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Abstract: 

 A novel and unified approach is presented for analyzing the free vibration of rectangular nanoplates with 

elastic boundary conditions. The theoretical modeling is achieved using the nonlocal Mindlin plate theory, 

which accounts for the size-dependent behavior of nanoplates, while the artificial spring technique is 

employed to accommodate a wide range of boundary conditions, including classical boundary conditions, 

elastic boundary conditions, and their combinations. The governing equations of motion are derived using 

the virtual displacement principle, followed by the application of the weighted residual method to obtain 

the nonlocal quadratic functional. The Rayleigh-Ritz method, employing Gram-Schmidt polynomial series 

as the admissible displacement functions, is then utilized to solve the eigenvalue problems associated with 

the free vibration of nanoplates. The present approach is validated through a series of comparison and 

convergence studies, which demonstrate its high accuracy and low computational cost. Finally, parametric 

numerical investigations are conducted to elucidate the effects of variations in spring stiffness on the natural 

frequencies of nanoplates. It is shown that the proposed method can easily compute the natural frequencies 

of nanoplates with elastic boundary conditions. 
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1. Introduction 

Nano-scale plates, such as graphene sheets, boron-nitride sheets, gold nanoplates, and silver nanoplates, 

have unlocked a wealth of promising applications in nanoscience and nanotechnology [1,2]. These 

intriguing applications include, but are not limited to, bio and mechanical sensors [3], supercapacitors and 

energy storage systems [4], anti-corrosion coatings [5], electrocatalysts [6] as well as lithium-ion batteries 

[7]. In most of the above-mentioned applications, the precise prediction of the vibrational behavior of 

nanoplates plays a pivotal role since the performance and effectiveness of these nano-scale systems are 

inextricably linked to their mechanical characteristics such as natural frequencies.  

Among numerous continuum theories, including strain gradient theory [8-10], nonlocal elasticity theory 

[11-13], couple stress elasticity theory [14-17] and micromorphic theory [18], Eringen's nonlocal theory of 

elasticity has emerged as the most widely used theory for addressing the size effects. This theory is based 

on the idea that a continuous system is highly interconnected. To address the size-dependent effects and 

incorporate atomic interactions into traditional continuum-based theories, a nonlocal factor is introduced in 

this theory. Peddieson et al. [19] pioneered the application of nonlocal elasticity theory to investigate the 

nonlocality effects on the bending behavior of Euler–Bernoulli nanobeams. Thereafter, this theory has been 

widely employed to analyze the linear and nonlinear bending, buckling and vibration behavior of different 

nano-scale structures, such as nanobeams [20-22], nanoplates [23,24], nanorods [25,26] and nanowires [27, 

28]. 

The free vibration analysis of nanoplates with general boundary conditions (BCs) has received relatively 

less attention compared to one-dimensional nanostructures. However, there are a few studies that have 

provided important findings in this field. In this regard, Lu et al. [29] proposed exact nonlocal solutions for 

the bending and free vibration of the nanoplate with simply supported BCs, using the nonlocal Kirchhoff 

plate (NKP) and nonlocal Mindlin plate (NMP). Afterward, numerous numerical and analytical techniques 

were employed for the nonlocal buckling and vibration analyses of nanoplates. The most commonly used 

numerical methodologies include the Finite element method [30,31], the Galerkin method [32], the 

differential quadrature method [33,34], the Rayleigh-Ritz method [35], the finite strip method [36,37], the 

Chebyshev collocation method [38], the element-free kp-Ritz method [39] and the discrete singular 

convolution method [40]. 

Exact analytical solutions also exist for rectangular nanoplates having at least two parallel simply 

supported BCs. Using the Navier method, researchers have achieved exact solutions for bending, buckling 

and vibration responses of simply-supported nanoplates based on various plate models, including the NKP 

[41], NMP [42], second-order shear deformation model [43], and higher-order plate models [44]. Similarly, 

exact buckling and vibration solutions for nanoplates with Levy-type BCs have been obtained using the 
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NKP [45,46], NMP [47], and higher-order plate models [48]. Furthermore, studies have been conducted on 

nanoplates with non-Levy BCs based on the NKP. Zheng et al. [49] utilized the symplectic superposition 

approach to derive series-based analytic solutions for bending and vibration of nanoplates with a 

combination of clamped/simply-supported BCs. Additionally, Wang et al. [50] presented an iterative 

approach based on the separation-of-variable approach to examine the free vibration of nanoplates with 

general homogeneous BCs. 

In the aforementioned studies concerning the vibration of nanoplates, only classical BCs, namely simply 

supported, clamped, or free BCs, along with their combinations, were taken into account. However, 

classical BCs may not always apply in practical engineering as some unknown elastic constraints may 

appear in the actual situation [51]. Under such conditions, relying only on classical BCs may lead to 

significant errors and inaccuracies in engineering analyses. Hence, the development of a unified and 

efficient formulation capable of addressing nanoplates with general BCs is critical and of paramount 

significance. In the simulation of general boundaries, one of the widely used methods is the artificial spring 

technique, which involves the implementation of distributed artificial springs with suitable stiffness along 

all edges of the nanoplates. Subsequently, the Rayleigh-Ritz method is adopted, and appropriate sets of 

admissible functions such as the modified Fourier series [52], Chebyshev polynomials [53], and Gram-

Schmidt polynomials [54] are chosen to develop a unified solution. Researchers have analyzed the 

accuracy, rate of convergence, and computational efficiency of these three distinct sets of admissible 

functions. Their findings reveal that Chebyshev polynomials and Gram-Schmidt polynomials outperform 

the modified Fourier series substantially in both convergence speed and computational efficiency [55]. 

