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Abstract: The microgrid is described as a localized low-voltage power distribution system
integrating DG units and ESS to supply electricity to some small or remote communities. In
this respect, the ESS stores energy when demand is low and releases the stored energy during
peak hours. Real-time power balancing remains a major issue for isolated micro-grids using
intermittent renewable DG sources. Battery Energy Storage Systems (BESS) can solve the
problem as they can offer reserve capacity to meet the load changes. However, battery
degradation significantly affects the BESS lifetime performance because degradation depends
upon the cumulative energy throughput which has units in terms of kilowatt-hours (kWh) or
megawatt-hours (MWh). When there is degradation affecting capacity reduction, there is a
direct impact on the energy delivered to the load, and therefore it must be considered in system
optimization. To reduce the operation costs and to make the electricity prices affordable for
the consumers, the degradation effects must be included while optimizing the microgrid
operation. For this, more detailed simulation on an hourly basis of battery discharge profile
needs to be performed so as to assess the degradation effects based on actual discharge
patterns. Then degradation costs and life estimations are included in the optimization. It is
observed that higher average kWh and actual MWh throughput parameters increase operation
costs in general while lower the electricity cost for the end user. This study presents an
optimization method for minimizing microgrid operating costs and customer electricity
expenses over the 24-hour period under consideration, with explicit modeling of BESS
degradation. Accelerated Particle Swarm Optimization (APSO), the Modified Jaya (M-JAYA)
algorithm, and the Linear Programming Interior-Point (LP-IP) method are implemented to
optimize parameters related to degradation. Comparative results showcase the ability of these
algorithms with respect to BESS lifetime, degradation cost, system operating cost, and
customer electricity cost.
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Introduction

Microgrids integrating Distributed Energy Resources (DERs) are increasingly
recognized as future smart grid system implementations of the new age. Microgrids, by
being equipped with renewable DG units and ESS, pump power to local as well as
remote communities while simultaneously improving the resilience of the entire
system. But the intermittent generation of renewable DG is often not synchronized with
load demand fluctuations, which results in fluctuations in voltage and frequency. These
fluctuations, however, can be regulated through the export and import of energy using
ESS by storing energy at times of low load demand and discharging it at times of high
demands, thus, ensuring reliable and stable power supply. While many ESS
technologies are present, Battery Energy Storage Systems (BESS) have attracted
considerable interest due to their immense energy/power density levels, scalability, and
potential for applications such as peak shaving, renewable integration, and load
levelling within Microgrids [1]. For grid-connected applications, Lithium-ion batteries
are broadly used, mainly because of their high energy density, longer cycle life, and
ability to operate at high depths of discharge (DoD). The performance of a BESS
depends highly on its lifetime and discharge rate, which directly affect energy

efficiency and system economics [2], [3].

Until the settings are optimized to offer uninterrupted power supply, Microgrids need
operation in a manner that takes both operational and electricity costs into
consideration. This staircase requires proper determination of BESS sizing and aging
consideration over time. Battery degradation, mainly caused by energy throughput and
cycling of discharging and charging cycles, is the most vital factor affecting both
lifetime and capital cost of the storage system [4]. However, while there are many
studies on cost minimization of microgrid systems using BESS, most of them neglect
degradation consideration or consider it in a very simplified capacity-based approach
[5]. More recently, microgrid operation and battery sizing have been addressed by
many different optimization approaches, including In [6], a Mesh Adaptive Direct
Search (MADS) algorithm was employed to identify the optimal operating strategy of a
microgrid, focusing on operating cost minimization while satisfying load and
generation constraints. An Adaptive Modified Particle Swarm Optimization (AMPSO)
approach was developed in [7] to optimize the 24-hour operational scheduling of a
microgrid comprising Distributed Generators (DGs) and BESS. Similarly, [8] proposed
a Mesh Adaptive Direct Search (MADS) framework for operating strategy
determination and operating cost minimization in a hybrid microgrid environment.
Model Predictive Control (MPC)-based optimization framework is presented in [9-10]
to determine the optimal size of BESS that maximizes the total profit from wind power
firming. The study highlights that incorporating an MPC scheme and enables dynamic
decision-making that accounts for forecasted wind power variability and market prices,
leading to better economic performance compared to static scheduling methods. An
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adaptive modified firefly algorithm (AMFA) was developed in [11] to manage the
operational uncertainties of distributed generators (DGs) and energy storage devices
within the microgrid. This metaheuristic approach enhances the convergence speed and
avoids local minima, providing robust and near-optimal solutions for cost-effective
operation and optimal sizing of the storage units under stochastic conditions.

Linear/Integer Programming and Mixed-Integer Linear
Programming (LP/MILP) when non linearities are linearized are used when tractability
is needed and data are deterministic and are widely applied for techno-economic
optimization and planning [13]. Scenario-based stochastic programs or
chance-constrained formulations to capture renewable and load uncertainty improve
out-of-sample economic performance but increase computational cost [14]. [15]
propose KKT reductions and heuristics for detailed battery degradation, converter
nonlinearities, or market interactions; sometimes invoked as bi-level problems
(planning upper level, operational scheduling lower level[16].

