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Abstract 

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurological disorder with no fully effective 

treatment currently available. In this study, a novel tensor-based feature reduction method, Higher 

Order Spectral Regression Discriminant Analysis (HOSRDA), is proposed to enhance Brain-

Computer Interface (BCI) performance in individuals with ALS. HOSRDA extends the principles 

of Spectral Regression Discriminant Analysis (SRDA) to handle multi-dimensional EEG data, 

effectively addressing the challenges of high-dimensionality and ill-conditioned scatter matrices 

in the analysis of P300 speller data. This method reduces the dimensionality of EEG signals while 

preserving class separability, enabling efficient classification using Linear Discriminant Analysis 

(LDA). Furthermore, HOSRDA leverages a regression framework to address the computationally 

expensive eigenvalue decomposition of scatter matrices, a challenge faced by traditional methods 

like HODA, significantly improving computational efficiency. Experiments conducted on EEG 

data from five ALS patients show that the HOSRDA-LDA model achieves an average character 

detection accuracy of 84.04%, demonstrating its potential for real-time BCI applications. 

Compared to traditional methods such as LDA without feature reduction and Support Vector 

Machine (SVM), HOSRDA outperforms in terms of classification accuracy and computational 

efficiency, with significantly reduced training times. The HOSRDA method converges in an 

average of 2.04 seconds over three repetitions, making it highly suitable for online BCI systems. 

These findings suggest that HOSRDA can improve the accessibility and usability of BCIs for ALS 

patients, with potential applications extending to broader clinical and real-world settings, without 

the need for time-consuming training sessions or considering factors like literacy. 

Keywords: Brain-computer interface, P300 speller , Higher Order Spectral Regression Discriminant Analysis 

(HOSRDA), Amyotrophic Lateral Sclerosis (ALS), signal processing 
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The ability to communicate with the surrounding environment, both verbally and behaviorally, is 

largely dependent on muscle control[1]. In a considerable number of disorders, including motor 

neuron diseases (MNDs), this control is weakened or lost. MNDs are a group of progressive 

neurological disorders that destroy motor neurons, which control the activity of skeletal muscles 

such as walking, breathing, speaking, and swallowing. This group includes some disorders such 

as amyotrophic lateral sclerosis (ALS), progressive bulbar palsy (PBP), primary lateral sclerosis 

(PLS), progressive muscular atrophy(PMA), spinal muscular atrophy(SMA), polio and post-polio 

syndrome (PPS), and infantile paralysis[2]. ALS is a progressive neurological disorder that causes 

muscle weakness and deterioration. This disorderprogresses gradually and ultimately leads to the 

patient's death. The exact cause of this disorderis still unknown, but some studies have shown that 

genetic, environmental, and immune factors may play a role in its development[2]. In some cases, 

ALS symptoms begin with weakness in specific parts of the body, such as hands or feet[3].Recent 

studies indicate that approximately 3 to 8 individuals per 100,000 people worldwide are diagnosed 

with ALS each year[4].  

Brain-computer interface (BCI) systems use neurophysiological signals as input commands to 

control external devices, disregarding motor output and directly transmitting messages from the 

brain to the computer. Despite the advantages that BCI systems provide, they have shown 

limitations that include technical and psychological problems, which hinder obtaining optimal 

performance with each individual[5](Figure 1). 

 

Figure 1. The process that occurs when using a brain-computer interface (BCI) 
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Unfortunately, communication is just one of the problems in patients withALS. In fact, a wide 

range of cognitive impairments in the intermediate to severe stages of the disorder has been 

reported in these patients. The problem arises from the difficulty in performing a standard 

cognitive battery, which is usually done through tests and self-reports. Clinical evidence shows 

that sometimes it is almost impossible to accurately assess patients with these tools[6]. The goal 

of many studies is to provide communication tools that can improve the quality of life of these 

individuals. BCI systems are a technology that can analyze brain signals for communication with 

the external environment. For example, controlling a typing robot, controlling a wheelchair to 

navigate to a desired location, designing care and rehabilitation, and treatment are some examples 

that this technology can manage[7]. 

Despite the various methods available for measuring brain activity, almost 80% of used BCI 

systems are based on electroencephalography (EEG). Specifically, cognitive processes are 

measured using the average activity of dendritic currents over time using electrodes placed on the 

scalp with standard settings. In other words, by using single-task experiment settings, specific 

patterns of individual brain activity can be extracted using EEG analysis by BCI systems[8]. 

Invasive BCIs use the amplification of one or more neurons and local field potentials, which is 

usually used for severe or unresponsive disorders due to associated risks. EEG monitoring is one 

of the most popular measurement tools in BCI applications due to its non-invasiveness, portability, 

and relatively low cost [9-11].  

Event-related potentials (ERP)-based visual BCI is one of the popular BCIs and has received 

attention[12]. Non-invasive BCIs focus on various parameters of EEG such as frequency 

oscillation components or brain evoked potentials such as P300, or steady 

state visual evoked potential (SSVEP)[9]. P300 is a positive deviation that reflects brain activity 

and provides the extracted pattern in the brain[13]. One of the most famous ERP-based visual BCIs 

is an oddball pattern speller, which was first introduced by Farwell and Donchin in 1988. In this 

method, the user focuses on target stimuli that are randomly presented with a sequence of non-

target stimuli, and the brain response, P300 event-related potential, is recognized[12]. P300 is a 

positive deviation that occurs about 250 to 500 milliseconds after an unusual event. However, the 

time of this response varies depending on factors such as age, task design, and neurological 

condition. Factors that affect this delay can also reduce BCI performance and make these systems 
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ineffective or impractical for end-users[13]. However, dissatisfaction among participants has 

increased because patients have to spend more time and tolerate multiple repetitions to increase 

system efficiency. To overcome these challenges, researchers need to strike a reasonable balance 

between time, cost, accuracy, and complexity in designing P300 detection methods[14, 15]. In 

addition, recent observations show that P300 responses directly affect tissue learning and updating 

processes as well as memory work processes, classification certainty, and conscious 

processing[16-22]. 

Tensor decomposition, as a data analysis method, is much more flexible than matrix-based 

approaches and is very useful for designing BCIs. Therefore, this study assessed tensor-based 

methods and the accuracy and speed of classification in these methods to reduce analysis time for 

ALS patients to use BCIs in the real world without the need for time-consuming training sessions 

for users and the ability for all users to use them regardless of language and literacy level. 

What We Will Present 

In our proposed approach, dimensionality reduction and feature extraction will be carried out using 

tensor-based methods to reduce computational complexity, ensuring high classification accuracy 

and computational efficiency. The goal is to eliminate training sessions while maintaining high 

classification accuracy and utilizing Brain-Computer Interfaces (BCI) for the general public, 

regardless of age, gender, literacy level, or disease progression. This gap is what we aim to address 

with our approach. An LDA (Linear Discriminant Analysis) classifier is employed to reduce 

computational complexity. 

In the second section, previous research in this field will be discussed. The third section will 

examine the challenges and limitations ahead. The fourth section will cover data recording 

methods, the participants involved in the study, and the proposed methods. Section five will 

present the results along with an analysis. The findings will be discussed and compared with 

previous works in section six, and finally, section seven will provide the conclusion. 

2.Related Work 

In many studies, efforts have been made to use tensor-based methods for dimensionality reduction 

and feature extraction, yielding significant results. Brain-Computer Interfaces (BCIs) based on the 

P300 component rely on the detection of event-related potentials (ERPs) in 

electroencephalographic (EEG) signals. has been extensively used for various applications, 
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including communication, control, and rehabilitation. Feature extraction is a critical step in the 

design of efficient BCIs, as it determines the quality of the data fed into classification algorithms. 

Traditional feature extraction methods often flatten EEG data, potentially losing spatial, temporal, 

and inter-trial relationships. Tensor-based feature extraction methods preserve these multi-

dimensional structures, offering a powerful alternative for processing P300 data[23-26]. 

EEG signals are naturally multi-dimensional, encompassing spatial (electrodes), temporal (time 

points), and experimental (trials or conditions) domains. Traditional feature extraction methods 

often involve concatenating these dimensions into a single vector, potentially discarding 

interrelationships. Recent research advocates for tensor representations to address this limitation. 