Furthermore, among these functions, Gram-Schmidt polynomials offer several advantages, such as 

improved matrix conditioning, increased numerical stability, and minimized susceptibility to round-off 

errors. Their efficient computation through recurrence relations also enhances overall performance, making 

them particularly effective for problems with elastic BCs. Although the artificial spring method has been 

utilized for the vibration of classical plates [56-58], its application to nonlocal nanoplates has not yet been 

reported. 

To the best of the author’s knowledge, this study is the first to investigate the vibrations of rectangular 

nanoplates with general elastic BCs using nonlocal elasticity theory, capturing size-dependent effects under 

arbitrary BCs. In the context of NMP theory, the direct formulation of the potential energy functional based 

on constitutive relations is not straightforward. Therefore, this paper introduces the weak forms of the 

equations of motion employing the weighted residual method (WRM) to obtain the nonlocal quadratic 

functional. Furthermore, the displacement components are expanded by the Gram-Schmidt polynomials. 

By combining these expansions with the nonlocal quadratic functional and employing the Rayleigh-Ritz 
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procedure, a standard eigenproblem is developed. The convergence of the proposed method is verified, and 

its accuracy is validated through comparative analysis of the obtained results against those previously 

reported by other researchers in the field. Parametric studies are also conducted to examine the free 

vibration behavior of nanoplates under different classical BCs and elastic restraints BCs as well as their 

combinations. 

1. Theoretical formulations 

1.1. Nanoplate model description 

Consider a rectangular nanoplate with length a, width b and thickness h, as illustrated in Fig 1. Assigning 

coordinates x, y, and z to align with the longitudinal, width, and transverse directions, respectively, a 

Cartesian coordinate system (x, y, z) is introduced and fixed on the middle surface of the nanoplate. Within 

this frame of reference, the component of the deformation of the nanoplate is denoted by w in the transverse 

direction. The material properties of the nanoplate are isotropic with Young’s modulus E, shear modulus 

G, mass density 𝜌, and Poisson’s ratio 𝜈. Along each end of nanoplate, a group of translational springs with 

stiffness wk  and two groups of rotational springs with stiffnesses xk  and 
yk are introduced to simulate the 

classical and non-classical BCs. The desired BCs can be readily achieved by properly assigning the springs 

with appropriate stiffness values. For instance, a clamped BC can be constructed by setting the stiffness 

values of all the springs to an extremely high value. 
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Fig. 1. Schematic plot of a nanoplate: (a) geometry and coordinates, (b) side view with boundary springs. 

1.2. Mindlin plate model 

Based on NMP theory, the strain components (𝜀𝑖𝑗) are given by [59]: 
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where x and 
y  denote the rotation angles of the x-z and y-z planes, respectively. Based on the nonlocal 

theory, the differential constitutive relation is expressed as  2 21 nl l

sl      in which 
nl  and 

l  

represent the nonlocal stress and local stress, respectively, 𝑙𝑠 is the nonlocal factor and ∇2 denotes the 

Laplacian operator and is given by      2 2 2 2 2/. . ./ x y        for a two-dimensional space. The 

nonlocal factor, 0sl e l , is defined by the coupling of a material constant 0e , which is determined through 

experimental methods or atomistic dynamics for each specific material, along with an internal characteristic 

length l, which relates to molecular distances, the lattice parameter, and granular size [60].  

Taking into account Hooke's law and differential model of nonlocal theory, the constitutive equations for 

the nanoplate can be formulated as follows [59]: 

2 2 2 2 2 2

2 2
( ,1 ) ( ), (1 ) ( ), (1 )

1 1

nl nl nl

s xx xx yy s yy yy xx s xy xy

E E
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      (2a) 

            
2 2 2 2 ,(1 ) , (1 )nl nl

s xz xz s yz yzl G l G                                               (2b)                                                                       

By multiplying both sides of Eq. (2a) by z, considering Eq. (1), and integrating over the thickness, we obtain 

the nonlocal moment stress resultants as [59]: 
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where  3 2/ 12 1D Eh   
 

 is the flexural rigidity. Similarly, the nonlocal shear force resultants can be 

obtained by integrating both sides of Eq. (2b) over the thickness, i.e.,  

2 2 2 2(1 ) , (1 ) ,nl nl

s x x s y y

w w
l Q S l Q S

x y
 

   
         

    
                              (4) 

where sS k Gh  and sk  denote the shear correction factor. To derive the differential equations of motion 

in terms of w , x  and 
y , the virtual displacement principle is used together with Eqs. (3a)-(3c) and (4), 

which leads to the following governing equations and BCs for the nanoplate: 
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       (5c) 

and 

0 0 0, , at 0,x nl x nl x nl

w x x x xx y y xyk w Q k M k M x                                 (6a) 

