeling relationships between elements and the strengths of CNNs in extracting visual features 

and, resulting in more comprehensive feature extraction and a deeper understanding of the data. The 

combined method outperforms the use of either technique individually and proves effective in addressing 

various problems and processing structured data. The goal of this model is to assist radiologists in the 

precise identification of kidney stones. Key contributions of this study include: 
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 Dataset Preparation: A dataset of CT scan images focusing on coronary arteries is compiled. 

From these images, a region of interest (ROI), specifically targeting kidney areas, is isolated to 

improve the accuracy of detecting kidney stones. 

 Feature Extraction: A feature extraction algorithm processes each image, creating a feature 

matrix that encapsulates critical image attributes. 

 Image-to-Graph Conversion: The feature vectors are transformed into graph nodes, converting 

images into graph structures based on extracted features. 

 Graph Convolutional Network (GCN) Processing: The GCN analyzes the graph nodes to 

generate embeddings, ensuring accurate feature recognition, including the identification of small 

kidney stones. 

 Deep Neural Network Classification: The deep neural network classifies the embedded 

features, facilitating the recognition and classification process. 

 Effectiveness Evaluation: An in-depth analysis evaluates the performance of the GCN combined 

with deep learning approaches, verifying its efficacy in enhancing diagnostic precision. 

The remainder of the paper is structured as follows: Section 2 outlines the problem statement and details 

the proposed methodology. Section 3 provides the results along with their analysis. Lastly, Section 4 

offers the conclusion. 

2. Proposed method  

This research explores a method for classifying kidney stones in CT images using a combination of a 

graph convolutional network (GCN) and a deep neural network (DNN). The process begins with the 

preprocessing and cropping of CT images to focus on significant areas. The ORB (Oriented FAST and 

Rotated BRIEF) feature extractor is then used to identify and extract distinct points in each image, which 

are treated as nodes in a graph, resulting in a separate graph for each image. A GCN is employed to 

embed these nodes, refining each node's representation based on its neighbors, to capture spatial 

relationships and dependencies within the image. The refined graphs, enriched with contextual 
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information from the GCN, are then input into a DNN to complete the training process. This integrated 

approach of GCN and DNN allows the model to effectively learn and classify the presence of kidney 

stones in CT images by combining graph-based and neural network techniques. 

 

2-1- Pre-processing 

This research aims to develop a framework to reduce the oversight of kidney stone cases by physicians 

during CT scan evaluations. The proposed model utilizes Graph Convolutional Networks (GCNs) to 

detect kidney stones in low-contrast coronary CT scans, combining advanced deep learning with 

radiographic image processing. As shown in Fig. 2, The methodology involves five key phases: data 

acquisition, data preparation, image-to-graph conversion, application of the GCN, and image 

classification. 
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Fig. 2. Overall steps of the proposed method for kidney stone CT image classification. 

a) standard model of GCN.  b) Enhanced model of GCN. 

The dataset is compiled by sourcing images and standardizing their dimensions to an average size. To 

increase data variability and improve machine learning model performance, the images are synthetically 

modified through rotations (5 and 10 degrees) and translations (horizontal and vertical shifts). These 

augmentation techniques help the model recognize features from different angles and reduce orientation 

bias. The images are then preprocessed through resizing, rotation, translation, and trimming. Trimming 

removes border areas to focus on the kidney region, enhancing the precision and depth of analysis. This 

targeted approach reduces noise, improves algorithm effectiveness, and increases the accuracy and 
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reliability of image analysis, particularly crucial in medical imaging. Fig. 3 depicts the pre-processing 

stage, highlighting the kidney region. 

 
   (a)                                                                                                       (b) 

Fig. 3. Image preprocessing reduces noise by using image cropping, which removes excess information by focusing 

on the kidney region. (a) kidney stone images cropped, (b) normal images cropped. 

2-2- ORB Feature Extraction 

In medical image processing, algorithms like ORB (Oriented FAST and Rotated BRIEF) [16] improve 

diagnostic efficiency by focusing on key image points, such as edges, where brightness and contrast 

change significantly. This targeted approach reduces unnecessary pixel processing, enhancing detection 

accuracy for critical areas like kidney stones and speeding up analysis. 

