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ABSTRACT: This paper comprehensively investigates the dynamic modeling and simulation of the
conjoined twins 3RPRS (CT-3RPRS) robot, an advanced parallel spatial mechanism distinguished by
its kinematic efficiency, structural rigidity, and expansive accessible workspace. The CT-3RPRS robot
is equipped with six actuators, comprising three prismatic and three revolute actuators, which contribute
to its unique structure, enabling precise control over its constrained kinematic chains. To thoroughly
analyze the robot’s kinematics and kinetics, the Jacobian matrix and Lagrange multipliers are employed,
respectively, to resolve reaction forces and moments inherent to closed-loop topologies. Motion
equations are systematically derived using dual methodologies: the Euler-Lagrange formulation, which
accounts for energy-based dynamics, and the principle of virtual work, which ensures equilibrium under
non-conservative forces. These equations are subsequently verified to ensure their equivalence. The
comprehensive modeling processes are rigorously validated through MATLAB simulations, providing a
robust framework for analysis. Additionally, the results obtained from MATLAB are corroborated using
SimScape, further confirming the accuracy and reliability of the dynamic models. This study highlights
the dynamic features of the CT-3RPRS robot as well as the effectiveness of the employed modeling
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1- Introduction

Parallel robots have gained significant popularity in
industrial applications due to their favorable payload-to-
weight ratio and superior accuracy and repeatability compared
to serial robots [1]. Continuous research efforts focus on
enhancing the kinematic and dynamic aspects of these robots,
as well as exploring new parallel robot structures.

The concept of Conjoined-Twins (CT) for parallel robots
was recently introduced by Gholami and Miripour Fard [2,
3]. The recently introduced Conjoined-Twins-3RPRS (CT-
3RPRS) parallel robot presents a structural modification of
the 3RPRS robot, aimed at expanding its reachable workspace
[3]. Kinematic analysis of the CT-3RPRS robot revealed
promising results, demonstrating a larger workspace and
improved maneuverability. However, its dynamic behavior
remains unexplored.

This paper addresses the dynamic analysis of the CT-
3RPRS robot. Given the novelty of this robot and the absence
of prior research on its dynamics, a review of the 3RPRS
robot’s research background is crucial.

Previous studies [4-7] primarily focused on the
kinematics of the 3RPRS robot and its variations. In 2009,
Simas et al. conducted kinematic modeling of the Eclipse

*Corresponding author’s email: bmf@guilan.ac.ir

and Eclipse II robots as a basis for the 3RPRS robot using an
analytical approach [6], and investigated their singularities.
The method introduced and employed by them was based
on the concept of virtual chains. In 2014, Venkatesan et
al. performed inverse kinematic modeling of the 3RPRS
robot [7] and validated their results through simulations
in the ADAMS software environment. In 2017, Nag et al.
analyzed the forward kinematics of the 3RPRS robot and
proposed a closed-loop solution for it [5]. Finally, Kumar and
Bandyopadhyay addressed the forward kinematic modeling
of the aforementioned robot using a geometric approach [4],
providing both analytical and numerical solutions.

The only research on the 3RPRS robot’s dynamics was
conducted by Mohan and Corves [8], where they derived
the dynamic equations using the Euler-Lagrange method,
employing six generalized coordinates of the end-effector and
incorporating system constraints in the kinematic modeling.
Additionally, numerous studies have been conducted on
similar parallel robots, some of which are highlighted
below. Li and Xu investigated the 3PRS robot [9], deriving
the kinematic equations of the 3PRS mechanism. They
obtained an exact solution for the inverse kinematics and a
numerical solution for the forward kinematics. Furthermore,
they analyzed the dynamic equations using both the Euler-
Lagrange method and the principle of virtual work, with
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a focus on inverse dynamics. Building on this work, Pond
and Carretero explored the structural optimization of the
3PRS robot [10]. Subsequently, Staicu examined the 3PRS
mechanism [11], deriving the equations of motion using
the Euler-Lagrange method and expressing them in matrix
form. The results were validated using the principle of
virtual work. Staicu also solved the inverse dynamics of the
mechanism and calculated the required actuator forces. More
recently, Tourajizadeh and Gholami focused on the modeling
and optimal control of the 3PRS robot, utilizing the Euler-
Lagrange method and the State-Dependent Riccati Equation
(SDRE) approach for this purpose [12].