, , at ,xa nl xa nl xa nl

w x x x xx y y xyk w Q k M k M x a                                      (6b) 

0 0 0, , at 0,y nl y nl y nl

w y y y yy x x xyk w Q k M k M y                                (6c) 

, , at ,yb nl yb nl yb nl

w y y y yy x x xyk w Q k M k M y b                                      (6d) 

where 0I h , 
3

2 /12I h , 
0 /x xa

w wk k , 
0 /x xa

x xk k  and 
0 /x xa

y yk k  are the springs' stiffness at the edge 

0 /x x a   and 
0 /y yb

w wk k , 
0 /y yb

x xk k  and 
0 /y yb

y yk k  are the springs' stiffness at the edge 0 /y y b  . 

The derived nonlocal differential equations can easily be reduced to the classical ones by setting 0sl  .  

Assuming modal motion, we express the displacement and rotation fields as:   *, , ( , ) i tw x y t w x y e  , 

  *, , ( , ) i t

x xx y t x y e    and   *, , ( , ) i t

y yx y t x y e   , where   is the natural frequency. For 

convenience and simplification, we introduce the following dimensionless quantities, dropping the 

subscripts * for simplicity:  
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Using Eqs. (5a)-(5c) and (7), the nonlocal dimensionless equations for the vibration analysis of 

nanoplates are obtained as:  
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2. Solution methodology 

In this section, the energy-oriented Rayleigh–Ritz method is applied to examine the vibration behavior 

of nanoplates. This approach involves formulating a quadratic functional whose minimization yields a 

solution that matches the governing equation. Classical elasticity theory utilizes the principle of minimum 

total potential energy to construct the minimization functional. This principle assumes that the stress at a 

given location can be uniquely determined from the strain at that same point [61]. In contrast, the nonlocal 

elasticity theory reveals that the stress at a generic point depends on the stresses within the surrounding 

neighborhood, not just the local strain. As a result, an inverse method is employed here to derive the 

quadratic form of the total potential energy directly from the governing equations, rather than relying on 

the minimum potential energy principle. This inverse approach starts with the governing equations and 

works backwards to obtain the desired quadratic functional form, which can then be minimized to determine 

the vibration solution. 

2.1. Weak formulation 

The partial differential equations expressed in Eqs. (8a)-(8c) represent the strong form of the equations 

of motion for the vibration analysis of nanoplates. In order to establish a weak form of the system of 

equations, one can employ the energy principle or WRM. The WRM is a more general mathematical 
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technique that can be used to approximately solve a wide range of partial differential equations. Based on 

this method, the weak form of equations of motion, given by Eqs. (8a)-(8c), is expressed as follows: 
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 (9) 

where 𝑆 represents the nanoplate domain. By applying integration by parts to Eq. (9), disregarding the 

boundary terms and incorporating potential energies stored in the springs, the following quadratic 

functional for the nanoplate is derived: 

2( , ) ( , ) ( , ) ( , ),spU U T                                                      (10) 
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It can be noted that, by setting 
[*] [*] [*] 0s w x yl k k k      in Eqs. (11a)-(11c), quadratic potential term 
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for the classical Mindlin plates can be retrieved. 

2.2. Admissible displacement functions and Rayleigh-Ritz procedure 

The selection of suitable admissible functions is crucial in the Rayleigh-Ritz method, as the accuracy of 

the solution depends heavily on how well these functions can represent the actual displacement. A major 

advantage of the quadratic functional given in Eq. (10) is that it significantly simplifies the determination 

of admissible displacement functions for the nanoplates. Any set of independent, complete basis functions 

can be utilized to achieve precise results. This is because the geometric BCs in the nanoplate are relaxed 

and enforced through translational and rotational boundary springs, which can be viewed as penalty 

parameters [62]. As a result, there is no explicit requirement to satisfy natural and essential conditions on 

these boundaries when determining the admissible displacement functions in advance. Herein, the Gram-

Schmidt polynomials are introduced as admissible functions. Each of the displacement and rotation 

functions of the nanoplate, regardless of BCs, is stated as [51]: 

1 1

( , ) ( ) ( ),
M N

mn m n

m n

w W P P   
 

                                                                   (12a) 

1 1

( , ) ( ) ( ),
M N

mn m n

m n

P P    
 

                                                                 (12b) 

1 1

( , ) ( ) ( ),
M N

mn m n

m n

P P    
 

                                                                  (12c) 

where M and N are the number of polynomial terms truncated in practical calculation
mnW , mn  and mn  

are corresponding Gram-Schmidt expansion coefficients,  mP   and  nP  denote the mth and nth order 

Gram-Schmidt polynomials for the displacement and rotation components in the interval [0, 1] across   

and   directions, respectively, which are defined as [63]: 

 

 
1 2

0

P ( )
( ) , , , , ,

P ( )
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i d
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                                                  (13) 

where  Pi   is an orthogonal polynomial set of functions. To address classical BCs, the first terms of the 

polynomials should be adjusted within the prescribed BCs. When it comes to general BCs, the first terms 

of the polynomials that meet the free BCs; i.e.,  1P 1  , are utilized. The following terms of the 

polynomial are derived using recursive equations described in [51], as follows:    