The study did not use deep feature extraction due to challenges in interpreting complex image-derived 

concepts. Although deep learning can identify intricate patterns, the abstract nature of deep features 

makes it difficult to correlate them with specific image elements, limiting their practical application in 

analyzing CT images of kidney stones. For the present study, the use of ORB feature extractor is as 

follow, after locating the kidney region in the images, we employ the ORB feature extractor, a robust 

image processing and machine vision technique, to extract features. ORB identifies and describes key 

points in images, which are distinct points characterized by significant changes in color intensity or 

texture. These key points, along with their descriptors, are crucial for image analysis and matching.  

In Eq. (1), The FAST algorithm, which detects points with substantial color intensity differences from 

their surroundings, is used to identify these key points. If the number of points within a circular area 

around a potential key point P with intensity changes greater than a threshold t compared to P's intensity 

exceeds a certain number, P is recognized as a key point. 
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       | ( ) -    |  ( )  ( )t for at least neighbors Intensity n True if Intensity p FAST p   (1) 

In this equation, 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑝) represents the color intensity at point 𝑝, and 𝑛 denotes one of its 

neighboring points. The variable 𝑡 is the threshold for color intensity change, and 𝑘 indicates the number 

of neighboring points. Descriptors are characteristic attributes that offer supplementary details regarding 

salient points within an image. The ORB (Oriented FAST and Rotated BRIEF) algorithm enhances the 

BRIEF (Binary Robust Independent Elementary Features) descriptors to ensure they are invariant to 

rotational transformations. BRIEF encodes the characteristics of these salient points in a binary format. 

These descriptors are derived by evaluating the color intensity differences at various sampled locations 

surrounding the salient points. According to Eq. (2), The outcome of these evaluations is encoded as a 

binary vector consisting of 0s and 1s. For each salient point, the color intensity is compared between pairs 

of sampled points in its vicinity. If the color intensity at the first sampled point 𝑝 1
 exceeds that of the 

second sampled point 𝑝 2
 , a value of 1 is assigned to the corresponding position in the binary vector; 

conversely, if the intensity at 𝑝 1
  is less than or equal to that at 2 p ,a value of 0 is assigned. 

 ( )           1
        ( )

       0

i

i

if I p
Binary Feature Vector where each bit b BRIEF p

otherwise


 


 (2) 

In this equation, ( )iI p is the color intensity of point 
i p  and j p of another point in the sampled area. 

BRIEF descriptors are not particularly robust against image rotation; therefore, ORB incorporates an 

additional step to enhance feature rotation invariance. This step involves computing an orientation for 

each key point to ensure that the descriptors remain consistent despite image rotations. An angle is 

determined for each key point, which defines the orientation of the descriptor. This angle is then applied 

to the BRIEF descriptors to make them resistant to rotational transformations. 

The process of feature extraction using ORB is as follows: initially, the FAST algorithm is employed to 

detect key points within the image. Subsequently, the orientation angle for each key point is computed. 

Following this, BRIEF is utilized to generate a binary descriptor for each key point. These descriptors are 

constructed based on the intensity values at sampled locations around each key point. Finally, the 
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descriptors are rotated in accordance with the computed orientation angle to achieve rotational invariance. 

The optimal threshold for identifying key points with the FAST algorithm was determined through 

various experiments, in such a way that it provided the highest accuracy in identifying features and small 

kidney stones, and the overall performance of the algorithm remained resistant to threshold changes 

2-3- Image to graph With Features 

In this study, ORB features are extracted from the image using the FAST algorithm to detect key points 

with sharp intensity changes, followed by the BRIEF algorithm to describe these points. ORB is effective 

under varying lighting conditions and image rotation. Each key point is treated as a node in a graph, and 

connections are formed based on the distances between nodes within a certain area, modeling spatial 

relationships and enhancing the understanding of the image's structure. After extracting features from 

images using the ORB algorithm, a 200 × 32 feature matrix is obtained for each image. Each 1 × 32 

feature vector is treated as a node, and a graph with 200 nodes is constructed for each image by 

connecting nodes based on a similarity threshold set at 200. This process is applied to all images, 

resulting in a unique graph for each, as illustrated in Fig. 4. The graph-based representation preserves 

local and global image information, enables flexible comparison, and captures complex spatial 

relationships, facilitating the application of graph algorithms and analysis techniques to visual data. 