This study presents the first comprehensive dynamic
analysis of the recently introduced Conjoined-Twins-3RPRS
(CT-3RPRS) parallel robot, addressing a significant gap in
the literature. While previous research has focused on the
kinematic advantages of the CT-3RPRS robot, such as its
expanded workspace and improved maneuverability, its
dynamic behavior remains unexplored. To bridge this gap,
the dynamic equations of the CT-3RPRS robot are derived
using two distinct methodologies: the FEuler-Lagrange
method, providing a standard matrix form of the equations,
and the principle of virtual work, chosen for its simplicity
and accessibility. The kinematic modeling is systematically
conducted using the Denavit-Hartenberg (DH) convention,
and the Jacobian formulation is extracted to facilitate motion
analysis. Furthermore, the system’s constraint equations
are incorporated into the kinematic and kinetic modeling
to ensure accuracy. The validity of the proposed models is

confirmed through comparative simulations in MATLAB
and SimScape, demonstrating their reliability. By providing
a robust dynamic framework for the CT-3RPRS robot, this
study lays the groundwork for advanced control strategies,
such as optimal control and trajectory planning. It contributes
to the broader understanding of novel parallel robot structures.

The paper is structured as follows: Section two presents a
detailed representation of the robot’s modeling, encompassing
both kinematics and kinetics. Section three validates the
modeling through numerical and comparative simulation
scenarios conducted in MATLAB and SimScape. Finally,
concluding remarks are provided in section four.

2- CT-3RPRS parallel robot

This section presents a kinematic and kinetic model of the
Conjoined Twins 3RPRS (CT-3RPRS) robot, an innovative
parallel mechanism consisting of two interconnected
3RPRS robots shown in Fig. 1. This 6 DOF robot utilizes
three prismatic and three rotary actuators situated within its
middle plane. The robot’s kinematic structure comprises nine
revolute, six spherical, and three prismatic joints.

2- 1- Kinematic modeling:
The kinematics of the CT-3RPRS robot is given in [3] and
a summary of it is reviewed here:

2-1- 1- Position:

Point Q is in the center of the end-effector and the goal is to
calculate its position. Global coordinates origin is the O point
and the i" base spherical joint position is the A4, point (Fig 1).

Fig. 1. CT-3RPRS robot structure [3]
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Therefore, it can be written as follows:

0] 0
O0=|0,A = |,
0] 7,
- = (1)
[0 B
AA2 = E hs ,A3 = hs
o o

where /i, and 7, are the base plane radius and the
spherical joint distance to the connected part, respectively. The
end-effector angles in the global coordinate are considered
as the yaw-pitch-roll (Euler angles). Therefore, the rotation
matrix can be written as follows:

o
RZ =R R R =
Q z ’(pQ y 56Q X ’l//Q
[ —s @,C S@,S |
c,c6, PoCYo PoSYo
te@,sOysy,  +e@ysOycy,
2
S0, cPCY, —C Py,
+S @5 OysW, S PpsOycy,
L —s0, cO,sy, cOycy,
The C, joint position can be written as follows:
{c? < c%} _
1 1 1
(XQJ’Q,ZQJ//Q,HQ#’Q)
. B
2 2
—h —h —h
Hg s s s , (3)
To To
Ty T2
|1 1 1
X
R, Q ¢
HC = o] _
L, S e
Zo

where 7, is the end-effector radius. To calculate the o,
angles, as shown in Fig. 2 can be written:

The links D-H parameters can be written as follows (Table
1):

Therefore, the homogeneous transfer matrix can be
written as follows:

P
HB

ul

P
H -
B

sin(8) O
_|—cos(B) O
0 -1

0 0
—sin(f,) O
cos(f) 0

0 -1

0 0

cos(f3) —h, sin(A)
sin(B)  h, cos(f})
0 b, ’
0 1
—cos(f) A, sin(f) “)
—sin(f) —h, cos(f)
0 b,
0 1

Besides these relations, the other two links have a more
rotation around the y-axis. Therefore, can be written as:

_% ? B cosgﬂz) ?bz +%h,_ sin(f,)
P —cos(8) 0 sin(f,) h, cos(/,)
-
u2 —gsin(ﬂz) 0.5 —gcos(ﬁz) _%bz +§h, sin(3,)
sin(zﬂz) g cosgﬂﬁ ?bz —%h,. sin(f,)
u? - cos(,) 0 —sin(f,) —h, cos(5,)
B
d2 gsin(ﬂz) 0.5 gcos(ﬁz) —%bz—gh, sin(3,)
- _ﬁb
_sin(B) 3 eostB) T2
L e
H§u3 =| —cos(f) 0 sin(B,) 1h cos(/3,) (5)
_§b3
By 05 B
N2 S = 3 .
2 sin(f3;) ) cos(/,) —%h,_ sin(f3,)
0 0 0 1 J
- _ﬁb 7]
sng) 3 wsp) 2
2 2 2 1 .
—Ehr sin(f,)
uP - cos(f3,) 0 —sin(4,) —h, cos(f;)
Ba3 L
2 3
N 3
_TSm(ﬁ}) 0.5 —TCOS(ﬁg) +€hr sin(4,)
I 0 0 0 1 i

The C, and A, joint’s local positions can be written as:
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Fig. 2. Schematic of the local coordinates [3]

Table 1. Parameters of the Denavit-Hartenberg conven-

tion [3]
Link e y d ®
PB,  —h 90 b B =90
PB,, —h, 90 b, B, +90
—sinam. —sinadl.
CZ.B"" =1, | cosa,; |, A?d" =1,| cosa (6)
0 0

where / and /, are the link lengths. Also, ¢, and «,,
are the link angles with their carrier rails. The actuator plane
angles were considered as the yaw-pitch-roll (Euler angles).
Therefore, the transformation matrix can be written as:

RC P Y
vl 1)
[0]1><3 1

Zp

Global positions of the C, and A, joints can be written as:
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Using Eqgs. (1, 3, and 8), the constraints can be written as:
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Fig. 3. The position of the platform and spherical joints and their center of mass

2- 1- 2- Velocity The velocity relationship of the end-effector coordinates
By using the constraints equation, the Jacobian matrix can and active joints can be written as:
be written as [3]:

X m s T
0 A
d of & ; i
“ i =—=X=0 Y0 A
dt oX . .
z B
{xQ,yQ,zQ,wg,HQ,(pQ, 10) © =30:6.), b.3 (13)
24x1 o
XpsY psZpoWprOp a0y, Yo 1
T 0 b
aul’au2’au3’adl’ad2’ :| Q 1
; b
ad39ﬂ|9ﬁ2aﬁ3’blab25b3 (pQ L3
By a detailed description of equation 10 we have:
2- 2- Dynamics modeling:
of = . . . . 2- 2- 1- Euler-Lagrange method
X021, +IX, 205X, =1 X,
I:XQ7yQaZQal//Q99Qa¢anP>yPaZPal//P90P=¢P7
"
J | of /6% J o /8% aul’auZ’au3’ad1’adZ’ad3’ﬂl’ﬁ2’ﬂ3’bl’b2’b3]
= , aliges = . 11
iwas ! a i () is considered as twenty-four generalized coordinates.
Xolow = (B By: Bs.b1.by.bs These coordinates have been defined in the kinematics

section. The Euler-Lagrange method [13] was used to derive
= the equations of motion of the system. For this purpose,
B W0,00,,0,1, 0,050,301 0y 5,0 the inertia matrix and the linear and angular velocities of
each component of the robot were calculated separately. As
shown in Fig. 3, the robot platform with three spherical joints
attached to it was considered as a set, and its inertia matrix
was extracted.

The local coordinates Q on the mass center of the platform
%= X were used to calculate the inertia matrix. To calculate I, we

P (12) can write:

J :—J;Ja

X0sY0sZ0Vor00>PsX Y 57 o

14

where the passive and active abbreviation indexes are p
and a. Eq. (11) can be written as follows:
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Fig. 4. Position of the center of mass and local coordinates of the links and joints

_RO orT
1y -Roly, a0
0.03 0 0 (14)
| =l 0 006 0.001]|

CrLocal | o 0001 003

According to Fig. 4, the moment of inertia of each
link relative to its center of mass was written in the local
coordinate system connected to the same link; and to transfer
it to the reference coordinate system, the rotation matrix of
these two coordinates relative to each other was used.