2 1 1 1 1P ( ) ( )P ( ), P ( ) ( )P ( ) P ( ), 2i i i i ib b c i                                     (14) 
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in which 
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It is clear that the orthogonality condition is met by the constructed polynomials, i.e., 

1

0

0 if 
P ( )P ( )

1 if 
i j

i j
d

i j
  


 


                                                           (16) 

Substituting Eqs. (12a)-(12c) into Eqs. (11a)-(11d) and minimizing  ,   with respect to unknown 

expansion coefficients, i.e.,  , / 0q     where 
mnq W , mn  and mn , the following set of linear 

equations will be obtained: 

2[ ] , K M q 0                                                                         (17) 

Here,q is a 1 3MN  vector composed of the unknown coefficients as follows: 

 , , ,
T

w  
q = q q q                                                                        (18) 

where 

11 12 1 2{ , , , , , , , , },w

m m mn MNW W W W W W   q                                    (19a) 

11 12 1 2{ , , , , , , , , },m m mn MN

          q                                  (19a) 

11 12 1 2{ , , , , , , , , },m m mn MN

          q                                 (19c) 

K and M denote, in order, stiffness matrix and mass matrix with dimension of 3 3MN MN given by 

, ,

ww w w ww

w

w

 

   

   

   
   

    
   
   

K K K M 0 0

K K K K M 0 M 0

K K K 0 0 M

                                (20) 

where the elements of the above matrices have been provided in the Appendix. Eq. (17) represents a 

standard eigenproblem that can be solved to determine the natural frequencies of the nanoplate. Also, the 

eigenvector q presents the vibration mode shape. We have summarized the solution procedure in the 

flowchart shown in Fig. 2. 
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Fig. 2. Flowchart of the proposed method. 

3. Results and discussion 

This section addresses the proposed model's capabilities in predicting the vibrational frequencies of 

nanoplates with arbitrary BCs. First, the convergence of the Rayleigh-Ritz solutions is investigated in terms 

of the number of polynomial terms used. Next, the efficiency and accuracy of the proposed method for the 

free vibration of nanoplates with classical BCs are verified against existing literature. Finally, a parametric 

study is performed for nanoplates subjected to elastic BCs.  

 

For the sake of brevity, symbolic notations are utilized to define the BCs of the four edges. For instance, 

"CSFS" indicates that BCs at 0  , 1  , 1  , and 0   are clamped, simply-supported, free, and 

simply-supported, respectively. In the calculations, the following material properties are adopted: Young's 

modulus 1.06 TPaE  , density 
32300kg / m  , Poisson's ratio 0.3   and shear correction factor 

0.86667sk  . Additionally, the vibrational behavior of the nanoplate is described through the 

dimensionless frequency parameter 
2 /a h D   , where   is the natural frequency. 

As stated in Section 2, the arbitrary BCs of the nanoplate are enforced through the incorporation of a set 

of continuously distributed translational springs and two sets of rotational springs along each edge of the 

nanoplate. This allows for the simulation of arbitrary BCs by assigning appropriate stiffnesses to the 

boundary springs. In the present study, the vibration frequencies of nanoplates under various BCs are 

determined, including classical BCs such as simply supported (S), clamped (C), and free (F), as well as 

elastic BCs denoted as 
1E , 

2E  and 
3E , and their combinations. The dimensionless spring stiffness 

parameters for the three classical BCs and the three elastic BCs are provided below:  

[*] [*] [*]

0 1 0 1F edge: 0, [*] , , , ,w x yk k k         

[*] [*] 5 [*] [*] [*] 5 [*]

0 1 0 1S edge: 10 , 0, [*] , , 10 , 0, [*] , ,w y x w x yk k k k k k            

[*] [*] [*] 5

0 1 0 1C edge: 10 , [*] , , , ,w x yk k k         
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1 [*] [*] [*]

0 1 0 1E  edge: 0.03, [*] , , , ,w x yk k k         

2 [*] [*] 5 [*] [*] [*] 5 [*]

0 1 0 1E  edge: 10 , 0.03, [*] , , 10 , 0.03, [*] , ,x y w x y wk k k k k k             

3 [*] [*] [*] 5 [*] [*] [*] 5

0 1 0 1E  edge: 0.03, 10 , [*] , , 0.03, 10 , [*] , ,x y w x y wk k k k k k             

It is important to note that the value of the nonlocal factor depends on several parameters, including material 

type, internal characteristic length, boundary conditions, nanoplate dimensions, and mode number. When 

considering graphene sheets as nanoplates, studies have shown that the material constant 𝑒0 for zigzag 

graphene sheets ranges from 3 to 8, as identified through theoretical analysis and molecular dynamics 

simulations in Ref. [64]. Given the C-C bond length of approximately 0.142 nm or the lattice parameter of 

graphene at 0.246 nm, the nonlocal factor value falls within the range of 0 to 2 nm. This range is consistent 

with findings from other studies using molecular dynamics simulations and size-dependent plate models. 

Based on this explanation, we adopt a nonlocal factor range of 0 to 2 nm for this study [65-67]. 