  

(a) (b) 

Fig. 4. (a) ORB Feature Extraction, (b) Feature to graph 

Empirical testing established a similarity threshold of 200 as the most effective option after evaluating 

various values. This threshold was selected based on tests across multiple datasets, optimizing graph 

density and connectivity, which enhanced the Graph Convolutional Network (GCN) model's learning and 
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prediction accuracy. While adaptive thresholds were considered, they were excluded due to higher 

computational complexity and instability. Thus, a threshold of 200 was confirmed as optimal for 

improving graph structure and GCN performance. 

2-4- Graph convolution network for node embedding 

Graph Convolutional Networks (GCNs) are neural networks tailored for graph-structured data, excelling 

in tasks like node classification, link prediction, and graph classification. They work by embedding nodes 

to capture their properties and inter-node relationships. GCNs extend the convolution operation from grid-

like structures to graphs through message passing, where nodes share attribute information with 

neighbors, followed by aggregation and update steps to refine node representations. As shown in Eq. (3), 

The effectiveness of a GCN layer can be described mathematically, typically through a formulation that 

captures how node representations are transformed through these steps. This mathematical expression 

encapsulates the process of information propagation and aggregation across the graph, leading to the 

learning of meaningful node embeddings. 

1 1

( 1) ( ) ( )2 2( )l l l


 H D AD H W  (3) 

where 
( )l

H is the matrix of node features at layer 𝑙, with dimensions lN F , where 𝑁 is the number of 

nodes, and lF   is the number of features at layer 𝑙. A = A +I Is the adjacency matrix of the graph with 

added self-loops, where 𝐴 is the original adjacency matrix and 𝐼 is the identity matrix. D  is the diagonal 

degree matrix of�̃�, with entries ii ijj
D A . ( )l

W  the learnable weight matrix at layer 𝑙, with 

dimensions 1l lF F  . σ is an activation function, such as ReLU or a sigmoid function. The formula is 

derived from spectral graph theory, where the convolution operation on a graph within the spectral 

domain is defined using the graph Laplacian. The normalization term 

1 1
( ) ( )

2 2( )
 

D A D , ensures that the 

node features are normalized, preventing the unbounded growth of features across layers. The stages of 

the graph convolution network (GCN) layer in the study are: 
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a) Message Passing: In the message passing phase, which is specified by Eq. (4), each node  𝑖 sends 

its current feature vector 
( )l

ih  to its immediate neighbors. This process can be conceptualized as a 

node disseminating its information throughout the graph. By including self-loops in the adjacency 

matrix A , each node also takes into account its own features. 

( ) ( )

( ) { }

l l

i j

j i U i

 M h  (4) 

where ℵ(𝑖) denotes the set of neighbors of node 𝑖. 

b) Aggregation Phase: During the aggregation phase, according to Eq. (5), each node collects and 

combines the messages it has received from its neighboring nodes. This process typically 

involves summing or averaging the messages. To ensure that nodes with varying numbers of 

connections (degrees) contribute fairly to the overall sum, a normalization by 
1

2


D  is applied. This 

normalization step is crucial for maintaining the integrity of the aggregated information, 

regardless of the node's degree of connectivity within the network. 

1 1

( ) ( )2 2

( ) { }

l l

i ii ij j jj

j i U i

 



 A D A h D  (5) 

This step captures the local structure of the graph by combining information from neighboring 

nodes. 

c) Update Phase: In the update phase, according to Eq. (6), the aggregated information is 

transformed using a learnable weight matrix ( )l
W . This transformation is followed by the 

application of a nonlinear activation function 𝜎, which generates updated node features 
( 1)l

i


h . 

This process allows the model to learn complex patterns and relationships within the graph 

structure. 

( 1) ( ) ( )( )l l l

i i h A W  (6) 

This transformation allows the network to learn complex patterns in the data by applying 

nonlinearities and tuning the parameters of 
( )l

W . Graph Convolutional Networks (GCNs) 
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typically consist of several layers, with the output of each layer serving as the input for the 

subsequent layer. This hierarchical structure enables the network to learn representations of the 

graph that capture both local and global structural information. 