ILui :R(Zui IL iLocal R?ui '
Rgui =R?3 Rgui RZ Xy |
"Ly :Rgdi YLig oeal R(L)di ! (15)
Rgdi :Rg Rgdi R, A |
001 0 0
I,. = 0 0 0
HLocal 0 0 001

As shown in Fig. 5, the robot actuators consist of three
parts (including the rigid part BA, the rotary ones RA,,
and the slider part S4,). To calculate the inertia matrix, the
local coordinates of each component on its center of mass
were used, and using the rotation matrices were taken to the
reference coordinates.
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So, we can write:

_p0 o T
Tea “Rpa Yoy Rpy
i i Local i
O _pOpP ’
RRAZ. _RPRRAZ.
(16)
10) O T
I, =RY 1 R
SA, TURASA, L URA,
10) oT
1, =RY1 R
BATPBA, P

It should be noted that, due to the absence of relative
rotation between the components R A, and S4,, the rotation
matrix applicable to the component R4, is equally valid for
the component S4. . Consequently, the local inertia matrix, as
expressed in Equation 16, is given by:

[0.001 0 0
| =l 0 0001 O
BA : ’
Local | o 0o  0.001
[0.001 0 O]
I RA = 0 0001 O (17)
Local 0 0 0
0.005 0 0]
I =l 0 0005 0
SALOC(J] 0 0 0

As mentioned in the kinematics section, we derive the
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Fig. 5. Different parts of the actuator plane and the status of local coordinates and their center of mass

HQA, homogeneous transfer matrices using the Denavit— r.

Hartenberg method. _ =6 0 1 Yo
In Table 2 7, represents the radius of the B4 component. o = 5@ty cpp 0| G |,
The other two links are exactly the same as the first link, cpcly —s@, 0| @
except that they have an extra rotation around the y-axis. The " o (19)
homogeneous transfer matrix, according to the parameters of .4 .
Table 2 is as follows: Vo =EGQ, Gy =Hg| -, |-
1 0
cos(,Bl) fsin(ﬂl) 0 0
P sin(f) cos(B) 0 0 Furthermore, based on [14], for the actuator plane, we
H = s .
RA] 0 0 1 p have:
0 0 0 1
[ ] —s6 0 1
Loy Langy LB, - r o
2 2 22 BA: wsi =|s@,c0, cp, 0|y, 6, ¢,],
. rtUp P P P P
P s1n(ﬂ2) cos(ﬁz) 0 0
Hpy = ’ copct, —spp 0
2 | B B 1ol (18)
—7c0s(ﬂ2) 7s1n(ﬂ2) 5 P SO ; G
VB4 = [x p Yp Zp ]
0 0 0 1 ST .
L ] o .
o . 5 G RA, 10w, =i +RY, [0 0 BT,
_Ecos(ﬂ3) Esm(ﬁ3) 5 —TI”P B J 20)
P sin(/3) cos(f33) 0 0 Vere, =—Gp,
Hpa, = NG 3 : 7/
3B gy L1 L. a
S cos(By) —sin(By)  — —rp SA. :wss, = wra, , V1, =—Gy,
0 0 0 1 dr ™

According to [14], the linear and rotational velocities of

T

Gy, =HP, [0 0 d. |,
0 7

the platform are as follows: G, =H, [h, de., 0:' .
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Table 2. Links D-H parameters

Link e y d ®
PRA, 0 0 "p B

It should be noted that, due to the absence of relative
rotation between the components R4, and S4,, the
rotational velocities of the component RA4, are also valid
for the component S4, . The rotational velocity of each link
consists of the same velocity of the actuator plane relative
to the reference coordinates and the corresponding rotational
velocity of the link and actuator plane. Furthermore, the
linear velocities of all the components of the robot are equal
to the derivative of the position of the center of mass of that
component. So, we have:

L,: &, =6y +R;[0 0 4],

ui

d
v, =—G, ,
Ly dt Ly
L,: &, =6y +R; [0 0 g, ]T >
- d 1)
v, =—G, ,
Ly dt Ly;

GLM, :H(I;u,dC [_Sin(aui) cos(e,, ) O]T

L

G, = Hgl,,.dq [_Sin(adi) cos(a; ) O]T )