3.1. Convergence analysis 

Given that a finite truncation number of polynomial terms must be used in the displacement expressions 

for practical calculations, the presented method should be regarded as a method with arbitrary accuracy. 

Therefore, it is crucial to thoroughly assess the convergence and numerical robustness of the method’s 

solution. In Table 1, the dimensionless fundamental frequencies of the nonlocal Mindlin nanoplate 

subjected to various classical BCs are listed. In Table 2, the dimensionless natural frequencies of nanoplates 

for higher modes with various classical BCs are presented. The results demonstrate that, with an increase 

in truncation terms, the solutions converge rapidly for all nanoplates with different BCs for fundamental 

frequencies. However, for higher modes, more truncation terms are required to achieve convergence. The 

efficiency of the Gram-Schmidt polynomial series solution in achieving convergence of the natural 

frequencies is evident in the tabulated results in Tables 1 and 2. Considering the high computational cost 

of using large truncation terms, we adopt , 10M N   to achieve adequate convergence in analyzing the 

problem at hand. 

Table 1 Convergence of dimensionless fundamental frequency 1  for nanoplates with various classical BCs 

( , 20 nm, 2 nm, =0.34 nm)sN M a b l h    . 

14N  13N  12N  11N  10N  9N  8N  7N  6N  5N  BCs 

32.196 32.196 32.196 32.196 32.197 32.197 32.200 32.201 32.228 32.229 CCCC 

18.021 18.021 18.021 18.021 18.021 18.021 18.021 18.020 18.023 18.023 SSSS 
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28.585 28.585 28.585 28.585 28.585 28.585 28.588 28.588 28.603 28.606 CSCS 

6.649 6.649 6.650 6.652 6.654 6.656 6.659 6.663 6.671 6.678 CCFF 

14.349 14.349 14.350 14.351 14.352 14.353 14.357 14.360 14.387 14.424 FSFS 

3.269 3.269 3.270 3.271 3.272 3.272 3.273 3.274 3.275 3.276 SSFF 

 

Table 2 Convergence of dimensionless natural frequencies for higher modes 3  and 5  of nanoplates with various classical BCs 

( , 20 nm, 2 nm, =0.34 nmsN M a b l h    ). 

 

BCs 
3  5  

6N   7N   8N   9N   10N   11N   6N   7N   8N   9N   10N   11N   

CCCC 59.14 59.09 58.17 58.16 58.15 58.15 462.18 94.78 90.57 89.88 89.87 89.86 

SSSS 40.39 40.38 40.28 40.28 40.28 40.28 94.22 70.55 70.51 69.67 69.67 69.67 

CCSS 49.44 49.17 48.89 48.88 48.88 48.88 120.03 82.78 81.23 79.59 79.50 79.49 

CSSF 43.15 42.73 42.37 42.35 42.34 42.34 52.33 52.14 51.93 51.91 51.90 51.89 

SFSF 29.27 29.08 29.07 29.06 29.05 29.05 37.98 37.98 37.95 37.85 37.84 37.84 

SSFF 17.04 17.01 17.01 17.01 17.01 17.01 38.74 38.61 38.38 38.37 38.36 38.36 

 
Fig. 3. Sensitivity of the first three dimensionless frequencies to 

0
wk 

 for SFSF ( 20 nm, 0.34 nm, 2 nmsa b h l    ). 

 
To further evaluate the numerical robustness of the Gram-Schmidt polynomial series solution, a 

sensitivity analysis is conducted to assess the impact of the translational spring stiffness 
0

wk 
 on the first 

three dimensionless natural frequencies ( 1 2 3, , )    for SFSF with  

, 10M N  . The sensitivity, defined as 
0d / di wk  , and the relative change, 
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over a range of 
0

wk 
 from 10−4 to 105 using central finite differences. Fig. 3 illustrates the sensitivity, 

showing a high initial value at low 
0

wk 
 (i.e., 10−4) that decreases sharply and levels off toward zero at 

higher stiffness, with no distinct peaks in the range shown. Fig. 4 presents the relative change which 

highlights regions where small stiffness variations cause substantial frequency shifts. These results confirm 

the method’s stability, as sensitivities diminish at extreme stiffness values, and validate the choice of 

, 10M N  for reliable frequency predictions in the SFSF BCs. 

 
 

Fig. 4. Relative change in the first three dimensionless frequencies to 
0
wk 

 for SFSF ( 20 nm, 0.34 nm, 2 nmsa b h l    ). 
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2 nmsl  2 nmsl  1nmsl  0 nmsl  Model BCs 

9.6664 12.2739 14.7348 19.7113 Present 

SSSS 9.6800 12.2912 14.7556 19.7000 
Chakraverty et al. 

[35]  

9.6800 12.2912 14.7556 19.7392 Wang et al. [50] 

16.1401 20.8431 25.5102 35.8231 Present 

CCCC 16.2072 20.9293 25.6182 36 
Chakraverty et al. 

[35]  

16.2207 20.9443 25.6337 35.9990 Wang et al. [50] 

13.5469 17.3515 21.0384 28.8486 Present 

SCSC 13.5914 17.4090 21.1091 29 
Chakraverty et al. 