In the study, Graph Convolutional Networks (GCNs) are utilized to enhance image analysis by 

transforming image features into graph nodes. Initially, image features are extracted using the ORB 

feature extractor, producing high-dimensional vectors that capture local patterns. These features are then 

used to construct a graph where each feature point is a node, and edges are established based on spatial 

proximity or feature similarity, forming an adjacency matrix. The GCNs process this graph through 

multiple layers, refining the node features by integrating information from neighboring nodes. This 

process enhances the representation of each node by considering the broader image context. 

Through the iterative process of message passing, aggregation, and non-linear activation in GCNs, the 

embeddings of the nodes are continually refined, incorporating both local and global contextual 

information. This refined representation significantly improves the performance of image-related tasks 

such as segmentation, classification, and object recognition. GCNs thus offer a robust framework for 

capturing intricate relationships within image data, making them highly effective for complex image 

analysis tasks. Fig. 5 shows the graph convolution network used in embedding nodes. This procedure is 

conducted over multiple iterations to enhance the positioning of nodes within the graph, taking into 

account the broader context of their neighborhood. Subsequent to the update of the graph nodes, a 200 ×

32 matrix is generated for each image, which serves as a representation of the image features extracted 

through the graph convolution network. 

https://doi.org/10.22060/eej.2025.23497.5618


AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.23497.5618 

 
Fig. 5. features of each node are updated in every message-passing layers. 

In graph convolutional networks (GCNs), selecting the right adjacency matrix, including inner loops, is 

crucial for effective feature propagation and model performance. This choice allows nodes to update their 

attributes using both their own and neighbors' characteristics, enhancing pattern recognition accuracy. 

Normalization helps prevent feature accumulation across layers, but in sparse graphs, it can lead to 

information loss, while in dense graphs, it may overemphasize central nodes. Thus, choosing suitable 

normalization methods and adjacency matrices based on the graph's structure is essential for optimizing 

GCN performance. 

In the standard Graph Convolutional Network (GCN) workflow, after the node embedding stage, the 

learned embeddings are typically passed to a downstream model for task-specific learning. Initially, a 

Multilayer Perceptron (MLP) with three fully connected layers of 256, 128, and 64 neurons is used. The 

MLP processes these embeddings to perform classification or regression tasks, with training done using 

backpropagation and an appropriate loss function. However, the results from this approach often fall short 

of expectations. This underperformance is likely due to the MLP’s inability to leverage the rich structural 

and topological information embedded in the node features, as it treats features independently and lacks 

the capacity to capture complex patterns inherent in the graph data. To improve performance, the MLP is 

replaced with a convolutional network, which is better equipped to process the spatial and hierarchical 

relationships in the embeddings. Convolutional layers, by design, are adept at identifying local patterns 

and maintaining feature correlations, making them more effective in extracting meaningful 
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representations from the node embeddings. This approach leads to significantly better results, as the 

convolutional network can exploit the structural properties of the embeddings, enhancing task-specific 

learning. This shift highlights the importance of selecting the right downstream architecture to 

complement the embeddings produced by GCNs, especially for tasks where the graph's inherent structure 

plays a crucial role in determining the outcome. 

2-5- Deep Neural Network  

In the subsequent phase, the extracted features from each image are fed into a Deep Neural Network for 

the feature training process. This network consists of several key components designed for efficient 

learning and classification, including convolutional layers with Leaky ReLU activation, normalization 

layers, max-pooling layers, fully connected layers, and dropout layers. The initial six convolutional layers 

are crucial for extracting and refining high-level features from the images, with batch normalization 

applied after each layer to stabilize and accelerate training. MaxPooling layers then reduce the spatial 

dimensions of the feature maps, helping to decrease computational load and control overfitting. 

To further enhance generalization and prevent overfitting, dropout layers are used, randomly omitting a 

portion of input units during training. The fully connected layers follow, with one dense layer using 

