| تعداد نشریات | 8 |
| تعداد شمارهها | 440 |
| تعداد مقالات | 5,679 |
| تعداد مشاهده مقاله | 7,810,322 |
| تعداد دریافت فایل اصل مقاله | 6,386,933 |
Evaluation of Lightning Multiple Strokes Nature on Aircraft Avionic Equipment Performance Based on TLM | ||
| AUT Journal of Electrical Engineering | ||
| مقاله 6، دوره 57، شماره 3، 2025، صفحه 485-498 اصل مقاله (1.98 M) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22060/eej.2025.23758.5633 | ||
| نویسندگان | ||
| Hamed Neyshabouri* 1؛ Mohsen Niasati2 | ||
| 1Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran | ||
| 2Department of Electrical Engineering, National University of Skills ( NUS ), Tehran, Iran | ||
| چکیده | ||
| The phenomenon of lightning is a highly intricate natural occurrence characterized by the rapid discharge of electricity in the atmosphere. Understanding the intricacies of lightning encompasses a range of scientific disciplines, including meteorology, physics, power engineering, and environmental science. Lightning inductive effects can result in undesired operation of the avionic equipment and endanger flight safety. This paper analyzes the multiple-stroke nature of an actual flash for evaluating the indirect effects properly, such as coupling into the interior equipment of an aerospace vehicle. To the best of our knowledge, subsequent strokes in the flash tend to have a higher rate of rise and lower crest amplitudes, compared to the initial stroke. The metallic aircraft structure acts as a full Faraday cage, while composite materials can decrease the electromagnetic shielding efficiency of the original metal body. The time domain finite element analysis based on the transmission line model method is regarded as a numerical technique to solve field problems by implementing circuit equivalents. The objective of this study is to examine the characteristics associated with lightning strikes by the MIL-STD-464A standard. It also aimed to simulate the induced current in coaxial cables, surface current density, and electric and magnetic field strength by integrating Matlab and CST software. | ||
| کلیدواژهها | ||
| Lightning؛ Subsequent Strokes؛ Avionic؛ Composite؛ Coaxial Cable | ||
| مراجع | ||
|
[1] V. Kumar et al., “Factors affecting direct lightning strike damage to fiber reinforced composites: A review,” Compos. Part B Eng., vol. 183, p. 107688, Feb. 2020, doi: 10.1016/J.COMPOSITESB.2019.107688. [2] W. Adyatma, S. Hidayat, and R. Zoro, “Tropical Lightning Damage on Commercial Aircraft,” in 2021 IEEE Aerospace Conference (50100), 2021, pp. 1–9. doi: 10.1109/AERO50100.2021.9438346. [3] X. Ma, F. Wang, Z. Wang, Y. Li, and B. Xu, “Thermal dynamic damage of aircraft composite material suffered from lightning channel attachment based on moving mesh method,” Compos. Sci. Technol., vol. 214, p. 109003, Sep. 2021, doi: 10.1016/J.COMPSCITECH.2021.109003. [4] F. Padoan, D. Clark, A. Haddad, C. Karch, and P. Westphal, “Initiation of Electrical Discharge at the Triple Junction of the Lightning Protection of an Aircraft Radome,” IEEE Electr. Insul. Mag., vol. 39, no. 1, pp. 6–16, 2023, doi: 10.1109/MEI.2023.9999633. [5] H. Neyshabouri and M. Niasati, “Transient investigations on lightning overvoltages applied on oil tanks roof considering grounding