[12] utilized the Particle Swarm Optimization (PSO) technique to determine the
optimal size of BESS aimed at minimizing the microgrid operating cost. The proposed
method leverages peak load levelling and energy-saving strategies to reduce both the
total energy cost and peak demand charges. The PSO-based approach effectively
balances computational simplicity and accuracy, demonstrating significant cost
reductions when compared to heuristic or deterministic methods While these
approaches offer some degree of promise, degradation cost is either completely ignored
or models based on cycle life or calendar life are adopted, which are not useful in
expressing the truly real-time operational conditions. On the other hand,
throughput-based degradation models are able to offer a better operational
representation for microgrid cost optimization and lifetime prediction, estimating cost
and lifetime as a function of the total energy discharged [14-16].

The present study attempts to fill this uncertainty gap by developing a
throughput-based degradation model for a BESS within a hybrid renewable energy
microgrid. The proposed framework outputs average kWh throughput, total MWh
discharge, degradation costs, and BESS lifetime and then integrates them within a cost
optimization problem. The objective is to minimize microgrid operating cost (OC) in
conjunction with the cost of electricity (COE) while guaranteeing reliable power
dispatch from DGs and BESS. Predicted power from wind, PV, and microturbine drops
are used over a 24-hour time horizon, and four optimization algorithms, LP-IP, PSO,
APSO, and M-JAYA, are deployed for comparative evaluation. Our study's uniqueness
is found in its dual-objective cost framework, throughput-driven degradation model,
and comparative optimization approach using LP-IP, all of which work together to
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create a methodology for BESS sizing and operation in hybrid mcrogrids that is more
precise, economical, and practically implementable.

The present paper is organized as follows: Section 2 describes the microgrid
topology and component modeling. Section 3 includes the problem formulation and
BESS degradation simulation parameters. Section 4 entails the problem optimization
and algorithmic implementation. Section 5 closes with a discussion and comparison of
results, including operating cost, electricity cost, and degradation parameters. Section 6
summarizes the study and describes scope for future research, followed by references in
Section 7.

2. System model and configuration
BESS

| - B

Loads

Fig .1. Test system consisting of Hybrid DGs and BESS in microgird

Utility Grid

The discussed energy management framework is based on a grid-tied residential
microgrid that interfaces with multiple HRES along with the BESS. The Renewable
Generation Units comprise PV panels, WTs, and MTs as viewed in Fig. 1. The inverter
operates on a bidirectional mode to enable power conversion from DC to AC or vice
versa, whereby energy stored in BESS can be dispatched into the utility grid during
peak demand or local load support. The control strategy of the operating system is
dictated by minimum and maximum states of charge of BESS, which forbids the
overcharge or deep discharge of the battery to prolong battery life and safe operation.
So, it is an optimization system against operating costs and costs of electricity
considering degradation effects and lifetime constraints of BESS under reliable load
demand.

Islanding of the microgrid starts if an outage occurs in the grid and it can be
islanded manually or automatically depending on load characteristics and system

capacity. Manual islanded operation, mainly identifiable in hardly large or complex
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installations like hospitals, hotels, and manufacturing plants, consists of load
prioritization carried out by the operator. Priority loads are connected dynamically
depending on operational requirements during daytime, nighttime, or seasonal
variations. On the other hand, automatic islanded operation offers a fast and seamless
transition from grid disconnection through electronically controlled circuit breakers.
This way is preferable for sites with single buildings such as a residential house or a
supermarket where easy load distribution allows the microgrid to meet demands for
base and peak.

In general, islanded operation is adopted for disaster recovery or emergency
situations given that it is technically and economically less feasible for a standalone
system to operate perpetually. However, the system can indefinitely sustain critical
loads until restoration of grid service, provided the BESS is adequately sized and
resources are scheduled properly. On reconnection, the microgrid switches back to
grid-tied mode without compromising supply reliability. This dual-mode operation
thereby ensures that the proposed system can provide continuously, highly reliable
power during both normal and contingency situations, thus solidifying resilience and
improving the overall efficiency of energy management at a residential level.

2.1 Modelling of Photovoltaic system

A photovoltaic (PV) system in the proposed microgrid environment constitutes part of
the hybrid renewable energy sector for conversion of solar radiation into electrical
power. Being highly dependent on sunny irradiance and with its statistics in turn
subject to considerable temporal variability arising from weather conditions and
environmental factors, the PV power output is stochastic in nature, and thus it requires
accurate modeling so as to guarantee its reliable energy management with integration
into other Distributed Generation (DG) units and the Battery Energy Storage System
(BESS).STC and NOCT are then referenced for achieving accurate modeling. STC
assumes an irradiance of 1000 W/m?, a cell temperature of 25°C, and an air mass of 1.5.
NOCT, however, represents more reasonable operating conditions with respect to
ambient temperature and actual irradiance levels. Depending on temperature, the
temperature coefficient further affects the performance of PV modules because it
accounts for output reduction at higher temperatures[17-18].The PV system could
extract the optimum energy with varied solar conditions with help from the Maximum
Power Point Tracking (MPPT) controller. The MPPT sets the PV array operating point
dynamically under all conditions of irradiance and temperature to deliver maximum
power to the microgrid or battery storage.