For instance, Cong et al. (2015) emphasized the utility of tensor decomposition in preserving the 

spatial and temporal dependencies inherent in EEG signals. They demonstrated that tensor 

representations could improve the accuracy of feature extraction and classification in ERPs[27-

29]. 

Several tensor decomposition methods have been explored in P300 BCIs: 

CANDECOMP/PARAFAC (CP) Decomposition: CP decomposition represents a tensor as a sum 

of rank-one components, enabling the isolation of key spatiotemporal features. Lotte et al. (2018) 

applied CP decomposition to extract discriminative features from P300 signals, reporting 

significant improvements in classification accuracy[30]. 

Tucker Decomposition: This method generalizes principal component analysis (PCA) to tensors, 

capturing core spatiotemporal patterns while reducing dimensionality. Zubair et al. (2016) 

implemented Tucker decomposition for EEG tensors, observing enhanced performance in 

distinguishing target and non-target stimuli[31]. 

Higher-Order Singular Value Decomposition (HOSVD): HOSVD has been employed for 

dimensionality reduction in tensor-based EEG analysis. Lu et al. (2020) used HOSVD to extract 

robust features for P300 classification, achieving notable improvements in computational 

efficiency[32]. 

Spatial filtering techniques like Common Spatial Patterns (CSP) are widely used in BCI 

applications but are typically applied to flattened EEG data. Researchers have extended CSP to 

tensor frameworks, allowing for the simultaneous optimization of spatial and temporal patterns. 
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Zhang et al. (2019) proposed tensor CSP methods that leveraged the multi-dimensional structure 

of EEG data, resulting in improved robustness to noise and artifacts[33].  

Wavelet transforms have been integrated with tensor representations to analyze frequency-specific 

features of P300 responses. Li et al. (2021) employed wavelet tensor analysis to capture the time-

frequency characteristics of EEG signals, demonstrating superior classification performance 

compared to traditional wavelet-based methods[34]. 

Directly leveraging tensor structures in classification algorithms has shown promise. Tensor-Train 

Support Vector Machines (TT-SVM) and tensor regression models have been explored for their 

ability to handle high-dimensional tensor features efficiently. Sun et al. (2022) highlighted the 

advantages of TT-SVM in reducing the computational complexity of BCI systems without 

sacrificing accuracy[35]. 

Comparative studies between tensor-based and traditional feature extraction methods consistently 

underscore the advantages of tensors in P300 BCIs. For instance, He et al. (2020) compared tensor 

decomposition methods with PCA and CSP, finding that tensor approaches yielded higher 

classification accuracy and better generalization across subjects[36]. 

EEG data naturally contains information on various test conditions, times, frequencies, channels, 

and more. As a result, tensor tools are widely used for EEG applications, including analyzing 

brain-computer interfaces, epileptic individuals' EEG, and event-related potentials (ERPs). 

However, working with high-dimensional EEG data in the matrix domain can limit our ability to 

leverage all the information provided in each condition and may even introduce 

interference.Tensor decompositions are effective tools for extracting hidden information and 

relationships within multidimensional tensor data. Higher Order Discriminant Analysis (HODA) 

is a popular tensor-based method that extends Linear Discriminant Analysis (LDA), while Spatio-

Temporal Discriminant Analysis (STDA) is a specific form of HODA used in P300 data 

analysis[23, 37, 38]. 

Spectral Regression Discriminant Analysis (SRDA) is a type of LDA that solves the eigenvalue 

problem using a set of linear equations. HOSRDA, introduced in 2017 by Jamshidiet al., is a 

tensor-based method that extends SRDA for analyzing ERPs[39]. HOSRDA utilizes a third-order 

tensor with time, channel, and test dimensions and transforms the eigenvalue problem into a 
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regression problem[9]. The High-order spectral regression discriminant analysis 

(HOSRDA)algorithm requires a stopping point to ensure stability and convergence, which is 

achieved by maximizing the Fisher ratio. The performance of the system is evaluated using a 

character detection test to determine the number of correctly detected characters from the test set. 

The formulation of HOSRDA is expressed as follows, as described previously and the extension 

of the HODA method introduced by Yan et al. in 2005[40]. HOSRDA with tensor feature reduction 

method is used for ERP detection[39].  

Tensor feature extraction has emerged as a powerful approach for processing. 

3. Limitations and challenges 

BCIs provide patients with the ability to communicate, significantly improving their quality of 

life[41]. However, current BCIs face many challenges, such as providing accurate biofeedback to 

the user[42] Delay: If the delay between the action and its feedback is too long, the patient's ability 

to learn and improve effective BCI control can be significantly affected[43] Low signal-to-noise 

ratio[44-46]. 

The main issue in practical applications is reducing training time, making it suitable for the general public, 

improving classification accuracy, while simultaneously reducing system complexity and improving 

response time[47]. 

Despite the advantages of tensor-based methods, several challenges remain in their application to 

Brain-Computer Interfaces (BCIs): 

Computational Complexity: Tensor operations are computationally intensive, which can hinder 

their real-time application in BCIs. 

Robustness to Noise: Although tensors are effective at preserving multi-dimensional 

relationships, they may still be vulnerable to noise and artifacts present in EEG data, 

compromising their reliability. 

Standardization: A lack of standardized frameworks and benchmarks for evaluating tensor-

based methods limits the ability to consistently assess their performance and comparability 

across different studies. 
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To overcome these obstacles, future research must focus on optimizing tensor algorithms for 

real-time processing, integrating advanced noise-reduction techniques, and exploring hybrid 

approaches that combine tensor methods with deep learning frameworks. 

In parallel, there is a significant gap in optimizing BCI systems for patients with Amyotrophic 

Lateral Sclerosis (ALS), particularly in the disease's advanced stages, where cognitive 

impairments complicate the use and assessment of these systems. Traditional cognitive tests and 

self-reports often fail to provide an accurate baseline for these patients, highlighting the urgent 

need for more flexible and sophisticated communication tools. Moreover, the extensive BCI 

training sessions required—sometimes lasting several hours—along with the variability among 

users, adds further complexity to the issue. 

The aim of this research is to address these challenges by exploring tensor-based methods to 

enhance the accuracy and speed of BCI classification, particularly for event-related potential 

(ERP)-based visual BCIs. The primary objective is to develop efficient, user-friendly BCI 

systems through tensor decomposition, offering greater flexibility than traditional matrix-based 

methods. Ultimately, the goal is to create BCIs that can be effectively used by ALS patients in 

real-world environments, without the need for extensive training or reliance on language or 

literacy levels. 

This study examines the potential of tensor decomposition techniques in BCI systems, 

emphasizing their ability to generalize classical matrix-based methods. This approach represents 

a new frontier in BCI design, particularly for ALS patients. The research aims to improve the 

accuracy and speed of classification in BCI systems, with a focus on ERP-based visual BCIs, 

ultimately reducing the time required for analysis. This reduction will make BCIs more viable 

for real-world use by ALS patients, addressing one of the key limitations of current systems, 

which often require long training sessions. 

4.Materials and Methods  

This study was conducted using a comprehensive methodology consisting of seven sections 

including: patient assessment (details of the ALS patients), P300 stimulation (explaining the visual 

paradigm), EEG recording(recording details from 32 channels), preprocessing(filtering and 
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artifact removal steps),feature extraction (using HOSRDA for tensor decomposition), 

classification(applying LDA on extracted features) and evaluation(presenting the classification 

accuracy results). 

4.1.Patient assessment 

This study was conducted on five patients with ALS who referred to Shariati Hospital (Tehran, 

Iran) and in collaboration with the Rare Diseases Foundation of Iran (RADOIR). This study was 

approved by the Ethics Committee of the Iran University of Medical Sciences. An informed 

consent was obtained from all patients. The diagnosis of ALS was made based on clinical, 

laboratory, and genetic findings. The diagnosis was made using the Awaji criteria for diagnosing 

ALS, and the patients with probable or definite ALS were recruited[48]. In addition, revised 

amyotrophic lateral sclerosis functional rating scale (ALSFRS-R) was also used in this study. 