The kinetic and potential energies of the robot were
calculated according to the [13]. Therefore, the platform
energy is equal to:

1
T, :E(O)ZIQ(DQ +myVoV,)

(22)
U, =m,gG,(2)
The link’s energy is equal to:
T, =T, +T,,
Uu,=U, +U,~
1 2 7 T
T, :5;(0) Io+mv'v),
T, :li((orlw+mvrv ), ’ (23)
d 2 = ‘di
3
UL,, = (mgG(z))Lm-
i=1
R .
U,, =2 (mgGQ),
i=1
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The actuator's plane energies are equal to:

{TP =Ty, +Tx, s,
Up=Up, +Up, +Ug,

Ty, =%(mT]u)+mvTv)BA

3
T, =%Z(mTIm+mvTv e, »

i=l

3
T, :%Z(mTIm+mvTv Vs, (24)
i=1

Ug, =(mgG(2) )z,

Up =2 (mgG(2),, -

Ug =2 (mgG2)),

where, g is the gravity acceleration. So, the total energy of
the robot is equal to:

(25)

T =T,+T, +T)
U=U,+U,+U,

According to [13] the equations of motion of the robot by
the Euler-Lagrange method are as follows:

dfaoL | oL 8 o
dt\ o4; | 0q; 26)

i=1,2,..,24

in which, we have:

L=T-U,

X0:Y0:20:Vo:0PosXp>V p> '
A=|ZpVp:0p,0p, 0,1, 0,0 5, 27)
Q1> %2 Qs By Pos Bysbysby by
0,0,0,0,0,0,0,0,0,0,0,0,0, :
:{O,O,O,O,O,Tl,Tz,T3,Fl,FZ,173}

and Q represents the generalized forces, F, represents
the force applied to the actuator i, in the direction of b, ,
and T, represents the torque applied to the actuator i, in the
direction of f3; . In this study, the friction force of Columbus
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was omitted. f, is the relationship between the constraints
obtained from Equation 9. So, based on [13] we have:

daf o) afor-vy) afor |

dt\ o4, | dt\ 0q; dr| oq;

no o |orT |. no o |aor |.

_Z 8'[6'}]]. + .Z 6{6'}11. )

j=1 LIJ' q; j=1 Clj q; (28)
aiLza(T—U)zﬁT ou

0q; dq;  Oq; 86]1-’

o

7k:aki'

6ql-

where we have:

o for )
oG ;\ éd; )V

oU ’

2q, i
. (29)

Skj €] ’Q)Z.Zlcky (CI)qi
1=

Co .. (q)::l amkj +8mki amij }

kij 2" 0q; 0q; Oqy

So, the equation of motion will be as follows:

M()q+S(q,Dq+G(g)+ A" =Q (30)

where M is the mass and inertia matrix. S is the Coriolis
matrix, G is the gravity vector, A is the weight matrix of
Lagrangian coefficients, and Q is the generalized force vector.
M is a positive-definite and symmetric inertia matrix. The
elements of this matrix are bounded since unboundedness
results in singularity and show the region that is not within
the workspace of the robot. Furthermore, M 28 is skew-
symmetric. Eq. (32) is sufficient for inverse dynamic
modeling, but for direct dynamic modeling, the state-space
equation is required. For this purpose, we need to eliminate
the Lagrange coefficients from the equation of motion. In this
regard, the null matrix 4 was obtained using Eq. (12) and the
following definition [15]:

=

a

. - T .
-|X, X[ | -nX

§=NX +NX, — AN=0 31

where N is the null matrix of A. To calculate the derivative
of the null matrix, we can write:

AN=0 - AN+AN=0 —
N=-A"'AN
(32)

A—l _ AT (AAT )—1

Multiplying N” from the left in Eq. (30) and placing the
derivatives q, we have:

N'M(NX, +NX,)+N'SNX_ +N'G =F (33)

where NTin‘:[T1 T, T, F F F3]T . So, Eq.
(30) can be rewritten as follows:

=N'G (34)

It can also be written:

a. M =(N'MN)" =
N'M'N=N'MN=M

b. M-28=2N"MN+N'MN
-2(NMN+N'SN) —
M -2§ = N"MN-2N"SN =
N (M-2S)N —
(M—28) =(N' (M-2S)N) =
N'(M-2S)'N=
~N" (M-28)N = ~(M-28)

