| تعداد نشریات | 8 |
| تعداد شمارهها | 431 |
| تعداد مقالات | 5,601 |
| تعداد مشاهده مقاله | 7,209,590 |
| تعداد دریافت فایل اصل مقاله | 6,069,320 |
Zero product determined of abstract Segal algebras | ||
| AUT Journal of Mathematics and Computing | ||
| مقاله 3، دوره 6، شماره 4، 2025، صفحه 311-315 اصل مقاله (353.03 K) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22060/ajmc.2025.23820.1310 | ||
| نویسندگان | ||
| Morteza Essmaili* ؛ Rahmatollah Rajaenejad | ||
| Department of Mathematics, Faculty of Mathematical and Computer Sciences, Kharazmi University, Tehran, Iran | ||
| چکیده | ||
| At the present article, we investigate the notion of zero product determined for category of abstract Segal algebras. Indeed, where $\mathfrak{X}$ is an abstract segal algebra with respect to $\mathfrak{A},$ we prove that under some conditions this notion inherits from $\mathfrak{X}$ to $\mathfrak{A}.$ Applying these results, we obtain some sufficient conditions in which the Fourier algebra $A(\mathfrak{G})$ is zero product determined, when $\mathfrak{G}$ is a locally compact group. | ||
| کلیدواژهها | ||
| Abstract Segal algebras؛ Zero product determined؛ Fourier algebras | ||
| مراجع | ||
|
[1] J. Alaminos, M. Breˇsar, J. Extremera, and A. R. Villena, Maps preserving zero products, Studia Math., 193 (2009), pp. 131–159.
[2] J. Alaminos, J. Extremera, A. R. Villena, and M. Breˇsar, Characterizing homomorphisms and derivations on C ∗ -algebras, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), pp. 1–7.
[3] E. Beckenstein and L. Narici, Continuity of injective basis separating maps, Topology Appl., 153 (2005), pp. 724–734.
[4] M. Breˇsar, Zero product determined algebras, Frontiers in Mathematics, Birkh¨auser/Springer, Cham, 2021.
[5] M. A. Chebotar, W.-F. Ke, P.-H. Lee, and N.-C. Wong, Mappings preserving zero products, Studia Math., 155 (2003), pp. 77–94.
[6] P. Eymard, L’alg`ebre de Fourier d’un groupe localement compact, Bull. Soc. Math. France, 92 (1964), pp. 181– 236.
[7] J. J. Font and S. Hernandez ´ , On separating maps between locally compact spaces, Arch. Math. (Basel), 63 (1994), pp. 158–165.
[8] B. E. Forrest and V. Runde, Amenability and weak amenability of the Fourier algebra, Math. Z., 250 (2005), pp. 731–744.
[9] J. E. Jamison and M. Rajagopalan, Weighted composition operator on C(X, E), J. Operator Theory, 19 (1988), pp. 307–317.
[10] K. Jarosz, Automatic continuity of separating linear isomorphisms, Canad. Math. Bull., 33 (1990), pp. 139– 144.
[11] A. T.-M. Lau and N.-C. Wong, Orthogonality and disjointness preserving linear maps between Fourier and Fourier-Stieltjes algebras of locally compact groups, J. Funct. Anal., 265 (2013), pp. 562–593.
[12] S. M. Manjegani and J. Soltani Farsani, On the Fourier algebra of certain hypergroups, Quaest. Math., 43 (2020), pp. 1513–1525.
[13] V. Runde, Amenable Banach algebras, Springer Monographs in Mathematics, Springer-Verlag, New York, 2020. A panorama.
[14] H. Samea, Essential amenability of abstract Segal algebras, Bull. Aust. Math. Soc., 79 (2009), pp. 319–325.
[15] M. Wolff, Disjointness preserving operators on C ∗ -algebras, Arch. Math. (Basel), 62 (1994), pp. 248–253. | ||
|
آمار تعداد مشاهده مقاله: 200 تعداد دریافت فایل اصل مقاله: 85 |
||