The instantaneous electrical power output (t)-of the PV system at time t is obtained
from the following relation:

Ppv=Pstc. (Gc/Gsrc) [1 + k (Tc — Tstc )] (1)
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Where PSTC is the rated power of a PV module at STC, Gc¢ is the solar
irradiance on the working plane of the PV system (kW/m?), Gsrc is the irradiance at
STC (1 kW/m?), TC is the cell temperature, T'src is the temperature at STC, and k is the
temperature coefficient of power.

The model provides a robust framework to forecast photovoltaic power
generation under varying environmental conditions and will thus serve as input for the
optimization of energy dispatch in the hybrid microgrid system.

2.2 Modelling of Wind power system

Wind energy conversion interprets the kinetic energy of moving air masses into
the mechanical energy by means of a wind turbine, which is then converted into the
electrical energy through a generator. Mainly, it is wind speed to determine the power
generated by the wind turbine and that cannot be held constant due to meteorological
and geographical restraints [19-20]. The truly random nature of wind speed thus calls
for an adequate modeling scheme for enhancing predictive capabilities on power
generation and aiding in the effective coordination of other DG-type generation units
along with the BESS.Wind harnessing is proportional to the cube of wind speed;
therefore, any small variation in the velocity can translate into huge fluctuations in
power output. The relationship between the electrical power and the wind speed is
governed by parameters specific to the turbine, cut-in speed (minimum wind speed
required to generate power), rated speed (wind speed at which maximum rated power is
achieved), and cut-out speed (wind speed beyond which the turbine ceases operation to
prevent mechanical damage). These parameters characterize the performance of the
turbine under given environmental conditions.At time t, the electrical power output

Pwr of a wind turbine can be expressed as follows:

\
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Where a= (P, . V./Vy4— V.)andb = (P./V, — V)

V.i, Veo, Vwand V; are the cut in, cutout, nominal and rated wind speeds respectively.
The behavior of wind speed can be simulated by using Weibull distribution function.
This piecewise function considers the turbine's operation limits for a proper depiction
of the power curve. When combined with real- or forecasted wind speed data, the
system can estimate hourly energy contributions from wind power to include in the
overall optimization framework for the hybrid renewable energy microgrid.

2.3 Modelling of Microturbine
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Microturbines are compact single-stage combustion turbines that find various
applications for distributed generation due to the ability to ensure production of reliable
power of some kilowatts to several megawatts. In construction, microturbines are
simplified versions of gas turbines with a rotating turbine and compressor and usually
fuelled by natural gas, diesel, and biogas. Their modularity and efficiencies at partial
load as well as their capability of CHP make them appropriate choices for hybrid
renewable microgrids, especially at the residential and small commercial level [21].

In a hybrid framework, microturbines are treated as controllable power sources that
complement variable renewable energy units such as PV panels and wind turbines. In
contrast to renewable units whose power output cannot be controlled, a microturbine's
power output can be controlled, within operational limits, according to load requests
and fuel availability to provide the much-needed quick assessment of-demand
fluctuations. Indeed, the operating cost of a microturbine depends on fuel consumption
as well as maintenance cost, for which proper cost modelling should be adopted for
optimization. In this study, the power output of the microturbine is assumed to change
randomly between minimum and maximum operational limits, thus describing the real
power load-following operation of the microturbine [22-23]. The cost function of the
microturbine power is assumed to be a linear function expressed as:

C(Pvur)=a+b P 3)
where CMT is the cost of power generation (in $/kWh), P is the output power expressed
as a fraction of the rated capacity of the turbine, while a and b are parameters of the cost
function and were taken as 0.0325 and 0.014, respectively [29].
This cost function has been integrated into the overall optimization framework of the
microgrid so that its operating costs can be assessed under various dispatch strategies.
By taking advantage of the predictable behavior of microturbines and the stochastic
nature of renewable outputs, the hybrid system can provide better levels of reliability
and cost efficiency. The flexible operation of the microturbine supports microgrid
performance when solar or wind generation is low and bridges operation between
grid-connected and islanded modes.
2.4 Modelling of Lithium Ion Battery Energy Storage Systems
Battery Energy Storage Systems are considered very important in view of actually
operating a microgrid with an intermittent renewable DG and backup power to ensure
load reliability. Batteries during storage absorb surplus power during low-demand
periods and discharge during high demand, increasing system stability and otherwise
reducing costs for power in the customer's cost calculation. Li-ion batteries stand very
popular among many kinds due to their excellent energy density, long cycle life,

extremely low self-discharge, for islanded and grid-connected microgrid
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operations[24-25]

The degradation characteristics determine the performance and economics of
Li-ion Battery Energy Storage Systems, thus relevant to its lifetime and operating cost.
A battery degrades by aging through charge-discharge cycles, therefore, degradation is
strongly related to the energy throughput over time. Hence degradation modeling
becomes inevitable since it is used to assess lifetime costs and optimizes microgrid
operation.

