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Abstract: 

This study addresses the prediction of the flutter speed for a double-sweep folding wing in subsonic 

airflow, an area less explored in past research. Two types of modeling are employed: structural 

and aerodynamic. The structural model treats the wing as an Euler-Bernoulli beam. For the 

aerodynamic model, Theodorsen's unsteady aerodynamic theory is used. This theory is initially in 

the frequency domain but is converted to the time domain using the Kussner function and a new 

formulation method. Kinetic energy, strain energy, and the work of aerodynamic forces are then 

calculated. The differential equations governing the wing structure are derived using Hamilton's 

principle. The wing's motion equation is obtained using assumed modes and the Galerkin method. 

The instability flutter speed is determined through the p-method, and graphs of frequency versus 

airflow velocity are plotted. The results indicate that using the Kussner function for variable 

airflow improves the accuracy of flutter speed prediction. The analysis of sweep angle changes on 

flutter speed and frequency revealed that sweep angle one has the least positive effect, while sweep 

angle two has the most positive effect on flutter speed and frequency, respectively. 
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1- Introduction 

Investigating the flutter phenomenon in wings is critical, as failure to accurately predict flutter 

speed can lead to severe oscillations that compromise wing integrity and aircraft stability. This 

investigation is particularly crucial for double-sweep folding wings, which frequently encounter 

variable airflow conditions that significantly impact their stability and aerodynamic performance. 

Consequently, predicting flutter speed and developing safe designs for these wings is essential. 

Furthermore, the distinctive design of double-sweep folding wings engenders unique aerodynamic 

characteristics that differ from the traditional wings, necessitating comprehensive analysis to 

optimize their design and functionality. 

Borglund presented a novel method for robust flutter analysis, focusing on frequency-domain 

aerodynamics and structured singular value analysis [1]. Rajamurugu employed aerodynamic strip 

theory to analyze the static aeroelastic behavior of a slender straight 2D wing focusing on factors 

such as the distance between the elastic and aerodynamic axes, the sweep location, and the wing 

span [2]. Zhang et al. analyzed the transient response of advanced rotational variable-swept missile 

wings using a time-varying aeroelastic model. [3]. Dhital et al. explored the impact of aerodynamic 

interactions on the aeroelastic behavior of closely positioned wings, concluding that this 

arrangement offers superior aerodynamic efficiency compared to a single-wing configuration [4]. 

Farsadi et al. investigated the nonlinear dynamic aeroelasticity of composite thin-walled wings 

with circumferentially asymmetric layering in compressible flows [5]. Mazidi et al. investigated 

the aeroelastic behavior of swept wings of an aircraft equipped with two high-powered engines 

using Peter's aerodynamic model [6]. Sina et al. investigated the aeroelastic behavior of an 

anisotropic thin-walled composite beam in subsonic compressible flow [7]. Fazelzadeh et al. 

investigated the aeroelastic response of swept wings with shear deformation during roll [8]. Zhang 

et al. investigated the delta's leading-edge vortex effect on the wing's aerodynamic and aeroelastic 

characteristics [9]. Kapania et al. investigated the effect of variations in wing geometric 

parameters, including aspect ratio, wing surface area, taper ratio, and sweep angle, on the 

aeroelastic response of the wing in transonic airflow [10]. Ricketts investigated experimentally  

the aeroelastic behavior of forward-swept wings with different aspect ratios and sweep angles at 

low airspeed [11]. Mahig used the strip analysis method to determine the effect of flutter frequency 

and speed on variations in the drag coefficient and sweep angle and estimated wing stiffness 

through the strength of the material analysis [12]. Firouz-Abadi et al. investigated the stability of 
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aeroelastic models using a new reduced model. This model is designed based on identifying the 

generalized aerodynamic force response at different excitation frequencies [13]. Akshayraj et al. 

investigated the geometric variation of the wing on aerodynamic performance and flutter speed 

[14]. Kwon et al. predicted the unsteady flow vector of long wings in transonic flow using the 

unsteady potential equation of small supersonic turbulence [15]. Pollie et al. presented an 

analytical solution for the aeroelastic response of a swept wing made of advanced composite 

materials in incompressible subsonic flow, influenced by a time-dependent thermal field [16]. 