ALSFRS-R is an assessment tool used to measure the severity of ALS. This score includes 42 

questions related to muscle movement, breathing, speech, eating, and running abilities. Each 

question is evaluated on a scale of 0 to 4, and the total score ranges from 0 to 44, with higher scores 

indicating less severe disorder and lower scores indicating more severe disorder. ALSFRS-R is 

usually used in each patient visit to assess disease progress and treatment efficacy. In this study, 

which was conducted at the National Brain Mapping Laboratory (NBML), the goal was to record 

the P300 signal and perform offline BCI. None of the patients had prior experience with BCI. 

4.2.P300 stimulation 

ABCI system based on P300 component detection was used in this study. The P300 speller was 

used to stimulate the visual evoked potential in the brain. The experiment was conducted in a single 

session on one day. Participants were asked to control a P300 speller with a 6×6 matrix (Figure 2). 
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Figure 2. P300 speller used in this study to evaluate patients with amyotrophic lateral sclerosis, displayed on an 

LCD screen. 

EEG recording 

The scalp EEG signal was recorded from 32 channels using the international 10-20 system . All 

electrodes were referenced to the right ear and the left mastoid served as the ground. The sampling 

rate was 256 Hz(Figure 3). 
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Figure 3.The electrode placement for recording P300 signals. 

 The signals and stimuli were prepared and recorded using the BCI2000 framework. Participants 

were required to spell 7 pre-determined words with 5 characters each in one run using the BCI 

P300. The characters were displayed in a 6×6 matrix. 

The words displayed to patients included Rose, Soup, Mind, Talk, Home, Email, and Sleep. Rows 

and columns were randomly intensified for 125-msec(using numbers at the beginning of four-letter 

words). The inter-stimulus interval (ISI) between each intensification was 125-msec, and there 

was a 250-msecinter-stimulus onset asynchrony (SOA) between each stimulus appearance (Figure 

4a). 

 

Figure 4a. P300 paradigm stages with their corresponding time intervals. 
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Figure 4b: P300 paradigm with ALS subject 

For each trial, rows and columns were intensified 10 times (stimulation repetition). Therefore, each 

character was intensified 20 times. There was a one-minute break between displaying each word. 

Participants sat in front of a 15-inch computer screen placed approximately one meter away from 

them. A single flash was used at the beginning of each trial to aid concentration. The character that 

the patient was supposed to spell was displayed in the corner of the screen to assist those who were 

unfamiliar or had limited knowledge of the language. 

 

4.3.Preprocessing 

Initially, signal processing was performed using all channels. However, due to minimal differences 

in results and to reduce processing time, which is crucial for the performance of the brain-computer 

interface, eight channels were utilized for signal processing. However, due to the minimal 
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differences in the results and the reduction in processing time, which is crucial for the performance 

of the brain-computer interface, eight channels (Fz, Cz, Pz, PO3, P3, P4, P7, P8) were used. 

According to the results of studies [49, 50], these eight channels systematically provide the 

maximum classifier performance based on various data factors and reference methods. 

Preprocessing involves three stages: a fourth order low pass Butterworth filter with a cutoff 

frequency of 10 Hz, a fourth order high pass Butterworth filter with a cutoff frequency of 0.1 Hz 

and a notch filter at 50 Hz to remove power line noise. 

The data is divided into epochs with a length of 1000-msecstarting from each stimulus. Epochs 

with peak amplitudes higher than 300 microvolts or lower than -300 microvolts are identified as 

artifacts and removed. Additionally, baseline corrections based on the average EEG activity in the 

immediate 200 msec after the detection of each epoch are performed. The average waveform shape 

for target and non-target epochs for each experiment is calculated to obtain the P300 peak 

amplitude. Specifically, the P300 peak amplitude at Cz is defined as the highest difference between 

the average waveform shapes of target and non-target epochs in the time interval between 250 to 

700 msec . 

 

Figure5: Preprocessing Flowchart For EEG Data 

4.4.Dimensionality reduction and feature extraction 

Data Acquisition Channel Selection

Noise Removal

low pass &

high pass Butterworth 
filter 

Artifact Removal Notch 
Filter

Epoching divided into 
epochs with a length of 

1000-msecstarting 
Normalization

baseline corrections 
based on the average 

EEG activity
Feature Extraction 
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The method section of the paper uses Higher Order Spectral Regression Discriminant Analysis 

(HOSRDA), a tensor-based feature reduction technique designed for analyzing Event-Related 

Potentials (ERP) in EEG data. Here's a summary of the key aspects: 

Key Concepts and Components 

Tensor Framework: 

EEG data, inherently multidimensional, is modeled as tensors to leverage multi-modal information 

(e.g., channels, time, trials). 

Tucker decomposition is used to extract core tensors and factor matrices for dimensionality 

reduction. 

Extension of SRDA: 

HOSRDA builds on Spectral Regression Discriminant Analysis (SRDA), converting the 

eigenvalue problem in Higher Order Discriminant Analysis (HODA) to a regression problem. 

This conversion eliminates the need for eigenvalue decomposition, enabling the use of efficient 

iterative solvers for large datasets. 

Mathematical Formulation: 

In this paper higher order tensors are shown by calligraphic letters (e.g. X is a tensor), matrices are 

denoted by boldface capital letters (e.g. X is a matrix), boldface lower-case letters are used to denote 

vectors (e.g. x is a vector), and  normal letters show scalars (e.g. x or X are scalar). 

Ω is the set of all indices of training data samples (e.g. if we have K training data, Ω = {1,… , 𝐾}). The set 

of indices of data in the 𝑐𝑡ℎ class with Ω𝑐 and its size by 𝐾𝑐. 

{𝑥1, 𝑥2, … , 𝑥𝐾} be the set of K data points (𝑥𝑖 ∈ ℝ𝑚) from C classes. 

Scatter matrices (between-class and within-class) of HODA are redefined in the tensor domain. 

The between-class scatter matrix 𝑺𝑏
−𝑛 is define as follows: 

𝑺𝑏
−𝑛 = ∑ 〈𝒵̌−𝑛(𝑐)

, 𝒵̌−𝑛(𝑐)
〉−𝑛

𝐶
𝑐=1                                        (1) 

Where mode-n product of 𝒴 and 𝐴 ∈ ℝ𝐽𝑛×𝐼𝑛is denoted by 𝒵 and 𝒴 is an N-th order tensors. 
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𝒳 is training dataset: 

𝒳̌(c) = √Kc(𝒳̅c − 𝒳̿), 𝒳̌ = cat(N + 1, 𝒳̌(1), … , 𝒳̌(C))                             (2) 

U is biasis factors 

𝒵̌−𝑛(𝑐)
= 𝒳̌(𝑐) ×−𝑛 {𝑈𝑇}, 𝒵̌−𝑛 = 𝒳̌ ×−(𝑛,𝑁+1) {𝑈𝑇} and 

𝒳̿ =
1

𝐾
∑ 𝒳(𝑘)𝐾

𝑘=1                                                (3) 

𝒳̅(𝑐) =
1

𝐾𝑐
∑ 𝒳(𝑘)

𝑘∈Ω𝑐
, c=1,…,C                               (4) 

New formulation for between-class scatter matrix of tensor data as follows: 

𝑺𝑏
−𝑛 = ∑ 〈𝒵̌−𝑛(𝑐)

, 𝒵̌−𝑛(𝑐)
〉−𝑛

𝐶
𝑐=1 = ∑

1

𝐾𝑐
〈∑ ℋ𝑖

−𝑛(𝑐)
,ℋ𝑖

−𝑛(𝑐)
𝑖∈Ω𝑐

〉−𝑛
𝐶
𝑐=1                            (5) 

 

Where for 𝑖 ∈ Ω𝑐,ℋ𝑖
−𝑛(𝑐)

= (𝒳(𝑖) − 𝒳̿) ×−𝑛 {𝑈𝑇}.Therefore we have: 

𝑺𝑏
−𝑛 = ∑

1

𝐾𝑐
(∑ 𝑯𝑖(𝑛)

−𝑛(𝑐)

𝑖𝜖Ω𝑐
) (∑ 𝑯𝑗(𝑛)

−𝑛(𝑐)

𝑗𝜖Ω𝑐
)𝐶

𝑐=1 = ∑ 𝑯(𝑛)
−𝑛(𝑐)