Leaky ReLU for high-level reasoning, and another final fully connected layer responsible for generating 

class scores. These scores are passed through a SoftMax layer, which normalizes them into probabilities 

for classification. The classification layer then interprets these probabilities to predict the final class, 

assigning labels to the input data and playing a critical role in loss calculation during training. Fig. 6 

illustrates the architecture of the deep network used for training, incorporating features extracted from the 

graph convolutional network. As shown in Fig. 6, a convolutional neural network (CNN) is defined for 

classification. It begins with an input layer designed to process the feature matrix obtained from the graph 

convolutional network. The network comprises four convolutional blocks, each with convolutional layer 

that use 3*3 filters, followed by batch normalization, a Leaky ReLU activation (0.01), and a max-pooling 

layer that halves the spatial dimensions. These blocks progressively increase the number of filters from 64 
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to 512, allowing the network to extract more complex features at each stage. Dropout layers, with a 

dropout rate of 20 percent, are included after each block to mitigate overfitting. After feature extraction, 

the network transitions to fully connected layers with sizes gradually reducing from 256 to 64 neurons, 

each followed by Leaky ReLU activation and dropout layers. The final fully connected layer maps the 

features to the number of output classes. A SoftMax layer converts the outputs into probabilities, and a 

classification layer computes the loss for classification. This architecture effectively combines feature 

extraction, nonlinearity, dimensionality reduction, and regularization to build a robust model for image 

classification tasks. 

 

Fig. 6. architecture of the proposed CNN network 

The deep learning model's training process involves feeding image features through convolutional, 

normalization, pooling, and fully connected layers, with dropout layers to prevent overfitting. The 

network's weights are adjusted using the Adam optimizer to minimize the loss, typically cross-entropy, 

which measures the difference between predicted probabilities and actual labels. This architecture 

effectively processes and refines image features, enabling the network to learn complex patterns and 

achieve accurate image classification, with the final SoftMax layer generating class probabilities for 

classification. 
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The combination of Graph Convolutional Networks (GCNs) and Deep Neural Networks (DNNs) 

significantly enhances the model's ability to process complex data, especially in contexts where both 

relational graph data and image-based patterns need to be analyzed together. GCNs are designed to 

efficiently extract and propagate information from graph-structured data by learning from the connectivity 

between nodes (i.e., entities in the graph) and their neighbors. This allows GCNs to capture both the 

inherent structure of the graph and the interactions between entities, providing a comprehensive feature 

matrix that encodes essential structural relationships and node-specific information. When these graph-

derived features are passed as inputs into a Convolutional Neural Network (CNN), the fusion of GCN and 

CNN capabilities is powerful. The CNN’s hierarchical layers excel in recognizing spatial patterns and 

capturing complex, multi-level features in images or other structured data. By feeding the feature-rich 

output of a GCN into the CNN, the model benefits from the GCN's ability to preserve the graph’s 

topological information, which is crucial for tasks like node classification, graph classification, or any 

task involving data with inherent structure.  

Moreover, the synergy between GCN and CNN plays a pivotal role in improving the model's capacity to 

understand both the structural dependencies and the local patterns in the data. The GCN provides a solid 

foundation by encoding the relationships between entities in a graph, while the CNN further enhances this 

information through its powerful feature extraction and abstraction capabilities. The end result is a model 

that can simultaneously capture relational patterns (from the graph) and local, spatial patterns (from the 

CNN), which is essential for tasks requiring a deeper understanding of both graph structures and complex, 

spatial relationships. 

As specified in Algorithm 1, a convolutional neural network (CNN) model is designed to classify images 

into two classes. First, the input data, including features obtained from the convolutional graph network 

and the training and test labels, is loaded and preprocessed. This process involves randomizing the data, 

normalizing the pixel values to the interval [0, 1], and converting the labels into a categorized format. 

Next, the training data is split into two parts: training and validation. The CNN model is constructed with 
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convolutional layers for feature extraction, normalization layers for stability, activation layers for 

nonlinear learning, and aggregation and dropout layers to reduce complexity and prevent overfitting. The 

training configuration includes the Adam optimizer, a fine-tuned learning rate, and continuous evaluation 

on the validation data. Finally, the trained model is capable of classifying new data with high accuracy. 

Algorithm1. Preprocessing, Training, and Validation of a CNN Model for Classification 

Step Description 

Input Training and test Features and labels. 

Output Trained CNN model. 

1. Initialization Clear workspace and load data files. 

2. Preprocessing 
Shuffle data,input Features [200 × 32], normalize to [0, 1], and convert labels to 

categories. 

3. Data Split Split training data into 80% training and 20% validation sets. 

4. CNN Definition 
Define CNN with input, convolutional, pooling, dropout, and fully connected 

layers. 