Ghasemikaram et al. presented a flutter analysis of a 3D aircraft with a box-wing configuration 

consisting of two front and rear wings connected to a central wing [17]. Fazelzadeh et al. presented 

the aeroelastic response of aircraft wings affected by changes in taper ratio, sweep angle, and 

variable pre-twist angle along the span [18]. Alizadeh et al. studied the aeroelastic and nonlinear 

flutter behavior of an externally stored cantilever wing experimentally in a closed-circuit subsonic 

wind tunnel [19]. Xiao et al. investigated the flutter analysis of a swept wing and considered the 

Theodorsen aerodynamic force variation using the Bisplinghoff aerodynamic force correction 

method as the aerodynamic model [20]. Basiri et al. achieved effective analysis and rapid modeling 

for free vibration and flutter analyses of low aspect ratio composite wings in subsonic flow [21]. 

Arun Kumar et al. analyzed the flutter of a sweptback wing and the effect of various parametric 

uncertainties using a frequency-domain aerodynamic model based on the structured singular value 

𝜇 method [22]. Kumar et al. presented a physics-based algorithm for analyzing the reliability of 

aircraft wings in the frequency domain that uses the aeroelastic damping ratio of the flow velocity 

[23]. Melvin et al. presented a Ritz method for conducting the flutter analysis of a NASA X-57 

Maxwell-like distributed propulsion aircraft wing including the bending displacement and torsion 

angle [24]. Liska et al. developed a continuous aeroelastic model for a folding wing, focusing on 

a uniform two-section wing with a hinge connecting the inner and outer sections [25]. Zhao et al. 

presented a parametric method for aeroelastic modeling that efficiently predicts the flutter 

characteristics of a folding wing [26]. Shams et al. conducted an aeroelastic analysis for a double-

swept wing with metal/composite sections, which included investigating flutter, divergence, and 

aeroelastic static control [27]. Koo proposed a novel double-swept wing to enhance aeroelastic 

stability while maintaining aerodynamic advantages [28]. Marzocca et al. used the aerodynamic 

index function concept to present an integrated analysis of the aeroelastic dynamic response of 

sweep lifting surfaces in the time and frequency domains, which addresses time-dependent 
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external loads [29]. Mazidi et al. conducted a comprehensive flutter analysis of swept aircraft 

wings carrying a powered engine [30]. Firouz-Abadi et al. investigated the aeroelastic stability of 

subsonic tapered composite wings with two engines, considering the influence of engine thrust 

[31]. Sina et al. analyzed the aeroelastic stability and response of a composite swept wing in 

compressible subsonic flow [32]. Ovesy et al. conducted a study to analyze the effects of geometric 

structural nonlinearity on the flutter of high-aspect-ratio wings using ONERA aerodynamic model 

[33]. Jacobson et al. implemented and validated a frequency-domain linearized method in a 

stabilized finite element solver in FUN3D for flutter analysis in aeroelasticity [34]. Shi et al. 

presented a study on the aerodynamic analysis of airfoils, focusing on the accurate representation 

of the wake and the trailing edge condition [35]. 

The flutter speed of a double-sweep folding wing in subsonic airflow is determined in this paper. 

Certain small UAVs deploy their wings within seconds upon takeoff, which is why they are 

referred to as "folding wings." In this state, the airflow velocity is variable, leading to a different 

analysis of the flutter phenomenon compared to that of fixed wings. Therefore, Kussner's function 

is utilized instead of Wagner's function. This topic has not been explored in prior research, and 

this paper seeks to address this gap in the literature. The wing structure is modeled as a cantilever 

Euler-Bernoulli beam with two degrees of freedom: bending and torsion. The aerodynamic model 

of the airflow is described by using Theodorsen's unsteady aerodynamics. Kussner's function and 

a novel mathematical method convert the frequency domain to the time domain. Hamilton's 

principle is applied to derive the aeroelastic differential equation of the wing. The equation of 

motion for the wing is obtained by utilizing the Galerkin method and assumed modes. The p-

method is then used to determine the flutter speed and frequency. Additionally, a design of 

experiments is conducted using the response surface method to analyze the impact of sweep angles 

on flutter speed and frequency, and the correlation matrix is generated. This paper highlights two 

significant achievements. First, utilizing Kussner's function in place of Wagner's function 

markedly enhances the accuracy of flutter speed and frequency calculation. Second, the impact of 

the sweep angle further from the body on flutter speed is greater than that of the sweep angle closer 

to the body. 
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2- Structural modeling 