𝑾(𝑐)𝐶
𝑐=1 𝑯(𝑛)

−𝑛(𝑐)𝑇

                         (6) 

Where ℋ−𝑛(𝑐)
= 𝑐𝑎𝑡 (𝑁 + 1,ℋ1

−𝑛(𝑐)
, … ,ℋ𝐾𝑐

−𝑛(𝑐)
) 𝑎𝑛𝑑 𝑾(𝑐) is a 𝐾𝑃𝑛 × 𝐾𝑃𝑛 block matrix whose 

all blocks are 𝑃𝑛 × 𝑃𝑛 identity matrices with 𝑃𝑛 = ∏ 𝐽𝑚
𝑁
𝑚=1
𝑚≠𝑛

 as follows: 

𝑾(𝑐) =
1

𝐾𝑐
[

𝑰𝒑𝒏
⋯ 𝑰𝒑𝒏

⋮ ⋱ ⋮
𝑰𝒑𝒏

⋯ 𝑰𝒑𝒏

]                                           (7) 

Now if we define ℋ−𝑛 = 𝑐𝑎𝑡 (𝑁 + 1,ℋ−𝑛(1)
, … ,ℋ−𝑛(𝑐)

) and 𝑾 = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝑾(1), … ,𝑾(𝐶)), 

the between-class Scatter matrix can be formulated as: 

𝑺𝑏
−𝑛 = 𝑯(𝑛)

−𝑛𝑾𝑯(𝑛)
−𝑛𝑇

                                   (8) 

In the same way, it can be shown that the within-class scatter matrix can be written as:  

𝑺𝑤
−𝑛 = 𝑯(𝑛)

−𝑛𝑳𝑯(𝑛)
−𝑛𝑇

                                  (9) 
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Where 𝑳 = 𝑰𝐾𝑃𝑛
− 𝑾(𝑰𝐾𝑃𝑛

 𝑖𝑠 𝑎 𝐾𝑃𝑛 × 𝐾𝑃𝑛𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥) . Thus we can define  

𝑺𝑡
−𝑛 = 𝑯(𝑛)

−𝑛𝑯(𝑛)
−𝑛𝑇

= 𝑺𝑤
−𝑛 + 𝑺𝑏

−𝑛                                     (10) 

Now instead of solving the optimization  problem of HODA: 

𝑼(𝑛) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑡𝑟[𝑼(𝑛)𝑇𝑺𝑏

−𝑛𝑼(𝑛)]

𝑡𝑟[𝑼(𝑛)𝑇𝑺𝑤
−𝑛𝑼(𝑛)]

,   s.t. 𝑼(𝑛)𝑇𝑼(𝑛) = 𝑰                            (11) 

We can solve the problem below: 

𝑼(𝑛) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑈(𝑛)

𝑡𝑟[𝑼(𝑛)𝑇𝑺𝑏
−𝑛𝑼(𝑛)]

𝑡𝑟[𝑼(𝑛)𝑇𝑺𝑡
−𝑛𝑼(𝑛)]

,   s.t. 𝑼(𝑛)𝑇𝑼(𝑛) = 𝑰                              (12) 

A generalized eigenvalue decomposition (GEVD) problem is reformulated into a regression 

framework: 

Instead of solving for eigenvectors, HOSRDA identifies subspace basis factors by solving linear 

equations iteratively. 

𝑺𝑏
−𝑛𝒖(𝑛) = 𝜇𝑺𝑡

−𝑛𝒖(𝑛)                                  (13) 

If y is eigenvector of W with eigenvalue λ and also we have 𝑯(𝑛)
−𝑛𝑇

𝒖(𝑛) = 𝒚, then 𝒖(𝑛) is a solution 

of the GEVD problem (13) with µ=λ. Thus to find the columns of factor matrix 𝑼(𝑛), rather than 

solving a GEVD problem, we can find the 𝐽𝑛 leading eigenvectors of W and put them in the 

columns of matrix Y and then solve the linear system of equations 𝑯(𝑛)
−𝑛𝑇

𝑼(𝑛) = 𝐘 for 𝑼(𝑛). 

The eigenvectors of W can be obtained analytically without engendecomposition. Since W is a 

block-diagonal matrix, its eigenvalues and eigenvectors can be obtained from the eigenvectors and 

eigenvalues its blocks. 

Therefore, we first seek for the eigenvectors/eigenvalues of 𝑾(𝑐) for an arbitrary. 

Suppose that 𝒚(𝑐) is an eigenvectors of 𝑾(𝑐) corresponding to eigenvalue λ (i.e. 𝑾(𝑐)𝒚(𝑐) = 𝜆𝒚(𝑐)). 

If break 𝒚(𝑐) to blocks of vectors of length 𝑃𝑛 as 𝒚(𝑐) = [𝒚1
(𝑐)𝑇

, … , 𝒚𝐾𝑐

(𝑐)𝑇
]
𝑇

,then we have: 
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𝑾(𝑐)𝒚(𝑐) =
1

𝐾𝑐
[

𝑰𝒑𝒏
⋯ 𝑰𝒑𝒏

⋮ ⋱ ⋮
𝑰𝒑𝒏

⋯ 𝑰𝒑𝒏

] [
𝒚1

(𝑐)

…

𝒚𝐾𝑐

(𝑐)
]                                  (14) 

=
1

𝐾𝑐
[
∑ 𝒚𝑘

(𝑐)𝐾𝑐
𝑘=1

…

∑ 𝒚𝑘
(𝑐)𝐾𝑐

𝑘=1

] = 𝜆 [
𝒚1

(𝑐)

…

𝒚𝐾𝑐

(𝑐)
]                               (15) 

Thus, for each 𝑝 = 1, … , 𝐾𝑐 we have 𝒚𝑝
(𝑐)

=
1

𝜆𝐾𝑐
∑ 𝒚𝑘

(𝑐)𝐾𝑐
𝑘=1 . If we define 𝒂 ≜ 𝒚𝑝

(𝑐)
, ∀𝑝,it can be 

easily concluded that 𝒂 ≜ 𝒚𝑝
(𝑐)

=
1

𝜆𝐾𝑐
𝒂 =

𝑎

𝜆
 and therefore 𝜆 = 1. 

For an arbitrary c, it is clear that the rank of 𝑾(𝑐) is 𝑃𝑛. Thus, 𝑾(𝑐) has 𝑃𝑛 eigenvalues of value 

one with eigenvectors having the form of 𝒚(𝑐) = [𝒂𝑃𝑛

𝑇 , … , 𝒂𝑃𝑛

𝑇 ]
𝑇
, where 𝒂𝑃𝑛

 is an arbitrary vector 

of length 𝑃𝑛. 

To find the eigenvectors of W, it should be noted that the eigenvalues of a block-diagonal matrix 

is the union of eigenvalues of its blocks and the eigenvectors of the blocks. Since one is the 

eigenvalue of all the blocks of W, for any set {𝒚(1), … , 𝒚(𝐶)} of eigenvectors of blocks of W, an 

eigenvectors of W can be defined with the form 𝒚 ≜ [𝒚(1)𝑇 , … , 𝒚(𝑐)𝑇]
𝑇
, corresponding to 

eigenvalue one. Consequently,we have: 

𝒘𝒚 = [

𝑾(1) 0 ⋯ 0
0 𝑾(2) ⋱ ⋮
… … ⋯ 0
0 0 0 𝑾(𝐶)

]

[
 
 
 
𝒚(1)

𝒚(2)

…
𝒚(𝐶)]

 
 
 

                              (16) 

=

[
 
 
 
𝑾(1)𝒚(1)

𝑾(2)𝒚(2)

…
𝑾(𝐶)𝒚(𝐶)]

 
 
 

=

[
 
 
 
𝒚(1)

𝒚(2)

… .
𝒚(𝐶)]

 
 
 

= 𝒚                                  (17) 

Now that we have shown W has 𝐶𝑃𝑛 eigenvectors (corresponding to eigenvalue one), which can 

be constructed using random vectors, the factor matrices of Tucker decomposition can be obtained 

through solvin a linear system of equations (i.e.𝑯(𝑛)
−𝑛𝑇

𝑼(𝑛) = 𝒀 𝑓𝑜𝑟 𝑼(𝑛)).  