5. Training Setup Config. optimizer (Adam), learning rate, epochs (30), and validation monitoring. 

6. Training Train the CNN using train Network with prepared data and options. 

3- Results & Discussions 

We developed the proposed model using the MATLAB 2023b programming environment. The simulation 

ran on a system with an Intel i7 processor, 48 GB of DDR4 RAM, and an NVIDIA RTX 3080 GPU. The 

dataset contains 1799 CT scans of kidneys: 790 scans with kidney stones and 1009 scans of healthy 

kidneys. We divided the data into two subsets for testing: 90% for training and 10% for validation. 

Additionally, the experimental dataset included 346 CT scans, with 165 images showing kidney stones 

and 181 depicting healthy kidneys. 

3-1- Dataset 

The dataset was prepared by Yildirim et al [14] following approval from the Ethics Committee of Firat 

University, Turkey. It includes 500 non-contrast computed tomography (NCCT) scans from 433 patients 

aged 18 to 80, divided into two groups, 278 with kidney stones and 165 healthy individuals. The CT scans 

were independently reviewed and labeled by a radiologist and a urologist to confirm the presence or 
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absence of stones. The scans were taken using a 120 kV CT protocol with an automatic current range of 

100-200 mA and a slice thickness of 5 mm. The dataset comprises a total of 1,799 images, with 790 

depicting kidney stones and 1,009 showing healthy kidney tissue. To maintain a balanced dataset, data 

augmentation techniques were used to adjust the ratio of stone-containing to normal images. The data was 

then split into training and testing sets, with the training directory containing 1,453 images (625 with 

stones and 828 without stones) and the testing directory containing 346 images (165 with stones and 181 

without stones). To minimize bias, participants in the training set were not included in the testing set, 

ensuring distinct groups for each phase. The images were saved in PNG format and used for evaluating 

the performance of the graph convolutional network (GCN) algorithm combined with a deep neural 

network (DNN). 

3-2- Setting hyperparameters 

During the training and validation phases of a deep learning model, hyperparameters are fine-tuned to 

enhance performance. Initially, the model is trained on a training dataset, and its performance is evaluated 

on a validation dataset. Hyperparameters such as learning rate (η), batch size, and number of epochs are 

adjusted iteratively until optimal values are found. Finally, the model's performance is tested on a separate 

test set to ensure it does not overfit the validation data. The proposed architecture achieved 98.6% 

accuracy after 50 iterations, demonstrating improved performance over existing models for kidney stone 

classification. 

The network is trained using the Adam optimizer, with a batch size of 64 and an initial learning rate of 

0.0001. The learning rate decreases by a factor of 0.1 every 30 epochs. Validation is conducted on a 

separate dataset every 100 iterations, and the process includes logging details and visualizing progress to 

monitor performance. The runtime environment is configured to automatically choose between CPU and 

GPU for optimal efficiency. These settings facilitate efficient and effective neural network training, 

promoting robust learning and generalization. Fig. 7 presents the training and validation accuracy for each 

epoch of the proposed GCN-DNN model, providing insight into its performance. 
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Fig. 7. Training, validation accuracy and loss of the proposed model. 

The confusion matrix in Fig. 8 illustrates the performance of the proposed GCN-DNN model for kidney 

stone detection, achieving an impressive accuracy of 98.6% using a Graph Convolutional Network 

(GCN). This highlights the model's exceptional capability to deliver highly accurate results. 
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Fig. 8. confusion matrix derived from the test data 

The confusion matrix[17] reveals that the model accurately predicts kidney stone images as true positives 

(TP) and correctly identifies normal images as true negatives (TN). However, it occasionally misclassifies 

kidney stone images as normal (false negatives, FN) and normal images as kidney stones (false positives, 

FP). To evaluate the model's performance, we use several metrics: precision (TP / (TP + FP)), recall (TP / 

(TP + FN)), and the F1 score (2 × precision × recall / (precision + recall)). Note that the formula for 

accuracy in the original text is incorrect; it should be (TP + TN) / (TP + TN + FP + FN). These metrics 

are crucial for assessing the model's effectiveness. Accuracy measures the overall rate at which the model 

correctly predicts both normal and kidney stone cases, while recall evaluates the model's ability to 

identify all true positive cases. The F1 score, being the harmonic mean of precision and recall, balances 

these two measures. 