(35)

So M is symmetric and M —2S isalso skew-s mmetric.
By selecting the state variables in the form X if(: X! }
, the system state space is:

e o

W=-M"'B8X, +G)

121 =

2- 2- 2- Virtual Work Method

In order to model using the virtual work method, the
forces, and torques applied to the center of mass of the robot
parts were calculated as follows [16]:
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¥ _{Force} _[FE_J{ mg —mv } do
o~ - . )
Torque |, [T, | |lo-ox(wo)], s 95, _J({q’“}
F o= [ mg-mv ] qa, Gs4
B —lo-ox(lo) |, ’ q;,
- - (37)
mg —mv
FL = . g 5
[ lo-ox(o) |,
- o Now, by rewriting Eq. (38) in the matrix form and using
mg —mv Eq. (39), we have:
F, = . .
‘[ Hleo-ex(o) ],
FQ
Using the principle of virtual work, we have: F,,
[ 6q,.5d},.54] .5q], | F |t
T T
5qQ F, +0q,,Fy, + F,
: T T T T (8) T
;(5(1&4[ T, +qXSA[Fi +qx;, FLM. Tqx;, FL[,[ )=0 [5qu ,5qSA F =0—>
FQ
The virtual displacements in Eq. (38) must be consistent F (40)
with the kinematic constraints imposed by the links. Therefore, [ 5qT 5(] B4 +|: 5qT §qr ] T ~0
it is necessary to relate the above virtual displacements to a RA> SA FL RA>ZASA R
set of independent generalized virtual displacements. So, F
using Eq. (12), we have: La
FQ
— u T FBA
qQ_[xgayQ’ZQ5WQ’9Q,¢Q] _>|:F:|:_JT F
7 L,
LBy z[xpayP’ZP,WP’ePa¢P] (39) F,
Ury, = B sy, = b,, qd;, = %> 4, =% '
Table 3. Simulation parameter values
Mark unit value
moving plane radius I, (m) 0.24
base plane radius I, (m) 0.24
above links length 1 (m) 0.33
u
lower links length ]d (m) 0.33
distance of the actuator plane to the center of the prismatic joint h (m) 0.03
r
distance of the base plane to the center of the spherical joint h (m) 0.03
S
moving plane mass m,, (kg) 1.63
mass of the above links m, (kg) 0.88
mass of the lower links m, (kg) 0.88
d
actuator plane mass m,, (kg) 0.09
mass of revolute actuator set mg, (kg) 0.12
mass of prismatic actuator set mg, (kg) 0.56
gravity acceleration g (m/s2) 9.8
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Fig. 6. SimScape model of the CT-3RPRS robot: (a: main model, b: subsystem)

The final form of Eq. (40) will represent the inverse
dynamic equation of the CT-3RPRS robot.

3- Simulation study
Simulation parameter values are listed in Table 3:

3- 1- Model verification:

In this section, modeling of the CT-3RPRS robot is
performed using the SimScape environment of MATLAB
software (The MathWorks, Inc. Natick, MA). By using this
model, verifying the mathematical model is performed. CT-
3RPRS robot SimScape model is shown in Fig. 6.

One of the most significant sources of error in modeling
arises from the inaccurate application of small-scale
velocities within the dynamic equations. To evaluate the
effectiveness of the proposed dynamic model, the accuracy
of its performance is assessed by examining relatively rapid
changes over a short time interval. This approach allows for
a precise measurement of the model’s capability to capture
dynamic behaviors under transient conditions. To verify the

dynamics modeling, the selected paths of the actuators given
in Eq. (41) were used as input to the SimScape model; and
the forces and torques generated in the prismatic and revolute
joints were measured; and compared with the forces and
torques calculated by simulation in MATLAB environment
using virtual work method.

B 1
B, | =Zsin20)| 1],

LA 4 (A1)
b, -4sin(0.5t)

b, |=0.35+0.01| -5sin(t)

| b; 4.5sin(2t)

The results of this analogy are shown in Fig. 7

Fig. 7 illustrates the comparison of forces and torques
obtained from two different simulation approaches: MATLAB
(using the virtual work method) and SimScape. The forces
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Fig. 7. Forces and torques calculated with MATLAB (c) and SimScape (S).

and torques are plotted over a time range of 0 to 10 seconds.
The results demonstrate a high degree of compatibility
between the two methods, indicating the accuracy of the
dynamic model derived using the virtual work method. The
slight discrepancies observed can be attributed to differences
in numerical precision and the estimation techniques used in
MATLAB and SimScape environments.