In this segment, the equation formula dictating the motion of the wing structure is derived under 

the premise of employing the Euler-Bernoulli beam theory. Subsequently, assessments of the strain 

energy, kinetic energy, and the effects of aerodynamic forces are conducted for the designated 

beams. Leveraging Hamilton's principle, the differential equation representing the structural 

dynamics of the beam is derived. Furthermore, employing the Galerkin and assumed modes 

methods, the governing equation for the beams' motion is deduced. Illustrated in Fig. 1 is a 

depiction of a wing featuring double sweeps, while Fig. 2 presents a schematic of its airfoil's cross-

section. 

 

Fig. 1. Double sweep wing 
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Fig. 2. Airfoil cross-section [36] 

In Fig. 2, b  represents half the wing chord length, ba  denotes the distance from the semi-chord 

to the elastic center, and bx  signifies the distance from the elastic center to the center of mass. 

These distances are all measured perpendicular to the wing's elastic axis. As depicted in Figure 3, 

the wing structure manifests as an oblique two-part beam with independent coordinate systems. 

 

Fig. 3. Local coordinate systems of double beams 

Strain energy with bending stiffness EI  and torsional stiffness GJ  is expressed as follows [37]. 
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(1) 

Where w and α represent the beam's bending and torsion degrees of freedom, and l1 and l2 denote 

the lengths of beams 1 and 2, respectively. By accounting for the mass density, the kinetic energy 

of the structure illustrated in Fig. 3 can be articulated as follows [37]. 
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(2) 

The variable m  represents the mass per unit length, while I  denotes the mass moment of inertia 

of the wing's cross-section per unit length about the elastic axis. Furthermore, the virtual work 

done by aerodynamic forces is given by [37]. 
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(3) 

In this context, L  and 
.e aM  represent the aerodynamic force and aerodynamic moment, 

respectively, acting per unit length of the wing about its elastic center. The deriving governing 

equations for the wing can be derived by applying Eq. (1), (2), and (3) within the following 

framework of Hamilton's principle. 

  extU T dt W dt        (4) 

Applying the variational operator   to the strain energy, kinetic energy, and external work yields 

the following result. 
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(8) 

The degrees of freedom for bending and torsion are displayed as the mode shapes and generalized 

coordinates as follows. 
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(9) 

The equation of motion is obtained using the assumed modes method in conjunction with the 

Galerkin method. 
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  and   denote the mode shapes of bending and torsion, respectively, while wr  and r  represents 

the generalized coordinates for bending and torsion, respectively. In general, the mode shapes for 

bending and torsion of both beams can be described as follows. 
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The boundary conditions of the beams lead to the following expressions. The connection point of 

beam 1 to the body is clamped, resulting in zero bending and torsion at this location. At the junction 

between the two beams, the bending and torsion, along with their first and second derivatives, are 

continuous and equal for both beams. The endpoint of beam 2 is free, where the first derivative of 

torsion, and the second and third derivatives of bending, are zero. Therefore, 12 boundary 

conditions are obtained. 
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(12) 

By substituting Eq. (12) into Eq. (11) and solving a system of linear equations including twelve 

equations with twelve unknowns, the following results can be derived for the bending and torsion 

modes. 
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Consequently, the mode shapes of bending and torsion of beams are derived as follows. 
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Where 
i  and 

i  are obtained from the following equations. 
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(16) 

3- Aerodynamic Modeling 

This section elucidates the equations governing lift force and aerodynamic moment utilizing the 

assumed strip theory. Consequently, expressions for lift force and aerodynamic moment are 

formulated accordingly [38]. 
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Here, U
, 

, and   represent the airflow velocity, airflow density, and the wing sweep angle, 

respectively. The macron symbol (ˉ) and the dot (˙) above the letters indicate derivatives with 

respect to time and displacement in the y-direction, respectively. 
aw  is downwash velocity which 

is expressed as follows [39]. 
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(18) 