In this case, the Li-ion battery is proposed to be represented by throughput-based
degradation parameters, restricting charge and discharge rates hourly. Energy stored to
or supplied by a battery at time ¢ is always constrained by its minimum and maximum
capacity limits to always ensure that the battery is not under unsafe or undesirable

operating conditions such as overcharging or deep discharging.

2.4.1 Charging mode:

Cgest+1 = Min{(Cpest — AtPgese)N. CgEgs min} 4)

PBES charge(ty = Max {PBES mins (CpEse —

T’lC arge
CBES max) hAtg } (5)
2.4.2 Discharging mode:

CBES,t+1

Cpest — AtPggst
= max ) CBES min
Mg

PgEs discharge(t) — min {PBES max f(CBES,t

Ndisch
CBES min) %} (7

PBES charge and PBEs discharge are the charge and discharge powers at each hour instant wrt
PBEs. PBESmin and PBEs max are minimum and maximum BESS capacity limits in terms of
power. Cgsmin and Cpgsmax are the minimum and maximum stored energy capacity
limits of BESS.Ncharge and mMdischarge are the charge and discharge efficiencies, which
plays a significant role in delivering discharging power to the load.

2.5 Utility grid

The utility grid acts as a secondary source of supplying power to meet the promissory of
24 hours of load demand of the microgrid. During grid-connected mode, any deficit
created from renewable generation and BESS output is met with power drawn from the
grid. Load-one-fifty forecast mode supply and DG dispatch and BESS dispatch are
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optimized for supply reliability to minimize use of grid power. The BESS-size is
dynamically adapted to load changes for each hour to increase reliability and
operational efficiency. Such an integrated approach helps to reduce microgrid operating
costs, leading to continuity of supply against ever-changing demand conditions.

3. Problem formulation of microgrid operating cost with BESS degradation

cost and electricity cost

In this work, a microgrid system based on HRES comprises essentially two wind
turbine units, two PV units, two MT units, and a BESS. This configuration is conceived
to supply the forecast hourly load demand with a view to enhancing supply reliability
and minimizing utility grid dependency, thus minimizing electricity cost for the
consumer. The proposed microgrid is supposed to meet the average load demand of
about 1.78 kW through optimal dispatch of DGs and BESS, explicitly considering the
degradation of the batteries.HRES, for microgrid, basically means continuous
availability of power; proper load management; better system efficiency; and less
maintenance of the system due to minimum servicing requirements. These benefits
have therefore led the HRES to gain popularity in small-scale microgrid
implementations involving residential, office, and similar low-power demand
situations.

In this study, the optimization target was set at minimizing the total operating cost of
the microgrid, including DG operation and maintenance cost, BESS degradation cost,
and TDC of energy supply, while reducing electricity prices for consumers in
grid-connected mode through the fast and smart utilization of renewable resources and
storage.

Min(0.C)yg = Xi=1{D.Geost + Grideose + (C)pgss + DEGCyss}(8)

Min(0.C)mg = Min Y, (Cp_pg + OMpg + Cgrig + (Opgss + DEGCggss +

RCpgss)
)

The operational cost of the microgrid is one that embraces respective costs paid on
Distributed Generators, grid power, and BESS degradation as presented by equations (8)
and (9) as the objective function. The cost components such as DGcost and Cpess relate
to the energy supplied by the DG and BESS, operation and maintenance cost (O&M),
replacement cost (RC) , DEGCggss reflects degradation cost and Costs for electricity
supplied from the grid are referred to Cgria. The BESS degradation cost is another
important aspect, DEGCpess, which considers aging caused by charge—discharge cycles
using throughput-based modeling. The degradation time calculations and life
estimations outlined by Equations (10)—(12) are embedded into the operating cost
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formulation to generate an operationally cost-optimized solution with satisfactory

system disruption reliability [26-27].

DEGCggss = [W * Cpgss—max](10)

The parameter W indicates the degradation cost for the Battery Energy Storage System
(BESS) in Rs/kWh, derived from simulations using the average energy throughput and
the initial cost of the battery. This value is added to the total operating costs to account
for the aging of the battery from an economic perspective.

intialinvestmentcostofbattery(Rs)

BatteryDEG — Cost(W) = { }(11)

The degradation-based lifetime (LT) of the BESS is considered for its actual kWh

throughput from the simulations and its average lifetime throughput specified by the

AveragekWhrthroughputofbattery

manufacturer. The relationship is expressed mathematically through Equation (11),
which is then used in the formulation of Total Day Cost to arrive at a proper
lifetime-based cost.