Fig. 8 presents the percentage error between the forces
and torques calculated using MATLAB (virtual work method)
and SimScape. The error remains within an acceptable range
of approximately 1%, which validates the consistency of the
dynamic model. The minor errors are likely due to the inherent
differences in the numerical solvers and the precision of
inertial matrix calculations in the two software environments.
This figure reinforces the reliability of the proposed dynamic
modeling approach.

3- 2- Forward and inverse dynamics

To simulate forward and inverse dynamics, the inverse
dynamics of the system (extracted using the virtual work
method) were modeled using the path in Eq. (42); and the
generalized forces of the robot were extracted. Then, forward
dynamics were simulated using these generalized forces and
the Euler-Lagrange method. Active and passive positions
were extracted and compared with the expected values.

" 1
B, :%sin@t) 1],
LB

(42)
b, -4sin(0.5t)
b, |=0.39132+0.02| -Ssin(t)
b, 4.58in(2t)
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A summary of the performed process is shown in Fig. 9:

A comparison of desired and forward dynamics trajectory
ofplanes Q, P, and link angles in Figs. 10 and 11 are performed.

Fig. 10 compares the desired trajectories of the link angles
with those obtained from the forward dynamics simulation
using the Euler-Lagrange method. The close alignment
between the desired and simulated trajectories confirms the
accuracy of the forward dynamics model. This comparison
is crucial for validating the mathematical formulation of the
robot’s dynamics, as it ensures that the simulated behavior
matches the expected physical response.

Fig. 11 shows the comparison between the desired
trajectories of planes Q and P and the trajectories generated
by the forward dynamics simulation. The results indicate
a strong agreement between the desired and simulated
trajectories, further validating the accuracy of the dynamic
model. This figure highlights the effectiveness of the Euler-
Lagrange method in predicting the robot’s motion in different
planes.

Fig. 12 displays the actuator forces and torques obtained
from the inverse dynamics simulation using the virtual work
method. The smooth and continuous nature of the forces
and torques, without any abrupt changes or discontinuities,
indicates the robustness and accuracy of the inverse dynamics
model. This smoothness is essential for ensuring stable
and reliable control of the robot’s actuators in practical
applications.

4- Conclusion

This study successfully developed a comprehensive
dynamic model of the novel parallel spatial robot CT-3RPRS,
utilizing both the Euler-Lagrange and virtual work methods.
The model encompassed both kinematic and kinetic aspects
of the robot, providing a complete representation of its
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Fig. 11. Comparison of desired (d) and forward dynamics (FDM) trajectory of planes Q, P.

behavior.  Lagrange multipliers were employed to derive
dynamic equations for the constrained system, ensuring
accurate modeling of the robot’s movement. Rigorous
validation was achieved through analytical and comparative
simulation scenarios within MATLAB, further corroborated
by verification with SimScape. The results demonstrated
excellent compatibility between the MATLAB and SimScape
models, with a negligible error of less than 3% observed in
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the dynamic simulation. Moreover, the dynamic equations
were simulated and compared in direct and inverse scenarios,
revealing strong consistency between the Euler-Lagrange
and virtual work methods. This robust and validated model
provides a valuable foundation for future research on control,
optimization, and trajectory planning for the CT-3RPRS
robot, contributing to its potential applications in various
industrial and robotic domains.
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Fig. 12. Actuator forces and torques from inverse dynamics simulations

Nomenclature
r Radius, m
/ Links length, m
h joint length, m
m mass, Kg
g Gravity acceleration, m/s?
Greek symbols
o Link angle, rad
p Revolute joint angle, rad
/4 yaw angle, rad
o pitch angle, rad
(1)) roll angle, rad
Subscript
o Global coordinates origin
» Actuator plane coordinates origin
0 End-effector coordinates origin

Spherical joint

upper part of the revolute joint
down of the revolute joint
active generalized coordinate
passive generalized coordinate
Links of robot

Number of each parameter
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