And   is the Kussner's function is expressed as follows [38]. 
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By substituting the downwash velocity from Eq. (18) into Eq. (17), the lift force and aerodynamic 

moment can be determined [39]. 
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(20) 

Considering the following variables, an innovative method can be formulated as follows: 
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(21) 

Eq. (21) introduces an innovative mathematical method for calculating Kussner's integral, which 

is further expanded upon in the paper. This approach is novel and has not been previously 

employed in any other work. Kussner's integral, presented in Eq. (20), can be expressed as follows. 
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Where 
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(23) 

Inserting the Eq. (23) into the Eq. (22), it can be written. 
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Therefore, Eq. (24) is rewritten as follows. 
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(25) 

Substituting Eq. (25) into Eq. (22) results in the following rewritten expression. 
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(26) 

By inserting Eq. (26) into Eq. (20), removing the similar expressions, and simplifying, the lift force 

and aerodynamic moment of the wing are rewritten as follows. 
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(28) 

The integral expressions in the lift force and the aerodynamic moment of the wing in Eq. (28) can 

be considered as new degrees of freedom and are expressed as follows. 

         
0

, , ,      , ,   or  , ,      1,2i i

t

t

siB y t e s y e d s y t w y t y t i
      

       (29) 

By taking the derivative of Eq. (29), the following expression can be written. 
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t
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i si

B y t e s y e d e s y t e

B y t s y t

      



     
        

   


 (30) 

Therefore, the differential equations governing these degrees of freedom are obtained as follows. 
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2 2 2
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B B y t

 

 





 

 

  

  

  

  

 (31) 

For the degrees of freedom in Eq. (31), the mode shapes and the following generalized coordinates 

can be considered. 

   

   

   

   

1 1

2 2
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,

,

,

,

w w
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B y t r
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B y t r
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 

 

  

  

  

  

 (32) 

By multiplying the mode shapes in Eq. (31) and integrating, the following conclusion can be 

reached. 

            

            

            
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0
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0
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0

0

0

0

0

l
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l
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l

l
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r r r dy
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
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







 (33) 

4- Aeroelastic analysis 

The structure's equation of motion can be formulated into the following matrix representation, 

incorporating the lift force and aerodynamic moment according to Eq. (27) and (28) and 

accounting for the four equations delineated in Eq. (33). 

            0 0S A S A S AM M q C C q K K q P q                      (34) 

Here, M represents the mass matrix, C signifies the damping matrix, K denotes the stiffness matrix, 

S and A represent the structural and aerodynamic indices of the matrices, respectively, and q 
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signifies the generalized coordinate matrix. Each of these matrices is derived as described below. 

The arrays that are not included are equal to zero. 

   
1 2
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0 0

l l

SM m dy m dy                  (35) 
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As the structure's equation of motion is temporally dependent, the p-method is employed to derive 

the flutter speed. By accounting for the variable change of    1q Y , the equation of motion is 

reduced by one order, yielding the following expression. 
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The generalized coordinates of p can be written as size and phase as follows. 

   * p tq q e    (80) 

As a result, it can be written: 
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(81) 

Finally, for the eigenvalue p: 

   * *p M q K q            (82) 

The eigenvalues of the matrix *M    and *K     , which are the values of p, have a real part and 

an imaginary part p i    . The imaginary part ω represents the frequency of the airflow. The 

flutter phenomenon occurs when the frequency of the airflow becomes equal to the structure and 

the real part σ becomes zero. In other words, the value of   changes sign at the flutter speed. 

5- Results and discussion 

This section addresses determining the flutter speed of the double-sweep folding wing operating 

within a subsonic flow regime at sea level. The wing configuration comprises two distinct 

segments, as delineated in Figure 3: the first segment affixes to the body, and the second positions 

away from the body. The first segment exhibits a taper ratio, resulting in the linear variation of all 

mechanical and geometric properties across the airfoil cross-section. Conversely, the second 

segment lacks a taper ratio, maintaining consistent mechanical and geometric properties. The wing 

is fabricated of aluminum alloy, and Table 1 details its mechanical and geometric attributes. The 

plots illustrating the real and imaginary parts of the eigenvalues, derived from the Wagner and 

Kussner functions, are depicted in Fig. 4 to Fig. 7, respectively, facilitating the determination of 

flutter speed and frequency. 
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Table 1. The mechanical and geometric properties of the double-sweep folding wing. 