configurations,” Electr. Eng., vol. 104, no. 4, pp. 2437–2447, 2022, doi: 10.1007/s00202-021-01452-w. [6] Y. S. Kang, S. W. Park, J. S. Roh, and R. S. Myong, “Computational Investigation of Effects of Expanded Metal Foils on the Lightning Protection Performance of a Composite Rotor Blade,” Int. J. Aeronaut. Sp. Sci., vol. 22, no. 1, pp. 203–221, 2021, doi: 10.1007/s42405-020-00288-1. [7] W. Matsunaga, S. Imai, Y. Mizutani, T. Yasuoka, and A. Todoroki, “Estimation of the moisture absorption rate of carbon fiber reinforced plastic using electromagnetic induction testing,” Compos. Part A Appl. Sci. Manuf., vol. 177, p. 107934, Feb. 2024, doi: 10.1016/J.COMPOSITESA.2023.107934. [8] U. Alkasi, “Analysis and Comparison of Lightning Indirect Effects in Aluminum, Composite Fiber Reinforced Plastic and Expanded Copper Foil embedded CFRP Aircraft with EMA3D,” in 2023 7th International Electromagnetic Compatibility Conference (EMC Turkiye), 2023, pp. 1–8. doi: 10.1109/EMCTurkiye59424.2023.10287521. [9] S.-Y. Kim, J.-S. Park, and W.-S. Lee, “Development and verification of indirect lightning-induced transient protection circuit for avionics system,” Appl. Comput. Electromagn. Soc. J., vol. 36, no. 6, pp. 670–675, 2021, doi: 10.47037/2020.aces.j.360608. [10] J. Jo, Y. Kim, D. Kim, H. Lee, and R. S. Myong, “Effect of Shielding and Drain Wire on Lightning-Induced Currents in Rotorcraft Cables,” IEEE Trans. Electromagn. Compat., vol. 64, no. 6, pp. 2015–2023, 2022, doi: 10.1109/TEMC.2022.3198697. [11] H. P. Rimal et al., “Protection From Indirect Lightning Effects for Power Converters in Avionic Environment: Modeling and Experimental Validation,” IEEE Trans. Ind. Electron., vol. 68, no. 9, pp. 7850–7862, 2021, doi: 10.1109/TIE.2020.3013794. [12] M. Wyatt, D; & Tooley, Aircraft Electrical and Electronic Systems, 2nd ed. Routledge, 2018. doi: 10.1201/9780429504228. [13] T. Akay and C. Tarhan, “The effect of global warming and climate changes on aircraft accidents between 2010-2022,” Aircr. Eng. Aerosp. Technol., vol. ahead-of-p, no. ahead-of-print, Jan. 2023, doi: 10.1108/AEAT-03-2023-0081. [14] L. Nikšić and E. Arıkan Öztürk, “Analysis of ATC-related aviation accidents and incidents,” Aircr. Eng. Aerosp. Technol., vol. 95, no. 6, pp. 890–898, Jan. 2023, doi: 10.1108/AEAT-03-2022-0078. [15] STD MIL, 464 A Electromagnetic Environmental Effects Requirements for systems. US Department of Defense, 2002. [16] L. Chemartin et al., “Direct Effects of Lightning on Aircraft Structure Analysis of the Thermal, Electrical and Mechanical Constraints,” Aerosp. Lab, no. 5, pp. 1–15, 2012, [Online]. Available: httpshal.sciencehal-01184416 [17] P. Lalande and A. Delannoy, “Numerical Methods for Zoning Computation,” Aerosp. Lab, no. 5, pp. 1–10, 2012, [Online]. Available: https://hal.science/hal-01184414 [18] H. Neyshabouri and M. Niasati, “Analysis of the electromagnetic effects on the large floating roof oil tanks by nearby lightning strike based on TLM,” J.Electrostat., vol. 129, no. 4, pp. 103927, 2024, doi: 10.1016/j.elstat.2024.103927. [19] A. Broc et al., “A lightning swept stroke model: A valuable tool to investigate the lightning strike to aircraft,” Aerosp. Sci. Technol., vol. 10, no. 8, pp. 700–708, Dec. 2006, doi: 