[35]  

13.5914 17.4090 21.1091 28.9509 Wang et al. [50] 
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3.2. Verification study 

Having established the mathematical model and nonlocal methodology in the preceding section, we now 

proceed to validate the efficiency, reliability and accuracy of the proposed formulation for the free vibration 

analysis of nanoplates. This is achieved by comparing the calculated results obtained using our approach 

with those reported in the existing literature. In the first comparison shown in Table 3, the dimensionless 

fundamental frequencies for nonlocal Mindlin nanoplates with various classical BCs and different nonlocal 

factors are detailed. The comparison reveals that the present solutions match very well with the results 

obtained using the Rayleigh-Ritz method and iterative separation-of-variable method based on the NKP 

model, as reported by Chakraverty et al. [35] and Wang et al. [50], respectively. The negligible 

discrepancies, which do not exceed 0.84% even in the worst case, can be attributed to the use of different 

plate theories and the shear effects in NMP that are not incorporated in NKP. 

In the second comparison, Table 4 lists the first four dimensionless frequencies Ω for the nanostructure 

with various classical BCs. The comparisons are performed between the present results and the extended 

separation-of-variable method reported by Li et al. [59], who used the NMP model. The table demonstrates 

reasonable agreement between the present results and the referential data. 

It should be noted that to validate the theoretical results presented here, experimental methods such as 

Atomic Force Microscopy (AFM) and laser vibrometry, along with other approaches, can be employed as 

well to measure the vibrational characteristics of nanoplates. These methods enable a direct comparison 

with the proposed nonlocal Mindlin plate model. 

Table 4 Comparison of first four dimensionless frequency   for nanoplates with various classical BCs ( 10 nm, =1nma b h  ). 

Mode 
Model (nm)

s
l BCs 

4 3 2 1 

64.0816 50.0221 50.0221 29.3639 Present 
1 

CCCC 
64.0999 50.0369 50.0369 29.3875 Li et al. [59] 

41.2909 34.6404 34.6404 23.3667 Present 
2 

41.3107 34.6552 34.6552 23.3911 Li et al. [59] 

58.0828 43.6915 43.3584 22.9311 Present 
1 

CCSS 
58.0968 43.5326 43.5326 22.9390 Li et al. [59] 

37.7483 30.6447 30.3263 18.4353 Present 
2 

37.7652 30.4946 30.4946 18.4433 Li et al. [59] 

21.0591 17.3548 7.5370 3.3546 Present 
1 CFFF 

20.7710 18.0779 7.5820 3.3938 Li et al. [59] 

11.7139 15.1963 17.9848 22.0982 Present 

FCFC 11.7908 15.2936 18.0585 22.2000 
Chakraverty et al. 

[35]  

11.8124 15.3174 18.0916 22.2244 Wang et al. [50] 
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15.2315 12.9402 6.3923 3.1482 Present 
2 

14.6142 13.8362 6.4317 3.1872 Li et al. [59] 

42.6727 38.2263 24.6598 14.9680 Present 
1 

CSSF 
42.6979 38.2862 24.6806 15.0125 Li et al. [59] 

28.1448 27.2371 18.2618 12.7175 Present 
2 

28.1623 27.3027 18.2837 12.7577 Li et al. [59] 

41.5970 32.0821 22.4735 10.7127 Present 
1 

SSSF 
41.5791 32.0754 22.4660 10.7110 Li et al. [59] 

27.5472 23.1916 16.7286 9.2365 Present 
2 

27.5403 23.1836 16.7219 9.2348 Li et al. [59] 

28.7161 16.3845 14.4873 3.2007 Present 
1 

SSFF 
28.9499 15.6062 15.6062 3.2156 Li et al [ .59]  

20.1256 12.7347 11.0253 2.9734 Present 
2 

20.3908 12.0187 12.0187 2.9877 Li et al [ .59]  

30.7660 27.0518 13.9675 9.0048 Present 
1 

SFSF 
30.7632 27.0435 13.9580 9.0045 Li et al. [59] 

22.5160 18.6238 11.2459 7.9771 Present 
2 

22.5127 18.6172 11.2374 7.9768 Li et al. [59] 

3.3. Parametric study 

The developed methodology, following comprehensive convergence and validation analyses, is 

employed to determine the impacts of boundary spring stiffness and the nonlocal factor on the free vibration 

of the nanoplates. Fig. 5 shows the 1
st

, 2
nd

 and 3
rd

 dimensionless frequencies against boundary spring 

stiffness. The nanoplate under consideration has completely free boundaries at 0   and 1  , while the 

0   boundary is clamped. At the 1  edge, the nanoplate is elastically supported by a single set of 

spring components, with stiffnesses ranging from 
810
 to 

510 . Examining Fig. 5 reveals that the 

dimensionless frequencies remain relatively constant as long as the stiffness parameters of the boundary 

springs are less than 
310
. This low stiffness regime indicates that the boundary at 1   behaves like a 

free edge, as long as the stability of the proposed methods is maintained. In this case, the springs provide 

negligible resistance which allows vibrations to be governed by the nanoplate's properties. However, a 

distinct change occurs as the stiffness parameters are increased beyond that threshold. In this regime, the 

dimensionless frequencies begin to rise sharply. Notably, once the stiffness parameters surpass 
310 , the 

dimensionless frequencies approach a maximum value and remain unchanged. In this high stiffness regime, 

the boundary at 1   acts as a clamped edge, with the springs fully constraining displacements and 

rotations, stabilizing the vibrational modes. 