Algorithm Workflow: 
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Initialize factor matrices for the tensor decomposition. 

Compute the scatter matrices and solve the GEVD problem iteratively using regression. 

Perform Gram-Schmidt orthogonalization to ensure orthonormality of the factor matrices. 

Stop the iterations when the Fisher ratio (class separability) converges. 

Optimization: 

Regularization is introduced to handle ill-conditioned scatter matrices and improve stability. 

Iterative solvers like LSQR are recommended to reduce computational cost, especially in high-

dimensional or small-sample-size (SSS) scenarios. 

HOSRDA is a tensor-based feature reduction technique designed to handle multidimensional data 

(like EEG) by extending the principles of Spectral Regression Discriminant Analysis (SRDA) to 

tensors. The method aims to efficiently identify low-dimensional subspaces where class 

separability is maximized.  

To use the Standard Linear Discriminant Analysis (LDA) classifier, we face two main challenges: 

the computational cost of eigenvalue decomposition and conditioned scatter matrices. These 

challenges need to be addressed in order to solve the issues SRDA reformulates the eigenvalue 

decomposition in LDA as a regression problem, avoiding computational challenges. HOSRDA 

extends this idea to tensors for higher-order data. 

Tensors are multi-dimensional arrays that naturally represent data with multiple modes 

(e.g., time, frequency, trials, channels in EEG data). 

A tensor 𝒀 ∊ ℝ𝑰𝟏×…×𝑰𝑵 represents multi-dimensional data. 

Mode-n Matricization: The tensor 𝒀 is unfolded into a matrix 𝑌(𝑛) by rearranging its entries along 

mode 𝑛. 

Mode-n Product: 

𝒁 = 𝒀 ×𝒏 𝑨                         (18) 

Here, 𝒁 result from multiplying 𝒀 along its 𝒏 − 𝒕𝒉 mode by a matrix A. 
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Tucker decomposition is used to reduce tensor dimensionality . Tucker decomposition breaks a 

tensor 𝑌 into a smaller core tensor 𝐺 and a set of factor matrices{𝑈(𝑛)}: 

𝒀 ≈ 𝑮 ×𝟏 𝑼(𝟏) ×𝟐 …×𝑵 𝑼(𝑵)                                (19) 

𝑼(𝒏) are orthogonal matrices representing the subspace basis along mode 𝒏. 

The method defines class scatter matrices in tensor form: 

The between-class scatter matrix: 

𝑆b
−n = 𝐻(𝑛)

−𝑛𝑊𝐻(𝑛)
−𝑛𝑇

                               (20) 

 Where: 

𝐻(𝑛)
−𝑛   : The mode-n unfolded tensor of class means projected onto the subspace.           

𝑊: A block-diagonal weight matrix based on class sizes. 

The within-class scatter matrix: 

𝑆𝑤
−𝑛 = 𝐻(𝑛)

−𝑛𝐿𝐻(𝑛)
−𝑛𝑇

                               (21)                                                                                                                                   

𝐿 = 𝐼 − 𝑊: A complement of the weight matrix 𝑊. 

Therefore, we have total scatter matrix: 

𝑆𝑡
−n = 𝐻(𝑛)

−𝑛𝐿𝐻(𝑛)
−𝑛𝑇

= 𝑆𝑤
−𝑛 + 𝑆𝑏

−𝑛    (22) 

Generalized Eigenvalue Problem (GEVP): 

The optimization objective of HODA is maximizing class separability:                                                                                                    

𝑈(n) = argmaxU(n)

tr[U(n)TSb
−nU(n)]

tr[U(n)TSt
−nU(n)]

                                                           (23) 

This reduces to solving: 

𝑆𝑏
−𝑛𝑢 = 𝝀𝑺𝒕

−𝒏𝒖 

Reformulation via regression: 
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HOSRDA avoids direct eigenvalue decomposition by reformulating the problem: 

Given 𝑯(𝒏)
−𝒏  solve: 

𝐻(𝑛)
−𝑛𝑇

𝑈(𝑛) = 𝑌                        (24) 

Here, 𝑌 contains eigenvectors of 𝑊. 

This is a linear regression problem, solved iteratively, avoiding the computational cost and 

instability of eigenvalue decomposition. 

Stopping Criterion 

To ensure convergence, the algorithm stops when the Fisher ratio stabilizes: 

𝐸𝑟𝑟𝑜𝑟 = |𝐹𝑖𝑠ℎ𝑒𝑟 𝑅𝑎𝑡𝑖𝑜(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖) − 𝐹𝑖𝑠ℎ𝑒𝑟 𝑅𝑎𝑡𝑖𝑜(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖 − 1)| < 𝜀                (25) 

Summary of Formula Roles 

 Scatter matrices quantify data spread between and within classes. 

 GEVP defines the optimal subspace for maximizing class separability. 

 Regression reformulation solves the problem efficiently without eigenvalue 

decomposition. 

 Stopping criterion ensures stability and convergence of the algorithm. 

Each formula is tailored to balance computational efficiency with accurate feature reduction, 

especially in tensorial data. 

Formula Context 

To aid in understanding the mathematical formulations presented, this section briefly explains the 

context and meaning of the key equations:   

the Dimensionality Reduction and Feature Extraction section describe the process of extending 

Linear Discriminant Analysis (LDA) to handle tensor data through Higher Order Spectral 

Regression Discriminant Analysis (HOSRDA). These depict extracting the between-class and 

within-class scatter matrices from the multilayered tensor input data.   
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the optimization problem to determine the projection matrices that maximize class separation. 

 

Figure 6: Block diagram of feature reduction classification with higher order spectral regression discriminant 

analysis (HOSRDA)  

As depicted in the block diagram, the training data is first mapped into HOSRDA subspaces using 

bias factor matrices. From there, the data is transformed into feature vectors using either kernel 

tensors or feature tensors. These vectors are then simultaneously fed into the classifier block. The 

same process is used for the test data, which is also mapped and transformed into feature vectors 

before being inputted into the classifier block. The test data is eventually labeled to complete the 

process. 

Summary of Application 

HOSRDA is applied to EEG data from a P300 speller: 

 Data is tensorized (channels × time samples × trials). 

 HOSRDA reduces the tensor to a lower-dimensional representation while preserving 

class separability. 

 An LDA classifier is applied to the reduced features for classification. 

4.5.Classification 

Linear Discriminant Analysis (LDA)  
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LDA is used for the classification. For this purpose, a linear combination W of features X provides 

a decision boundary in the form of WTX+C=0 for threshold C. The weights W are found by 

considering the two multivariate normal distributions of classes with means µ1 and µ2 and 

covariance’s C1 and C2, which maximizes the ratio of between-class covariance and within-class 

covariance.  

𝑆 =
𝜎𝑏𝑒𝑡𝑤𝑒𝑒𝑛

2

𝜎𝑤𝑖𝑡ℎ𝑖𝑛
2 =

(𝑤𝑇(𝜇1−𝜇2))2

𝑤𝑇(𝑐1+𝑐2)𝑤
                                                                                   (26) 

 

For P300 signal classification, we used the LDA. For this purpose, three runs of the four 

experimental sessions are considered as training data, and the data recorded in runs four to seven 

are considered as test data. The data classes are set to 1 and 0, meaning that if the target is detected 

in the selected channel, that channel is classified as group 1, otherwise it is classified as group 0. 

To determine which class the data belongs to, we need to maximize the likelihood function. First, 

we find α, β, and weight vector W, then we maximize the conditional probability and obtain the 

mean and variance to determine the desired class for ensuring the accuracy of the classifier's 

performance using test data as in[51]. 

STATICAL ANALYSIS 

The purpose of the statistical analysis was to test the hypothesis regarding the impact of sublayers 

such as age, disease stage on the performance of the P300 speller task and the extracted P300 

features in the three executed methods, as well as the target detection time in each method. 

Due to the small sample size, the Shapiro-Wilk test was used to assess the normal distribution of 

the data. The classification accuracy in the LDA+HOSRDA and LDA+No Reduction methods, as 

well as the test time in LDA+HOSRDA and SVM, showed normal distribution, and therefore, 

Pearson's correlation coefficient was calculated. Additionally, the classification accuracy of the 

SVM classifier and the test time in the LDA+No Reduction method had a non-normal distribution. 