10.1016/J.AST.2005.10.008. [20] CST, Reference Manual. Computer Simulation Technology. GmbH, 2020. [21] J. S. L. Colqui, L. C. T. Eraso, P. T. Caballero, J. P. Filho, and S. Kurokawa, “Implementation of Modal Domain Transmission Line Models in the ATP Software,” IEEE Access, vol. 10, pp. 15924–15934, 2022, doi: 10.1109/ACCESS.2022.3146880. [22] M. N. Sadiku, Numerical Techniques in Electromagnetics with MATLAB, Third Edit. CRC press, Boca Raton, 2009. doi: https://doi.org/10.1201/9781315222622. [23] J. S. Odeyemi, A. Vukovic, T. M. Benson, and P. D. Sewell, “A Complex Domain Mapping of the SCN for an Effective PML Implementation in TLM,” IEEE Open J. Antennas Propag., vol. 1, pp. 126–135, 2020, doi: 10.1109/OJAP.2020.2986293. [24] O. Gassab et al., “Transmission Line Modeling and Crosstalk Analysis of Multibraided Shielded TWP/Twinax Cables,” IEEE Trans. Electromagn. Compat., vol. 64, no. 5, pp. 1560–1573, 2022, doi: 10.1109/TEMC.2022.3179512. [25] M. Moumou, S. El Adraoui, K. Mounirh, M. Kanjaa, and M. Khalladi, “Efficient ADE-TLM scheme for modeling Drude based graphene in terahertz spectrum,” Prog. Electromagn. Res. Lett., vol. 112, pp. 119–126, 2023, doi: 10.2528/pierl23060904. [26] M. Apra, M. D’Amore, K. Gigliotti, M. S. Sarto, and V. Volpi, “Lightning Indirect Effects Certification of a Transport Aircraft by Numerical Simulation,” IEEE Trans. Electromagn. Compat., vol. 50, no. 3, pp. 513–523, 2008, doi: 10.1109/TEMC.2008.927738. [27] M. Zhang and Z. Huang, “Transient current burst analysis induced in cable harness due to direct lightning strike on aircraft,” in 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010, pp. 1197–1200. doi: 10.1109/APEMC.2010.5475508. [28] F. S. Wang, X. S. Yu, S. Q. Jia, and P. Li, “Experimental and numerical study on residual strength of aircraft carbon/epoxy composite after lightning strike,” Aerosp. Sci. Technol., vol. 75, pp. 304–314, Apr. 2018, doi: 10.1016/J.AST.2018.01.029. [29] K. Patra, S. Cheruvalath, S. Dhar, B. P. Nayak, A. Gupta, and J. Hansen, “Surrogate Modeling for Predicting Shielded Cable Emissions,” IEEE Trans. Electromagn. Compat., vol. 65, no. 1, pp. 249–256, 2023, doi: 10.1109/TEMC.2022.3225631. [30] K. Santos et al., “Evaluation of Surface Transfer Impedance of Coaxial Cables,” IEEE Lat. Am. Trans., vol. 18, no. 03, pp. 598–603, 2020, doi: 10.1109/TLA.2020.9082732. [31] O. Gassab, S. Bouguerra, L. Zhou, and W.-Y. Yin, “Efficient Analytical Model for the Transfer Impedance and Admittance of Noncoaxial/Twinax Braided–Shielded Cables,” IEEE Trans. Electromagn. Compat., vol. 62, no. 6, pp. 2725–2736, 2020, doi: 10.1109/TEMC.2020.2996204. [32] P. Hu et al., “Measurement Techniques for Electromagnetic Shielding Behavior of Braided-Shield Power Cables: An Overview and Comparative Study,” Meas. Sci. Rev., vol. 19, no. 5, pp. 213–221, 2019, doi: doi:10.2478/msr-2019-0028. [33] M. Schoeman, E. A. Attardo, and J. S. Castany, “Recent Advances to the Feko Integrated Cable Harness Modeling Tool,” in 2019 International Symposium on Electromagnetic Compatibility - EMC EUROPE, 2019, pp. 1071–1075. doi: 10.1109/EMCEurope.2019.8871980. [34] C. A. Balanis, Advanced Engineering Electromagnetics. Hoboken, NJ: Wiley, 2012. | ||
|
آمار تعداد مشاهده مقاله: 299 تعداد دریافت فایل اصل مقاله: 185 |
||