TotalactualMWhthroughputforyear

Batteryyerime (Years) = { }(12)

TotalaveragelifetimeMWh

BESS total day cost (TDC) is implicit in Equation (13) and after taking degradation
hazards into account, the total last cost functionally will be formed by Equation (14).

(TDC)pgss = ~pomex

{IR(1+IR)LT
365
(13)

RC
(1+IR)LT—1 * FC 45 MC + (CBES,Max T }

* (1+IR)LT)

(T. O)ess-pec = (W * Cpgs_max) * (TDC)ggss(14)
In computing the TDC for BESS, the average kWh throughput and real MWh

throughput stand out as pivotal components for proper cost estimation. An accurate
depiction of degradation would demand hourly simulations of different rates of battery
discharge and could be contrasted with actual discharge profiles from the model. The
total cost of electricity (COE), given in Rs/kWh and expressed in equation (15), is
minimized subject to the load demand being completely satisfied. This cost of
electricity is then multiplied by instantaneous load demand to obtain the electricity cost
at each time step.

T
CostofElectricty(COE) = Zeza (Covt CB;§S+PCMT+DEGBESS)(IS)
t=1"L

The maintenance cost equation for the DGs over the time horizon T is said to be a
summation of all maintenance costs of the DGs during every operating interval, stated

as equation (16).
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(MCO)pe=[(MC)wr1+(MC)wrz +(MC)pv1 + (MC)pvz + (MC)mr]* T(16)
3.1 Constraints
The microgrid system with HRES and BESS is affected by inequality

constraints.

3.1.1 DGs constraints

Pwri-min SPwti < Pwri-Max (17)
Pwr2-Min <Pwr2 < Pwr2-Max (18)

Prvi-min< Ppvi< Ppvi-Max (19)

Ppv2-Min< Ppv2 < Ppva-Max (20)

PmT-Min< PMTS PMT-Max (21)

The limits imposed set forth the minimum and maximum power-capacity constraints
within which Distributed Generators must operate. Meeting these constraints ensures
that predicted load demand is fulfilled. The integrated operating cost and cost of
electricity functions are optimized, subject to full adherence to the DG capacity limits
throughout the entire scheduling horizon.

3.1.2 BESS constraints

PBEss-mMin< PBess < PBESS-Max (22)

SoCwmin < SoCgEss <S0Cwmax (23)

From a sizing perspective, LI BESS is optimized with power capacity ranging
from 50 kW to 500 kW and energy storage of 500 kWh for economic operation of the
hybrid microgrid. One of the key issues in such optimization is that of estimation of
SoC that shows the present level of energy stored in a battery. The SoC is required to be
within the unit-ranged 0-to-1 for its correct working wherein 0 denotes fully discharged
whereas 1 stands for fully charged states. Real-life working conditions would have LI
BESS charging or discharging between 80 and 95 percent SoC, feeding on this window
due to its energy density, steady power discharge, and extended cycle life [28-29].

In this research, BESS degradation cost analysis is carried out by estimating the
lifetime from hourly discharge profiles while maintaining the SoC within prescribed
limits; at about 35 percent SoC, accelerated aging sets in, with renewals possibly
needed within its operational life. Hence, for minimum operating costs of the microgrid
and to ensure system reliability as well as battery life, accurate determination of BESS
size in terms of both average and actual energy throughput (kWh) is very essential.
3.1.3 Grid Constraints

A function of precision enhancement is ascribed to this cost in optimizing the efficient
operations of the microgrid. Once power flow has been dispatched from the DGs and
BESS, the grid supplies any remaining load demand at the prevailing unit energy price
[33]. Hence, this formulation has ensured that operational costs were modeled under

resource conditions when loads are varied. The power exchange between the grid and
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microgrid is bounded by maximum and minimum power limits at each time step and is
mathematically stated as follows:

Pgrid-Min<Pgrid<Pgrid-Max (24)

4. Implementation strategy with heuristic and LP-IP optimization algorithms
Operating profiles and electricity costs are minimized and functions accounting for
battery degradation and lifetime technically are solved using heuristics and a Linear
Programming Interior Point (LP-1P) solver. The LP-IP technique provides better
optimality in scheduling cost minimization compared to heuristics. Under heuristic
optimization techniques, Particle Swarm Optimization (PSO), Accelerated Particle
Swarm Optimization (APSO) and MJAYA algorithms are used to solve the objective.
Linear Programming and interior point (LP-1P) solver based approach is used to solve
the problem and compared with heuristic techniques to show the effectiveness of LP-I1P
solver. Results of operating cost and electricity bill minimizations, degradation costs
and life time, average kWh and actual kWh throughputs of microgrid for 24hrs have
been presented in a comparative analysis.