Hence, the non-parametric Spearman correlation was used for analysis. 

Given the small number of data points, further analysis was performed using ANOVA and t-tests 

for data with normal distribution, and the non-parametric Kruskal-Wallis test for data with non-

normal distribution. 
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5.Results 

Characteristics of the study population was shown in table 1. Five ALS patients with an average 

age of 50.4 years (rangesfrom40 to 62 years) completed the study. The youngest patient was a 40-

year-old woman, while and the oldest one was a 60-year-old man, with an average age at diagnosis 

of 48.2 years. The most common clinical presentation in these patients was spinal involvement (n: 

4, 80%) (Table 1). 

Table 1. Characteristics of the study population 

Patient Sex Age  Age at 

diagnosis  

Clinical 

manifestations  

Onset of 

disorder  

Family history 

of ALS 

ALSFRS-R 

(ALS Functional Rating 

Scale-Revised) 

1 F 62 60 Spinal 24 month Negative 27 

2 M 51 50 Spinal 6 month Negative 34 

3 M 51 49 Spinal 20 month Negative 36 

4 F 40 37 Spinal 36 month Negative 27 

5 M 48 45 Bulbar 36 month Negative 22 

 

All five patients successfully completed the BCI task phase. Additionally, fatigue was reported in 

three patients (60%) during task performance. Furthermore, none of the patients had prior 

experience with BCI. Specialized evaluations revealed that among the patients, the lowest 

ALSFRS-R score was 22 for the only patient with bulbar onset, and the highest score belonged to 

patient number 3, a 51-year-old male with spinal involvement and disease onset at age 49. The 

ALSFRS-R score for the oldest patient was 27. Among the four patients with spinal involvement, 

the ALSFRS-R score was 27 for two female patients, which was significantly lower than the scores 

of two male patients.  

The Functional Rating Scale for ALS in its revised version (ALSFRS-R) is a disease-specific 

severity score that reflects motor impairment and functional decline in individuals with 

Amyotrophic Lateral Sclerosis (ALS). It is widely used in clinical research and ALS studies. 

Functional assessment through the ALSFRS-R is one of the most important outcomes in ALS 
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clinical trials. In addition, this scale allows for modeling of individual disease progression and can 

predict survival. 

Signal processing was optimized by using eight channels instead of all, and involved three 

preprocessing stages: low-pass, high-pass, and notch filtering to enhance performance and reduce 

processing time. 

 

Figure8.Preprocessed signal of a trial at Cz in frequency domain (left) and time domain (right) 

The data is segmented into 1000-ms epochs, with artifacts removed based on amplitude thresholds, 

and baseline corrections applied, followed by calculation of the P300 peak amplitude at Cz by 

comparing target and non-target epoch waveforms. 

 

Figure 9.EEG amplitude as a function of time in one trial for N=5 participants. 

As shown in table 2, the average classification accuracy obtained was 84.04%, which is promising 

for online use considering that training sessions and filters for age, disease severity, and literacy 

have not yet been implemented. 
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Table 2. The accuracy of the classification of patients with amyotrophic lateral sclerosis 

Patient ACC% 

HOSRDA+LDA 

Number 

of repeat 

Test 

time 

ACC% 

LDA, No 

reduction 

Test time ACC% 

SVM 

 

Test time 

1 82.41 3 0.001S 76.99 0.02S 83.80 0.03S 

2 82.44 3 0.001S 77.44 0.004S 83.83 0.04S 

3 83.18 3 0.001S 78.89 0.001S 83.66 0.03S 

4 82.17 3 0.001S 78.83 0.001S 82.67 0.02S 

5 82.35 3 0.001S 77.14 0.002S 83.77 0.03S 

S: Second, 

 

Based on the results, the HOSRDA+LDA method converges with very few repetitions and this is 

useful for online applications as the biggest challenge in online applications is reducing the time 

for analyzing high-volume data and sending commands to the external environment in real-time. 

Considering the importance of time in online BCI use, reducing the dimensions of 

multidimensional data analysis is of great importance, and the HOSRDA algorithm can be used 

samples. Additionally, the training time for HOSRDA is significantly less than 

support vector machine (SVM), and the computational complexity of solving linear equations is 

one of the advantages of using this algorithm. Based on the results of the scatter matrices in the 

first repetitions, convergence is achieved in the third repetition and due to the presence of a stability 

block, the system will maintain its stability (Table 3). 

Table 3. The comparison of higher order spectral regression discriminant 

analysis (HOSRDA)+LDA and support vector machine (SVM) training time 

infivepatients with amyotrophic lateral sclerosis 

Patient HOSRDA+LDA SVM 

1 0.0031S 11.521S 

2 0.0019S 6.041S 

3 0.002S 3.37S 

4 0.002S 3.066S 

5 0.002S 5.32S 
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S: Second, 

 

The HOSRDA method demonstrates efficiency by significantly reducing computational costs 

compared to traditional tensor methods. Its stability is an additional benefit, particularly in cases 

of ill-conditioned matrices. The application of HOSRDA to EEG data, such as from the P300 

speller paradigm, highlights its superior performance in character detection tasks when compared 

to other tensor-based and machine learning methods. 

Given the similar classification accuracy results between the SVM and HOSRDA+LDA methods, the 

HOSRDA+SVM method was specifically examined. 

Table 4. The accuracy of the classification of patients with amyotrophic lateral sclerosis 

Patient ACC% 

HOSRDA+LDA 

Number 

of repeat 

Test 

time 

Training Time ACC% 

HOSRDA+SVM 

Test time  Training 

Time 

1 82.41 3 0.001S 0.0031S 83.81 0.027S 0.082S 

2 82.44 3 0.001S 0.0019S 83.83 0.019S 0.090S 

3 83.18 3 0.001S 0.002S 83.83 0.019S 0.035S 

4 82.17 3 0.001S 0.002S 83.82 0.020S 0.084S 

5 82.35 3 0.001S 0.002S 83.80 0.017S 0.096S 

S: Second, 

 

As can be seen, both methods achieve similar classification accuracy. 

The training time for the HOSRDA+LDA method is very fast for each patient, ranging from 

0.0019 seconds to 0.0031 seconds. This indicates that HOSRDA+LDA is much more efficient in 

terms of training time performance. It is highly time-efficient, and its high speed in training and 

testing makes it crucial for real-world performance. 

On the other hand, SVM, due to the need for eigenvalue decomposition and complex 

computations during training, is computationally expensive, especially with large datasets. In 

contrast, HOSRDA is specifically designed to reduce computational complexity. By using 

regression instead of eigenvalue decomposition, its computational cost is reduced. Additionally, 

this method can solve complex computational problems using low-cost iterative algorithms. 

Given the challenge of class imbalance in our data (with a 1:5 ratio between target and non-target 

classes), accuracy as the main evaluation metric cannot provide an accurate representation of 

model performance. Therefore, instead of accuracy, we have used F1-Score metrics, which are 
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more suitable for models with imbalanced data. Experimental results show that using these metrics 

has significantly improved the model's prediction quality. 

“Across five independent sessions, the HOSDRA–LDA pipeline consistently achieved the highest 

performance, with F1-Scores of 0.6158, 0.6228, 0.6217, 0.6092, and 0.6229, and corresponding 

AUC values between 0.8892 and 0.8961. Notably, the recall remained 1.0 in all experiments, 

meaning that every target P300 response was successfully detected. 

All SVM-based classifiers failed to provide reliable performance, frequently producing undefined 

F1-Scores or extremely low sensitivity. LDA without dimensionality reduction also demonstrated 

weaker performance across all sessions. 

These results confirm that HOSDRA significantly enhances the discriminability of EEG-based 

P300 features and provides a highly stable and robust feature representation for LDA 

classification.” “Across five independent sessions, the HOSDRA–LDA pipeline consistently 

achieved the highest performance, with F1-Scores of 0.6158, 0.6228, 0.6217, 0.6092, and 0.6229, 

and corresponding AUC values between 0.8892 and 0.8961. Notably, the recall remained 1.0 in 

all experiments, meaning that every target P300 response was successfully detected. 