Parameters First segment Parameters Second segment 

  1.225 kg/m3   1.225 kg/m3 

Al  2700 kg/m3 Al  2700 kg/m3 

1  35° 2  40° 

1l  1 m 2l  1 m 

 1b y  0.19 0.069 y   
2b  0.5 m 

1m  0.75 kg/m 2m  0.75 kg/m 

 1e y  0.081 0.035 y   2e  0.04 

 1a y  
 

 
1

1

1

2

e y

b y
  

2a  0 

1
x  

 1

0.01

b y
 

2
x  0.29 

1
I  0.203 0.168   kg my    

2
I  0.1 kg.m 

1EI  
239535.238 28663.861   N my    2EI  4 22 10 N m   

1GJ  
21950390.284 1612753.13   N my    2GJ  4 21 10 N m   
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Fig. 4. The real part of the eigenvalues versus the airflow speed at the sea level based on 

Wagner's function 

 

Fig. 5. The real part of the eigenvalues versus the airflow speed at the sea level based on 

Kussner's function 

Each branch in Fig. 4 or Fig. 5 illustrates the variations in the real part of the eigenvalue to changes 

in airflow speed. The eigenvalue is derived from Eq. (82). Five branches are plotted for three mode 

shapes. The branch that starts from zero, initially moves towards negative values, and then shifts 

towards positive values is considered the branch that determines the flutter speed. The point where 

this branch changes sign from negative to positive is identified as the point where the flutter 

phenomenon occurs. The airflow speed at this intersection is equal to the flutter speed, where the 
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frequencies of the airflow and the structure are equal. According to Fig. 4 and Fig. 5, the flutter 

speeds obtained from the Wagner and the Kussner functions are 270 m/s and 186 m/s, respectively. 

 

Fig. 6. The imaginary part of the eigenvalues versus the airflow speed at the sea level based on 

Wagner's function 

 

Fig. 7. The imaginary part of the eigenvalues versus the airflow speed at the sea level based on 

Kussner's function 

Similar to the real part, each branch in Fig. 6 or Fig. 7 represents the changes in the imaginary part 

of the eigenvalue to variations in airflow speed. At the flutter speed, the two branches that are close 

to each other and continue in parallel determine the flutter frequency. The lower branch indicates 

the bending frequency, while the higher branch indicates the torsion frequency. At the flutter 

speed, the frequency corresponding to the torsion mode is equal to the flutter frequency. The flutter 
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frequency obtained from the Wagner function is 401.5 rad/s, and from the Kussner function, it is 

224.2 rad/s. The Table 2 compares the flutter instability speed extracted from these two functions. 

Table 2. Comparison of flutter speed and frequency for Wagner’s and Kussner’s function. 

Conversion functions  fU m s   f rad s  

Wagner function 270 401.5 

Kussner function 186 224.2 

Difference percentage (%) 36.8 56.7 

The data presented in the Table 2 indicate that Kussner’s function demonstrates greater accuracy 

in achieving a precise answer compared to Wagner’s function. It can be inferred that, in scenarios 

where airflow speed fluctuates, Kussner's function should be employed to determine the flutter 

speed. To investigate the effect of sweep angles on flutter speed and frequency, a design of 

experiment was carried out using the response surface method. The flutter speed and frequency 

results for each step are provided in Table 3.  

Table 3. Input and response variables of the design of experiment. 

Run 1  (deg) 
2  (deg) fV  (m/s) 

f  (rad/s) 

1 0 50 233 226.425 

2 0 30 176.5 206.248 

3 40 60 255 252.643 

4 60 0 230 229.737 

5 30 0 191 211.157 

6 50 20 170.5 216.913 

7 0 0 152 199.738 

8 20 40 187 220.735 

9 60 40 193.5 226.6 

10 30 20 166 211.97 

11 20 60 272 261.167 

The correlation matrix between the input and response variables was calculated and is shown in 

Table 4. As can be seen, changes in sweep angles 1  and 2  have the least and most positive 

effects on flutter speed and frequency, respectively. 
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Table 4. Correlation matrix of sweep angles, flutter speed and frequency. 