4.2 Accelerated Particle Swarm Optimization

An enhanced version of PSO, the Accelerated PSO (APSO), works with the global best
(Gbest) only, to speed up convergence. With a Pbest and Gbest component,
conventional PSO often can struggle to achieve better-quality solutions. Accordingly,
to maintain diversity of search directions, APSO has removed Pbest and introduced
some controlled randomness into the search process. This change tempers the
shortcomings of the standard PSO by providing faster convergence and better
optimization capabilities. The velocity update of APSO includes a random factor and is
given in [30].

Viyr = Vi + (@ Ry) + Ry * (Gpest — Xj) (27)

In APSO, the random variables R and Rrare independently drawn from the uniform
distribution in (0,1). To improve convergence even further, a monotonically decreasing
function of randomness is introduced, defined as follows:

o = apY'(28)

Where apis also called an initial randomness parameter and lies usually between 0.5
and 1. Product information, aw=0.5, and t counts iterations. This approach slowly
decreases the degree of randomness and helps efficiently converge while maintaining
diversity. Simulation parameters include learning factors C1 = C2 = 2, inertia weight in
the range Wmax = 0.9 to Wmin = 0.1, and overall 200 iterations.

4.4 Modified JAYA (MJAYA) Optimization

MIJAYA optimization proposed in [31] is the modified version of original JAYA, to
overcome the problem of premature convergence without trapping the solutions in local

optima. The MJAYA optimization technique is the population based algorithm having
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only 2 control parameters of population size and total number of generations. The
change in MJAYA algorithm compare to original JAYA is the change in the solution
update equation, which overcomes the problem of premature convergence still present.
In MJAYA algorithm, the solution having best fitness acts as a reference to all other
members (good and worst solutions) to intensify their position towards near to the best
fit solution. The position update equation of MJAY A algorithm is given by following
equation (30).

X;,i =Xi; + Ri(|Xij| — Goestj) + Rz(Gworstj — |Xij])

-M (30)
Where ‘L’ is the iteration coefficient. If Rj and R> > 0.5 then L=1 else L=-1.
The solutions obtained by MJAYA are superior and more effective than all other
implemented optimization methods in solving the problem of operating and electricity
cost minimizations considering the best and worst solutions of the objectives in

obtaining optimal solutions.

4.5 Linear programming based interior point (LP-IP) solver
LP-IP solver is used to solve both linear and nonlinear optimization problems
considering inequality and equality constraints as variables. LP-IP solver finds
minimum of a function specified by following expression.
Ax<b

min, f(x) = {Aeq X = beq}

Ib<x<ub
Where f(x), b, beg, b, ub are vectors and A andA.q are matrices. A and b corresponds to
inequality constraints , Aegand beq correspond to equality constraints and the lower
bounds(lb) and upper bounds(ub) correspond to limits of the function which the
objective is to be optimized. LP-IP based solver obtains optimal results because, the
objective function will acts as a barrier which penalizes the non-feasible solutions by
satisfying the inequalities x > 0 by using Karush- Khun- Tucker conditions[32-33],
there by obtaining the minimized optimal solutions within the selected value of
function tolerance. LP-IP solver method can handle the objective functions which are
discontinuous by approximating the constraints of objective as a set of boundaries by
changing them without reaching global minima. Therefore LP-IP solver algorithm is
more accurate in solving the constrained minimization of the objective function within
the bounds and converges to a global optimal solution.
The Linear Programming interior point method (LP-IP) relies on having linear
programming model with objective function and all the constraints being continuous

and twice continuously differentiable. LP-IP solver expresses the objective function
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with all the constraints, initial values, lower and upper bounds in the form of vector and
matrices in a ‘linprog’ function and calls for Interior Point (IP) solver to execute the
function. The syntax of LP-IP solver is given as in equation (32- 33):
(X, fva,exitflag)=linprog(fun, Acq,beq,A,b,Ib,ub, options)(32)
Options=optimoptions(‘linprog’, Algorithm’, ‘interior-point’,‘display’,’iter’)(33)

The goal function uses a maximum of 200 iterations because the
"linprog" function employs the interior point technique. "X" denotes the function's
optimized value, and "fval" denotes the corresponding values of the objective function,
where the best outcome was achieved. In this case, the LP-IP solver's maximum
tolerance value is le-6. Because the LP-IP solver method converts the objective
function to the standard form of LP-IP, it avoids the issues of implemented algorithms
such as slow and premature convergence and stuck at local optima. This eliminates the
non-feasible solutions that satisfy the constraint within the tolerance and maximum
iteration count of the LP-IP solver algorithm method.
4.5.1 Algorithm of LP-IP solver-based approach
The proposed algorithm for microgrid operating cost and electricity cost minimization
considering BESS degradation effect is described in the following steps.

1. Read the input data profile (DGs power generations, maximum and minimum
capacity limits of BESS and Load profile)

Initialize population size and cost coefficients of BESS and DGs.