To further demonstrate the effects of stiffness parameters on the dimensionless natural frequencies, we 

have plotted the dimensionless fundamental frequency against the boundary spring stiffness in Fig. 6. This 
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figure shows the development of the first three dimensionless frequencies as the stiffnesses of the 

translational and rotational artificial springs at the boundaries vary from zero (free edge at 1  ) to infinity 

(clamped edge at 1  ). It is important to note that the same BCs mentioned earlier are applied in this 

figure as well. The key observation from Fig. 6 is that when the spring stiffness value exceeds 
210 , the 

natural frequencies of the nanoplate converge to a fixed value. This convergence reflects a clamped-like 

behavior at 1  , where high spring stiffness restricts all boundary motion, with rotational springs having 

a more pronounced effect on higher frequencies.  

 

Fig. 5. The first three dimensionless frequencies versus boundary springs stiffness ( 10 nm, 0.34 nm, 2 nmsa b h l    ). 

 

Fig. 6. Surface plot of the first three dimensionless frequencies versus boundary springs stiffness (

10 nm, =0.34 nm, =2 nm, = ys xa b h l k k   ). 

 

In another study, the dimensionless fundamental frequencies of the nanoplates with various classical-

elastic combined BCs are presented in Table 5. The table examines nine sets of BCs, including the F F, 
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S S  , and C C   conditions, where   denotes 
1,E 2 ,E  and 

3E . Analysis of the data in Table 5 

reveals that 
1 1E FE F  BCs are associated with the lowest fundamental frequencies, while 

3 3E CE C

conditions correspond to the highest frequencies. Furthermore, the influence of the nonlocal factor is 

observed to be minimal for 
1 1E FE F  case, but it has the most substantial impact on 

3 3E CE C  conditions. 

 

Table 5 The dimensionless fundamental frequency 1  for nanoplates with various classical-elastic combined BCs (

10 nm, 0.34 nma b h   ). 

 

  

 

 

 

 

 

 

Given the importance of the nonlocal factor and its effects on the vibrational analysis of nanoplates, we 

have plotted the dimensionless fundamental frequencies against the nonlocal factor in Fig. 7 for various 

classical-elastic BCs. The predicted results show that, for all the considered BCs, the fundamental 

frequencies decrease as the nonlocal factor increases. However, the degree of this frequency reduction 

varies depending on the specific BCs. Nanoplates with CCCC and 
3 3 3 3E E E E  BCs exhibit a more 

pronounced sensitivity to the increase in the nonlocal factor, compared to the 
1 1 1 1E E E E  and 

2 2 2 2E E E E  

cases. Additionally, it is observed that when the nonlocal factor is zero, the fundamental frequencies for the 

SSSS BCs are greater than those for 
1 1 1 1E E E E  and 

2 2 2 2E E E E  cases. However, as the nonlocal factor 

increases, the discrepancies among these BCs diminish. In fact, when the nonlocal factor exceeds 1.1 nm, 

the fundamental frequencies for SSSS BCs become higher than those for 
1 1 1 1E E E E  and 

2 2 2 2E E E E  cases. 

3 3E CE C 2 2E CE C 1 1E CE C 3 3E SE S 2 2E SE S 1 1E SE S 3 3E FE F 2 2E FE F 1 1E FE F (nm)sl
 

34.8616 31.7915 30.5639 27.8578 23.9363 22.3634 21.1194 12.0588 11.9178 0 

33.8795 31.1362 29.9736 27.1398 23.5082 21.9935 20.8085 12.0450 11.9028 0.5 

31.3559 29.3543 28.3606 25.2759 22.3360 20.9747 19.9480 12.0027 11.8569 1 

28.1510 26.8911 26.1034 22.8688 20.6915 19.5286 18.7132 11.9285 11.7765 1.5 

24.9485 24.2219 23.6198 20.4176 18.8681 17.9017 17.2974 11.8165 11.6556 2 
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Fig. 7. The dimensionless fundamental frequency versus nonlocal factor for various classical and elastic BCs 

( 10 nm, 0.34 nm)a b h   . 

4. Conclusions 

This paper presents a unified approach for the free vibration analysis of nonlocal Mindlin nanoplates 

using the weighted residual method based on the artificial spring technique. The study employed the Gram-

Schmidt polynomial series as admissible displacement functions and applied the Rayleigh-Ritz method to 

solve the eigenvalue problems for the vibration of nanoplates with arbitrary BCs. The proposed method 

was validated by comparing the numerical results with existing literature. The study investigated the 

vibrational frequencies of nanoplates under various classical BCs, elastic BCs, and their combinations, and 

examined the effects of the spring stiffness parameters on the vibration characteristics. The main findings 

of this work are summarized as follows: 

1. The proposed method effectively computes the natural frequencies of nanoplates with arbitrary 

BCs, including classical BCs, elastic BCs, and their combinations, while capturing size-dependent 

behavior at the nanoscale. 