In our evaluation with 346 test cases, the model achieved 98.6% accuracy and 99% sensitivity. We tested 

the model on an unbalanced dataset comprising 790 kidney stone scans and 1009 normal scans. Fig. 9 

presents both the receiver operating characteristic (ROC) curve[18] and the precision-recall (PR) 

curve[18]. The PR curve is generally more informative for datasets with an unbalanced distribution, as it 

better reflects the model's performance on the minority class. Conversely, ROC curves are more suitable 

for balanced datasets. 
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(a) (b) 

Fig. 9. (a) ROC curve and (b) Precision-Recall (PR) curve for classification performance. 

3-3- Comparison with Standard Methods 

In this section, we evaluate the performance of our proposed GCN-DNN model against traditional deep 

learning models, including xResNet-50 [14], DELM [20], Urinary [19], and DKN [21], as well as the 

standard graph convolutional network (GCN) model with MLP. Table 1 presents a comparative analysis 

based on metrics such as accuracy, sensitivity, specificity, precision, F1 score, and testing time. The 

standard GCN model, designed for graph data classification, achieved an accuracy of 80%. While this 

accuracy may suffice for some applications, it is considered relatively low for this particular problem, 

which involves a complex and challenging dataset. This suboptimal performance highlights the 

limitations of the standard GCN model in extracting deeper features or establishing more intricate 

connections between data points. To enhance accuracy and overall performance, we employed a GCN-

DNN hybrid model. This approach combines the strengths of GCNs for extracting graph-structured 

features and deep neural networks (DNNs) for learning more complex nonlinear patterns. By replacing 

the MLP with the GCN-DNN architecture, the model achieves better generalization and accuracy, 

providing a more robust evaluation on complex datasets. This combination leverages the advantages of 

both GCN and DNN architectures, addressing the limitations of the standard model. 
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As fully specified in Table 1, The GCN-DNN model achieves the highest accuracy of 98.6%, surpassing 

all other models. It converges more rapidly, requiring only 50 runs, and demonstrates the highest 

sensitivity at 99% and an F1 score of 98.7%. Although its specificity of 97.5% is slightly lower than 

DKN's 98.9%, the GCN-DNN model's accuracy is comparable to DKN's 99%. Notably, the GCN-DNN 

model also boasts the shortest testing time of 0.93 seconds, showcasing its computational efficiency. 

Overall, the GCN-DNN model outperforms benchmark models in terms of accuracy, F1 score, and 

computational efficiency, making it a promising choice for real-time applications in biomedical 

engineering. 

Table 1. Comparison of results (%) obtained by our proposed GCN_DNN model with deep learning-based methods. 

Model Accuracy Epochs Sensitivity Specificity Precision 
F1-

Score 
Test time 

Urinary[19] 88% - 86% 90% 89.6% 86.5% - 

DELM[20] 94.4% 50 94.6% 93.3% 92.5% 93.9% - 

xResNet-50 [14] 96.8% 200 95% 97% 97% 96% 1.3 Sec 

DKN[21] 98.5% 150 98.1% 98.9% 99% 98.6% 1.5 Sec 

GCN-Standard 

 (proposed) 
80.06% 200 80% 81% 82% 81% 1.06 Sec 

GCN-Enhanced 

(proposed) 
98.6% 50 99% 97.5% 97.8% 98.7% 0.93 Sec 

This section discusses the Ablation Study [22] and time complexity [23] analysis, which are essential for 

understanding and improving the model's performance. The Ablation Study involves modifying or 

removing components of a model to evaluate their impact on performance, helping to identify critical 

elements and optimize the model by eliminating unnecessary parts. Various modifications were made, 

and the model's accuracy was assessed at each stage. Table 2 compares the baseline model's performance 

with these modifications, which included removing layers (convolutional, dropout, batch normalization), 
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reducing neuron units in fully connected layers, and adjusting hyperparameters like dropout rate, epochs, 

optimizers, and learning rate. 

Table 2. Ablation Study for the proposed method 

Changes Made 
Model 

Accuracy (%) 

Change from 

Base Model 
Description 

Removed one convolution layer 95.3 -3.3 
Reduced number of filters, 

accuracy drop. 

Removed dropout layers 97.2 -1.4 Slight increase in overfitting. 

Removed normalization layers 93.8 -4.8 
Negative impact on 

convergence and accuracy. 