3. Develop and simulate the DGs and BESS scheduling algorithms and check for
constraint violations.

4. After obtaining each sub algorithm's goal function values from step 3, initialize
the assignment matrix using those values.

5. By incorporating the assignment matrix in an optimizer or solver to initialize
the values of the objective function.

6. Verify that the LP-IP solver has all constraints, including equality, inequality,
lower and upper bounds, and objective function matrix allocation..

7. If yes, then use function called ‘optimoptions’ by describing the algorithm type
and uses ‘disp’ and ‘iter’ options to execute the solver.

8. Run the program using tolerance conditions, which shows the function's
minimized value while meeting the limitations, and until the maximum number
of iterations has been reached.

The other primary benefit of using LP-IP solver methods over other
approaches is that they provide the majority of global minimum solutions
without faltering at local optima and enhance the quality of the solution within
the LP-IP solver's fixed iterations. In comparison to previous methods, this

approach has a rapid convergence time and produces early convergence within
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the limited minimization of the constraints. Given the aforementioned benefits,
we have used the LP-IP solver approach to accomplish the goals because it
produces the best results in a shorter amount of time..
5. Results and discussions
A minimization of microgrid operational cost and that of electricity considering the
effect of battery degradation over a 24-h schedule are discussed. The power outputs of
the WT, PV, and MT units are simulated within the maximum rated limits for load and
DG capacities [34-35]. The goal of the scheduling is to optimize operating and
electricity costs, while fully satisfying the load demand. This is achieved through
modeling the key BESS degradation parameters which include average and actual
energy throughput (kWh), degradation cost, and battery life. By simulating the
throughput on an hourly basis, one can accurately estimate the effect of battery aging

for cost optimization and well-informed scheduling decisions for the hybrid microgrid.

Time(H) PWT1 PWT2 | PMT (KW) | PVL (kW) | PV2 (kW) | Load (kW)
(kw) (kw)
1. 659 687 428 0 0 1469
2. 697 706 439 0 0 1320
3. 698 697 365 0 0 1258
4, 666 575 452 0 0 1225
5. 668 673 447 0 0 1316
6. 717 672 347 0 15 1500
7. 710 692 531 10 71 1660
8. 710 731 496 66 88 1650
9. 714 745 503 97 115 1636
10. 705 686 507 121 139 1640
11. 677 659 363 137 152 1642
12. 697 637 372 144 162 1663
13. 698 560 349 142 160 1590
14, 693 650 400 132 154 1640
15. 700 651 599 118 132 1635
16. 697 656 137 93 106 1672
17. 700 661 380 60 82 1910
18. 698 658 617 15 45 1995
19. 644 667 651 0 1 2208
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20. 673 663 703 0 0 2215
21. 675 660 743 0 0 2145
22. 687 641 695 0 0 1900
23. 692 673 710 0 0 1662
24. 671 647 710 0 0 1660

Table.1 Generation maximum limits on DGs and Predicted Load.

Hourly maximum output power of each DG and predicted load demand profile
were given in Table 1. Here, our microgrid framework minimizes operating and
electricity costs while respecting these generation constraints and meeting hourly load
requirements. Power allocation is achieved in the optimal coordination of the DGs and
BESS, with degradation effects of batteries explicitly taken into consideration.
Accelerated Particle Swarm Optimization (APSO), MJAYA algorithm, and an IP-LP
solver are used for solving the problem. A comparative analysis is conducted with
respect to operational cost, electricity cost, and BESS degradation parameters between
heuristics and the IP-LP technique. Optimum solutions provide one-hour throughput
and degradation cost, with the BESS lifetime being estimated within power limits
(minimum and maximum) for 24 hours. Results describe the better performance of the

IP-LP solver in cost minimization as well as in resource exploitation.

Algorithm Type Average Actual throughput Attained Life
throughput (discharge)(MWh) Time(LT)years
(discharge) (kWh) for year
APSO 396 3.480 3.13
MJAYA 412 3.616 3.32
LP-IP based solver | 420 3.704 3.40

Table.2.Life Time comparisons with average and actual throughputs from BESS

Table 2 summarizes the comparison between BESS lifetime and the average energy
throughputs corresponding to them and the actual energy throughput. It has been
observed from the results that BESS lifetime is improved proportionally with
throughput-based discharges; in other words, greater energy throughput implies longer
operational life. Additionally, it can be inferred that the solver-based optimization
technique outranks heuristic methodology in achieving the maximum lifetime of the

battery and making the best use of throughput parameters.
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Algorithm Type | Unit Cost of BESS based on | Operating Cost(Rs) with BESS
degradation (Rs/kWhr)
APSO 100.50 6475
MJAYA 97.95 6356
LP-IP based Solver | 95.20 6202

Table.3. Average degradation cost of BESS comparison with microgrid operating cost
Table 3 presents a comparative performance analysis pertaining to the BESS
degradation cost and overall operating costs incurred by the microgrid. The degradation
cost of the BESS is computed from equation (11), considering investment cost and
average energy throughput (kWh). Presented with the degradation costs, the microgrid
operating cost is then calculated accordingly. From the results, it is abundantly evident
that the solver-based optimization technique manages to perform better than heuristic

techniques, with lesser degradation and overall operating costs.