 1  (deg) 
2  (deg) fV  (m/s) 

f  (rad/s) 

1  (deg) 1    

2  (deg) -0.1183 1   

fV  (m/s) 0.1438 0.6382 1  

f  (rad/s) 0.2913 0.7292 0.9324 1 

The results of Table 4 indicate that sweep angle two has a greater impact on flutter speed and 

frequency comparing sweep angle one. Thus, it can be concluded that in double or multi-sweep 

wings, the farther the sweep angle is from the fuselage, the greater its influence on flutter speed 

and frequency. 

6- The conclusion 

In this paper, the speed flutter of a double-sweep folding wing was calculated based on Wagner's 

function and Kussner’s function using the p-method. The results are as follows. 

 The Kussner’s function is commonly applied in cases of variable airflow. The 

airflow changes during the wing's deployment since the wing opens at high speed 

within a few seconds. In this context, Wagner's function is unsuitable for addressing 

the problem. Consequently, the speed and frequency of the flutter derived from 

using the Wagner function exhibit significant differences compared to those 

obtained using the Kussner’s function. None of the previous studies have employed 

the Kussner’s function under these circumstances. 

 A novel mathematical method has been employed to transform aerodynamic 

equations from the frequency to the time domain. This innovative approach has not 

been applied in any prior research and proves highly valuable in the field of 

aeroelasticity because it reduces the problem from a two-parameter state to a one-

parameter state. 

 Converting the frequency to the time field and reducing the problem to a single 

parameter will enhance the response speed. 

 The impact of varying sweep angles on flutter speed was analyzed, providing 

valuable insights for designers to select appropriate sweep angles for UAVs, 

ultimately leading to an optimal design. Changes in sweep angles one and two have 
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the least (0.1438, 0.2913) and most (0.6382, 0.7292) positive effects on flutter speed 

and frequency, respectively. 

 This paper examines the double-sweep wing configuration. The approach used is 

general, and the developed code is scalable, allowing for application to multi-sweep 

wing designs which improves designers' ability to design multi-sweep wings. 

7- Nomenclature 

The degrees of freedom of the mode space for the torsional mode 1 2,B B   

The half-chord of the double-sweep wing in the coordinate system 

(x,y,z) 
b  

The half-chord of the double-sweep wing is perpendicular to the 

elastic axis of the wing 
b  

The distance from the center of the elastic to the half-chord ba  

The distance from the center of mass to the elastic center bx  

Aeroelastic damping matrix C  

Structural damping matrix SC  

Aerodynamic damping matrix AC  

Kussner function parameters 1 2, ,d    

Bending stiffness of the wing EI  

The distance from the elastic center of the double-sweep wing to the 

aerodynamic center 
e  

The mass moment of a double-sweep wing per unit length I  

Torsional stiffness of the wing GJ  

Aeroelastic stiffness matrix K  

Aerodynamic stiffness matrix AK  

Structural stiffness matrix SK  

Dimensionless frequency flutter fk  

Aeroelastic mass matrix M  

Aerodynamic mass matrix AM  

Aerodynamic moment around the elastic center .e aM  
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Flutter mach number fM  

Structural mass matrix SM  

Wing mass of double-sweep per unit of wing length m  

Initial condition matrix P  

Total generalized coordinates q  

Generalized coordinates of bending degree of freedom wr  

Generalized coordinates of bending mode space 
1 2
,w wr r  

Generalized coordinates of torsional degrees of freedom r  

Generalized coordinates of torsion mode space 
1 2
,r r   

Kinetic energy T  

time dimension t  

Strain energy U  

Velocity of flow perpendicular to the leading edge of double-sweep 

wing 
U  

Flutter speed instability fU  

The speed of the free air flow in the direction of the bird's movement U  

The work of aerodynamic forces extW  

Bending degree of freedom w  

Downwash function 3
4

ca
w  

Cartesian coordinate system  , ,x y z  

Double-sweep wing coordinate system  , ,x y z  

Torsional degree of freedom   

Torsion mode shape   

sweep angle   

Free air density   

Dimensionless time   
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Values of shape parameters of bending mode ,   

Bending mode shape   

Kussner function  t  

Flutter frequency f  
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