Reduced number of neurons 96.1 -2.5 
Reduced model capacity, 

accuracy drop. 

Changed dropout rate to 0.5 97.8 -0.8 
Slight improvement in 

preventing overfitting. 

Changed dropout rate to 0.1 96.8 -1.8 Slight increase in overfitting. 

Used SGD optimizer 96.4 -2.2 
Slower convergence and 

accuracy drop. 

Learning rate set to 1e-3 97.5 -1.1 Learning rate 1e-3 

The results indicated that removing normalization and convolutional layers significantly reduced 

accuracy, highlighting their critical role in network convergence. The Adam optimizer with a learning rate 

of 1e-4 proved to be the most effective. Increasing epochs to 50 slightly improved accuracy but also 

raised training time. Removing dropout layers caused overfitting, emphasizing their importance in 

prevention. These insights aid in optimizing network architecture and assessing model strengths and 

weaknesses. 

Next, the time complexity of the learning algorithm is analyzed based on layers, neurons, input size, and 

other parameters. Training time complexity depends on iterations, dataset size, layer count, and 

parameters, with deeper networks requiring more calculations. In CNNs, time complexity is influenced by 

convolution operations, filter sizes, and computation methods for each layer. Table 3 outlines the time 
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complexity for convolutional, fully connected, and max-pooling layers, demonstrating that increased layer 

numbers and complexity lead to longer processing times. This table illustrates the impact of each network 

component on overall performance. 

Table 3. Time Complexity of CNN Layers 

Layer 
Output 

Size 
Time Complexity Layer 

Output 

Size 
Time Complexity 

Image Input 

Layer 
200x32x1 O(1) 

Conv2D (3, 

512) 
25x4x512 O(3*3*256*512*25*4) 

Conv2D (3, 

64) 
200x32x64 O(3*3*1*64*200*32) 

Conv2D (3, 

512) 
25x4x512 O(3*3*512*512*25*4) 

Conv2D (3, 

64) 
200x32x64 O(3*3*64*64*200*32) 

Max Pooling 

(2x2) 
12x2x512 O(12*2*512) 

Max 

Pooling 

(2x2) 

100x16x64 O(100*16*64) Dropout 12x2x512 O(1) 

Dropout 100x16x64 O(1) 
Fully Connected 

(256) 
256 O(12*2*512*256) 

Conv2D (3, 

128) 
100x16x128 O(3*3*64*128*100*16) Dropout 256 O(1) 

Conv2D (3, 

128) 
100x16x128 O(3*3*128*128*100*16) 

Fully Connected 

(128) 
128 O(256*128) 

Max 

Pooling 

(2x2) 

50x8x128 O(50*8*128) Dropout 128 O(1) 

Dropout 50x8x128 O(1) 
Fully Connected 

(64) 
64 O(128*64) 

Conv2D (3, 

256) 
50x8x256 O(3*3*128*256*50*8) Dropout 64 O(1) 

Conv2D (3, 

256) 
50x8x256 O(3*3*256*256*50*8) 

Fully Connected 

(2) 
2 O(64*2) 

Max 

Pooling 

(2x2) 

25x4x256 O(25*4*256) SoftMax 2 O(2) 

Dropout 25x4x256 O(1) 
Classification 

Layer 
2 O(1) 

4- Conclusion 

This research introduces a deep learning model based on graph convolutional networks (GCNs) to 

enhance image feature extraction. By converting image feature vectors into graph nodes and applying 

GCNs with a message-passing algorithm, this approach captures more detailed and comprehensive 

features from images. This technique significantly improves the traditional methods of image analysis by 

effectively handling complex details crucial for accurate interpretation. The model was tested on publicly 
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available CT scans for kidney stone detection, achieving an impressive accuracy of 98.6%. This 

performance surpasses existing state-of-the-art methods, especially in detecting stones of varying sizes, 

including small ones. Such precision is vital in medical diagnostics, where accurate and timely detection 

can significantly impact patient outcomes. The primary advantage of using GCNs lies in their ability to 

perform convolution operations on graph nodes, capturing both local and global structural information. 

This not only enhances feature extraction but also preserves intricate details and variations within images. 

The capability to identify fine details is particularly beneficial in medical imaging, where such precision 

can be crucial for diagnosis. 
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