All SVM-based classifiers failed to provide reliable performance, frequently producing undefined 

F1-Scores or extremely low sensitivity. LDA without dimensionality reduction also demonstrated 

weaker performance across all sessions. 

These results confirm that HOSDRA significantly enhances the discriminability of EEG-based 

P300 features and provides a highly stable and robust feature representation for LDA 

classification. 

Table5 :F1-Score for HOSRDA+LDA 

Subject Recall  AUC F1 

S1 1.00 0.8930 0.6158 

S2 1.00 0.8961 0.6228 

S3 1.00 0.8954 0.6217 

S4 1.00 0.8892 0.6092 

S5 1.00 0.8959 0.6229 
we have added the complete Confusion Matrices and the corresponding True Positive Rate (Recall) and 

False Positive Rate (FPR) values for all competing methods (HOSRDA–LDA, LDA, and SVM) across all 

experimental sessions. 

These results are now presented in a new table (Table X) and provide a clear comparison of classifier 

performance during the epoch classification stage. 

We highlight that the HOSRDA–LDA method consistently achieved the highest Recall (1.00 across all 

sessions) and the lowest FPR among all methods, whereas SVM-based classifiers demonstrated poor 

sensitivity, often yielding Recall = 0. 
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Table 6 – Confusion Matrix, Recall, and FPR for HOSRDA+LDA (Best Method),S1 

Metric Value 

TP ~493 

FN 0 

FP Range (600-635) avg(607) 

TN Range (2230-2270) avg(2250) 

Recall 1.0000 

FPR FP/(FP+TN) ~0.21-0.22 

F1 ≈0.6180 

AUC ≈0.895 

 

 

Table 7 – Confusion Matrix, Recall, and FPR for LDA (No Reduction),S1 

Metric Value 

TP ~60 

FN ~480 

FP ~240 

TN ~2550 

Recall 0.14-0.10 

FPR ≈0.08-0.09 

F1 ≈0.13-0.17 

 

Table 8 – Confusion Matrix, Recall, and FPR for SVM (No Reduction),S1 

Metric Value 

TP 0-15 

FN 543-528 

FP 0-38 

TN 2779-2817 

Recall 0.00-0.028 

FPR ≈0.00-0.013 

F1 0-0.05 

 

Table 9 – Confusion Matrix, Recall, and FPR for HOSRDA+SVM,S1 

Metric Value 

TP 0 

FN 543 

FP 0 

TN 2817 

Recall 0.00 

FPR 0.00 

F1 NaN 
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Table6,7,8,9 reports the Confusion Matrices together with the Recall (TPR) and FPR for all classifiers. The 

HOSRDA–LDA method achieved the highest Recall (1.00 across all five Subject) and a moderate FPR 

(~0.21), outperforming all competing approaches. 

LDA without dimensionality reduction yielded lower Recall (0.10–0.14) and moderate FPR (~0.08–0.09). 

LDA Classify demonstrated higher sensitivity (Recall 0.38–0.52) but at the cost of a substantially higher 

FPR (0.34–0.42). 

SVM-based models consistently exhibited poor Recall (0.00–0.03), confirming their inadequacy for P300 

detection under severe class imbalance. 

Key features of the HOSRDA approach include: 

 Avoidance of Eigenvalue Decomposition: This reduces the computational cost, 

especially for high-dimensional data, and handles ill-conditioned matrices effectively. 

 Regularization Flexibility: Regularization terms, such as sparsity, can be easily 

incorporated into the regression formulation. 

 Efficiency for SSS Problems: HOSRDA addresses the curse of dimensionality by 

simplifying data analysis without compromising performance. 

 Faster Convergence: The method solves regression problems iteratively using low-

complexity algorithms such as LSQR. 

In conclusion, the HOSRDA method applied to EEG data from the P300 speller paradigm has 

shown promising results, with efficient classification and reduced processing time, making it a 

strong candidate for real-time BCI applications, particularly for individuals with ALS. 

The goal of the statistical analysis was to test the hypothesis regarding the impact of sublayers 

such as age, disease stage on the performance of the P300 speller task and the extracted P300 

features in the three executed methods, as well as the target detection time in each method. 

Due to the small sample size, the Shapiro-Wilk test was used to assess the normal distribution of 

the data. The classification accuracy in the LDA+HOSRDA and LDA+No Reduction methods, 

as well as the test time in LDA+HOSRDA and SVM, showed normal distribution, and therefore, 

Pearson's correlation coefficient was calculated. Additionally, the classification accuracy of the 

SVM classifier and the test time in the LDA+No Reduction method had a non-normal 

distribution. Hence, the non-parametric Spearman correlation was used for analysis. 

Given the small number of data points, further analysis was performed using ANOVA and t-tests 

for data with normal distribution, and the non-parametric Kruskal-Wallis test for data with non-

normal distribution. 



AUT Journal of Electrical Engineering 
10.22060/EEJ.2025.24519.5721 

 

Pearson's correlation test was used to examine the linear relationship between ALSFRS-R and 

the classification accuracy of the classifiers (LDA+HOSRDA and LDA+No Reduction), while 

ANOVA was used to compare significant differences in the classification accuracy of the 

classifiers (LDA+HOSRDA and LDA+No Reduction) across different ALSFRS-R groups. A T-

test was performed to compare the classification accuracy in the high and low ALSFRS-R 

groups. 

Table 10 Pearson's Correlation Test Analysis 

Method Correlation Statistic (r) P-value 

ALSFRS-R vs LDA+HOSRDA 0.71 0.177 

ALSFRS-R vs LDA+No reduction 0.47 0.426 

A moderate correlation is observed between ALSFRS-R and LDA+HOSRDA, but this correlation is not 

statistically significant. Additionally, a weak correlation is observed between ALSFRS-R and LDA+No 

reduction, but given the P-value, it cannot be considered significant. 

Table 11 ANOVA Test Analysis 

Method F-statistic P-value 

ALSFRS-R vs LDA+HOSRDA 2.95 0.184 

ALSFRS-R vs LDA+No reduction 0.30 0.622 

Based on the comparison of P-values in both groups, no significant differences can be observed between 

the ALSFRS-R (high and low) groups and the classification accuracy of the classifiers. 

Table 12 T-test Analysis 

Method T-statistic P-value 

ALSFRS-R vs LDA+HOSRDA 1.72 0.184 

ALSFRS-R vs LDA+No reduction 0.55 0.622 

No significant differences were found between the high and low ALSFRS-R groups in this case as 

well. Overall, based on the results of the Pearson's correlation, ANOVA, and T-test, it can be stated 

that there is no significant relationship or difference between ALSFRS-R and the classification 

accuracy of the classifiers. 

Similarly, these tests were performed on the test time data. Pearson's correlation, ANOVA, and T-

test statistical analyses were carried out, and since the test times in the LDA+HOSRDA method 
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are very close to each other, no significant relationship or difference with ALSFRS-R in the test 

time was observed. For SVM, weak correlation and non-significant differences in test times were 

observed between different ALSFRS-R groups. 

Spearman's Correlation Test: To examine the non-linear and non-parametric relationship 

between ALSFRS-R and the classification accuracy of the SVM classifier. 

Kruskal-Wallis Test: To examine significant differences in the classification accuracy of the 

SVM classifier across different ALSFRS-R groups (high and low groups). 

In the Spearman's correlation test, the correlation coefficient (r = 0.0513) indicates a very weak 

relationship between ALSFRS-R and the classification accuracy of the SVM classifier. The P-

value is 0.935, suggesting that this correlation is not statistically significant (P-value > 0.05). 

In the Kruskal-Wallis test, the H-statistic is 0.3333, and the P-value is 0.564, indicating that there 

is no significant difference in the classification accuracy of the SVM classifier across different 

ALSFRS-R groups. The test for the test time in the LDA+No Reduction method also does not 

show any significant differences. 

 

6.Discussion  

The early presentation of ALS include movement difficulties and slowness, muscle weakness and 

loss of muscle power, repetitive automatic movements, and a significant decline in muscle 

performance. In some cases,. At present, palliative treatments such as anti-inflammatory drugs, 

antioxidants, and physiotherapy can control symptoms and improve the quality of life of the 

patients. Adequate care and support for patients with ALS can also help to improve their quality 

of life[2]. 