2. The fundamental frequency of the nanoplates converges rapidly with an increasing number of 

truncation terms for various BCs; however, for higher modes, more truncation terms are required 

to achieve accuracy. 

3. For a specific BC, a sensitivity analysis indicates that the natural frequencies are highly sensitive 

to translational spring stiffness at very low values, which stabilizes as the stiffness increases, 

confirming the stability and reliability of the proposed method. 

4. The impact of the rotational spring parameters is more pronounced on the second and third 

dimensionless natural frequencies compared to the first dimensionless natural frequency. 
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5. The nonlocal factor has a minimal impact on the dimensionless fundamental frequency of 

nanoplates with 
1 1 1 1E E E E  and 

2 2 2 2E E E E  elastic BCs, whereas its influence is more pronounced 

for those with CCCC, SSSS, and 
3 3 3 3E E E E   BCs. 

The novel technique introduced in this study enables bending, vibration, and buckling analyses of 

nanostructures, such as nanoplates, nanoshells and circular nanoplates, using advanced nonlocal continuum 

models. Furthermore, the current model is limited to linear vibration analysis, suitable for small-amplitude 

oscillations. Nanoplates may exhibit nonlinear geometric and material behavior in practical applications. 

Investigating nonlinear vibrational characteristics with elastic BCs, including geometric nonlinearity, 

nonlinear boundary stiffness, and amplitude-dependent frequencies, presents an exciting avenue for future 

research. 

Appendix 

This appendix provides the entries of the matrices K and M for the nanoplate with arbitrary BCs. In 

order to simplify and clarify the expressions, two indexes are pre-defined: 

( 1) , ( 1) ,s N i k q N j l                                                                  (A.1) 

where 𝑖, 𝑗 𝜖[1, 𝑀] and 𝑘, 𝑙 𝜖[1, 𝑁]. 

The entries of the stiffness matrix K are computed using the following formulations: 

 
0

0 1

1

1 1 1 1
2

0 0 0 0

1 1 0

100 0

1

( )( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

jww i k l
sq k l i j

w k l

k l w i j w i j i j

w k l

dPdP dP dP
d P P d P P d d

d d d d

k P P

P P d k P P k P P P P d
k P P



 

 



  
        

   

 
         

 







   
     

  


  



   

 

K

,



 


  

(A.2) 

1 1

0 0

( )
( ) ( ) ( ) ,w i

sq j k l

dP
P d P P d

d

 
    



 
   

 
 K                                            (A.3) 

1 1

0 0

( )
( ) ( ) ( ) ,w k

sq i j l

dP
P P d P d

d

 
     



 
   

 
 K                                      (A.4) 

A
C
C
E
P
T
E
D
 M

A
N

U
S
C
R
IP

T



21 

 

0

1

2
1 1 1 1

0 0 0 0

1 1 1 0

0 0 0

1

1

0

( ) ( )(1 )
( ) ( ) ( ) ( ) ( ) ( )

2

( ) ( )( )( )
( ) ( ) ( ) ( )

( ) ( )

k l
sq i j k l i j

x i j
ji

k l k l

x i j

i

dP dPD
P P d P P d P P d d

d d

k P PdPdP
D d P P d P P d

d d k P P

P











  
         

 

 
      

   





 
   

 

 
          

 

   

  



K

 0 1

10
( ) ( ) ( ) ( ) ( ) ( ) ,j x k l x k lP d k P P k P P

 


      




   (A.5) 

0

1

1 1 1 1
2

0 0 0 0

1 1 1 0

0 0 0

1

1

0

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )( )(1 )
( ) ( ) ( ) ( )

2 ( ) ( )

(

k l
sq i j k l i j

y i j
ji

k l k l

y i j

i

dP dP
P P d P P d D P P d d

d d

k P PdPdPD
d P P d P P d

d d k P P

P











 
          

 

 
      

   





 
   

 

 
         

 

   

  



K

 0 1

10
) ( ) ( ) ( ) ( ) ( ) ,j y k l y k lP d k P P k P P

 


      




        (A.6) 

1 1

0 0

1 1

0 0

( ) ( )
( ) ( )

( ) ( )(1 )
( ) ( )

2

i l
sq j k

j k
i l

dP dP
D P d P d

d d

dP dPD
P d P d

d d

  
    

 

  
   

 

   
    

   

   
   

  

 

 

K

                               (A.7) 

1 1

0 0

( )
( ) ( ) ( ) ,

jw

sq i l k

dP
P d P P d

d




    


 
   

 
 K                                          (A.8) 

1 1

0 0

( )
( ) ( ) ( ) ,w l

sq j i k

dP
P P d P d

d

 
     



 
   

 
 K                                          (A.9) 

1 1

0 0

1 1

0 0

( ) ( )
( ) ( )

( ) ( )(1 )
( ) ( ) ,

2

j k
sq i l

i l
j k

dP dP
D P d P d

d d

dP dPD
P d P d

d d


 

    
 

  
   

 

   
    

  

   
   
   

 

 

K

                                   (A.10) 

and the entries of the mass matrix M are computed based on the following formulations: 
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