Patients with ALS suffer from gradual loss of muscle control due to the loss of central and 

peripheral motor neurons. The goal of a considerable number of studies is to provide 

communication tools that can improve the lives of these patients. BCIs are a technology that can 

measure and analyze brain signals to make them visible for communication with the external 
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environment. For example, controlling a robot to type letters, controlling a wheelchair to navigate 

to a desired location, rehabilitation, and treatment are some examples that this technology can 

manage. In addition, BCI technology is useful for healthy individuals as well. For example, it can 

be used to control various electronic devices, change TV channels, and adjust air temperature and 

music volume just by thinking without body movement. BCI can also be used in games, military 

objectives, and helping elderly people. Therefore, this technology has significant positive 

economic and social effects[7]. 

Due to the importance of BCI, this study focuses on examining tensor-based methods and the 

accuracy and speed of classification in these methods to reduce analysis time for ALS patients to 

use BCIs in the real world without the need for time-consuming training sessions for users of all 

languages and literacy levels. The study results indicate that the HOSRDA feature reduction 

algorithm and LDA achieve an average character detection accuracy of 84.04%. The results were 

obtained under signal registration conditions without training sessions for each individual and 

without filters such as age, disease severity, and literacy level. Additionally, this performance has 

been compared with other feature reduction and classification methods and has shown better 

performance than other methods. 

In this study, parameter J=7 has been used, and compared with the HOSRDA+LDA and SVM 

methods on dataset II, classification accuracy of 72.5% and 73.5% have been obtained for two 

individuals, respectively[39], which shows a considerable improvement in three repetitions in the 

present method. 

In addition to motor impairments, patients with ALS may suffer from respiratory failure, disrupted 

sleep, and fatigue, which may limit their working memory and attention[52, 53]. However, it is 

still unclear how significant these findings are in a practical environment; some studies have shown 

that P300 vectors are comparable in healthy participants and ALS patients, while others have 

observed fewer vectors in ALS patients[20, 54]. Similarly, some studies have found long delays 

in ALS, while others have shown no differences[55, 56]. 

Holzet al. found that the use of BCI-based methods can improve the quality of life of patients with 

ALS[57]. This study also demonstrated the efficacy of these methods in patients with ALS, which 

makes it clear that it can improve the quality of life of these patients. Since these results were 
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obtained without time-consuming training sessions and without considering the role of literacy 

and other intervention factors, it can be said that this method is useful and effective for almost all 

patients with ALS regardless of their literacy level, age, and disease severity. Therefore, it can play 

a significant role in improving the hope and quality of life of these patients. 

In this study, age and ALSFRS-R did not affect the performance accuracy and test time of the data. 

This study demonstrated that brain-computer interface technology based on tensor methods holds promising 

potential as an assistive communication tool for ALS patients. Further optimization of the algorithm and 

comprehensive studies with larger sample sizes are essential. While the initial findings are encouraging, 

they could lead to the development of more effective communication solutions specifically designed to 

address the challenges faced by ALS patients. 

In this study, we compared multiple methods for epoch classification in P300 Brain-Computer 

Interface (BCI) applications, focusing on HOSRDA + LDA, LDA, and SVM as the primary 

classifiers. A major point of comparison was the True Positive Rate (Recall) and False Positive 

Rate (FPR), which were evaluated across five experimental sessions. These metrics are critical for 

understanding the classifiers' ability to accurately detect target P300 responses while minimizing 

false positives. 

Confusion Matrix Analysis: 

The Confusion Matrices for each method reveal important details about the classifier's 

performance, particularly in the context of class imbalance: 

HOSRDA + LDA: 

This method consistently achieved the highest performance across all sessions, with Recall = 1.00 

(i.e., the model successfully detected all target epochs). The False Positive Rate (FPR) was 

moderate (~0.21 – 0.22), indicating that while some non-target epochs were misclassified as target, 

the model still demonstrated a high level of sensitivity without overpredicting target epochs. The 

F1-Score for this method was stable at around 0.61–0.62 across all sessions, reflecting its strong 

ability to balance both precision and recall. 

LDA (No Reduction): 

The Recall for LDA without dimensionality reduction was relatively low, ranging between 0.10 – 

0.14, indicating poor sensitivity to target epochs. The FPR for this method was moderate (~0.08 – 

0.09), suggesting that while the model detected some non-target epochs correctly, it still struggled 
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with detecting the target P300 responses. The F1-Score was consistently low (~0.13–0.18), 

reinforcing the model’s poor ability to distinguish between target and non-target epochs. 

LDA Classify: 

The Recall for LDA Classify was higher than the non-reduced LDA method, ranging between 0.38 

– 0.52, showing that the method detected a larger proportion of target epochs. However, the FPR 

was significantly higher (~0.34 – 0.42), indicating that the model misclassified a substantial 

portion of non-target epochs as targets. This led to a moderate F1-Score (~0.25–0.30), which 

highlights the trade-off between improved recall and a higher false positive rate. 

SVM (No Reduction): 

The SVM-based models consistently exhibited poor performance, with Recall = 0.00 – 0.03 in all 

sessions. This confirms that SVM is inadequate for P300 detection in this context, especially under 

conditions of severe class imbalance. The FPR for SVM was relatively low (~0.00–0.013), but this 

is largely due to its failure to predict target epochs accurately. As a result, F1-Score for SVM 

remained at 0, highlighting its ineffectiveness for this task. 

Importance of HOSDRA: 

A key contribution of this study is the integration of HOSDRA (Higher Order Spectral Regression 

Discriminant Analysis) for dimensionality reduction, which significantly enhanced the feature 

representation for LDA classification. By applying HOSDRA, the Recall was maximized at 1.00, 

ensuring that all target epochs were detected without failure. This reduction in dimensionality 

allowed for better computational efficiency and feature clarity, particularly when compared to 

standard LDA and SVM. 

Impact on Classification Accuracy: 

The HOSDRA + LDA method not only outperformed other classifiers in terms of Recall and FPR, 

but it also demonstrated superior AUC values (around 0.89 – 0.90), indicating strong 

discriminative power. While LDA Classify and LDA showed moderate performance in detecting 

target epochs, they were still heavily affected by class imbalance, leading to a significant number 

of false positives. The combination of HOSDRA with LDA mitigated these issues, providing a 

more reliable and stable approach to P300 classification. 
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7.Conclusion  

In this study, a tensor-based feature reduction method called HOSRDA was used 

inpatientswithALS. HOSRDA is the higher order extension of SRDAand a solution to the 

eigenvalue decomposition problem in HODA against the regression problem. This method was 

used to reduce the features of P300 spelling data. By using the HOSRDA feature reduction 

algorithm and LDA, an average character detection accuracy of 84.04% was achieved. This result 

was obtained under signal registration conditions without training sessions for each individual and 

without considering filters such as age, disease severity, and literacy level. Additionally, this 

method has been compared with other feature reduction and classification methods and has shown 

better performance than other methods. This method converges in an average time of 2.04 seconds 

over three repetitions, which is much less than other methods that may require several hours of 

training. 

results indicate that brain-computer interfaces based on tensors are promising as an assistive 

communication tool for ALS patients. However, considering the statistical population in this study 

and the exclusion of patient training sessions for the purpose of generalizing the results, further 

optimization of the algorithm and controlled studies with larger sample sizes are essential for 

improving its performance and efficiency, as well as identifying disease-related influencing 

factors. 

In summary, HOSDRA + LDA is the most reliable method for P300 detection in brain-computer 

interface systems, demonstrating optimal performance in terms of Recall, FPR, F1-Score, and 

AUC across multiple sessions. This method ensures high sensitivity to target epochs while 

maintaining a reasonable false positive rate, making it a robust choice for real-time BCI 

applications. The comparison with other methods, particularly SVM, highlights the importance of 

dimensionality reduction techniques like HOSDRA for enhancing classification performance, 

especially when dealing with class imbalance. 

Recommendations 

It is suggested that in the future, the proposed method should also be evaluated on healthy 

individuals. 
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