Algorithm | Operating cost of BESS without | Operating cost of BESS with
degradation effect (Rs) degradation effect(Rs)
APSO 6403 6473
MJAYA 6223 6356
LP-IP based | 6160 6201
Solver

Table.4. Average microgrid operating cost comparison with and without BESS
degradation effect
Table 4 presents the results for the microgrid operating cost, considering and ignoring
the degradation effects of the BESS. As explained in equation (9), considering
degradation cost adds an extra weight to the total operating cost formulation. Though
the results indicate that operating costs go up when degradation is considered, the
LP-IP solver has been able to produce lesser operating costs vis-a-vis heuristic methods,
proving the solver's potential to dampen the cost implications of degradation and render

superior cost optimization to the microgrid system..

Algorithm Average cost of electricity

without degradation effect (Rs)

Average cost of electricity
with degradation effect(Rs)




AUT Journal of Electrical Engineering
10.22060/EEJ.2025.24659.5743

APSO 13,115 12,970
MJAYA 12,876 12.804
LP-IP based | 12,842 12,742
Solver

Table.5 Electricity cost comparison with and without degradation effect

The degradation process introduces yet another factor in the microgrid operating
cost-increasing total cost of operation. This arises from the fact that degradation
expenses come in addition to system operation expenses. Nevertheless, the
acknowledgment of degradation allows the operator to pick an optimum size of the
BESS matching the load considered, which prevents future escalation of costs. The
significance of degradation modeling lies in that, in terms of electricity cost, this
remains beneficial; the higher energy throughput of the BESS under this method tends
to reduce electricity billing, which can work to its advantage in cost reduction under

various load conditions.

Algorithm | Average operating cost of | Average cost of electricity with BESS
BESS degradation effect(Rs) | degradation effect(Rs)

APSO 6475 12,975

MIJAYA 6356 12,804

LP-IP based 6201 12,746
Solver

Table.6.Average operating and electricity cost comparisons with degradation effect

Table 6. Clearly shows that the degradation effects really influence the minimization of
operating and electricity costs. Among heuristics, JAYA comes closest to perfect
theoretical solutions; but the LP-IP solver always does better than any heuristics in
terms of theoretical optimization. The results also confirm that greater degradation
parameters, including average kWh and actual MWh throughput, result in greater
operating costs but lower electricity costs simultaneously. Degradation-based analysis
for BESS sizing shall be entertained for the purpose of predicting replacement intervals
accurately, which leads to the planning of costs and, consequently, the lessening of
operational burden on the microgrid in the future and making the whole cost system

more efficient in the long run.

Algorithm SoC (Min %) Soc (Max %)

APSO 6.4 83.2
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MJAYA 8.6 91.4

LP-IP Solver 9.2 93.1

Table.7. Range of Minimum and Maximum values of State of Charge (Soc)

The minimum and maximum State of Charge values that define the charging state of
the BESS are summarized in Table 7. It is very important for the SoC to be defined
accurately as the sizing of the BESS depends directly upon it, with higher SoC
implying more use of the stored energy so that the intermittent DGs and the utilities
would be less involved in power generation, thereby reducing operating and electricity
costs. For this paper, temperature effects on life cycles have been neglected, and
degradation has been evaluated only in view of life, cost, and DoD. High DoD leads to
accelerated aging of the battery; however, it has been confirmed that DoD does not go
below 60% throughout the lifetime considered for evaluation.

BESS sizing, when taking degradation effects into account, becomes optimal in terms
of balancing costs relative to benefits. Using the LP-IP solver, 428 kWh size for BESS
has resulted as an optimal size for 550 kW capacity system in which the BESS would
incur an operating cost of nearly Rs. 6221 for one day (24 hours). The results inferred
that whenever smaller BESS sizes are taken, one has to bear higher operating costs, but
a slightly higher cost with larger sizes is there to give a very low mismatch between

generation and load demand.
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Fig.2. Operating cost of Microgrid Comparison with MJAYA algorithm and LP-IP
solver
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Fig.3. Operating cost of Microgrid comparison with heuristics and LP-IP solver
methods

Figure 2 presents the side by side comparison between the Modified JAYA (MJAYA)
algorithm and the LP-IP solver in the context of minimizing operating cost. The results
show evidence proving that the LP-IP solver performs better than any other method
considered, yielding the most optimal solutions in scheduling-based cost minimization
problems.Figure 3 shows the universal comparison of all algorithms with respect to
performance in cost reduction. Among the heuristic approaches, the JAYA algorithm
seems to have yielded better results than other heuristics in most cases. Yet, the LP-IP
solver, which aims to minimize the objective function in consideration of BESS
degradation effects and satisfies load demand over the 24 hours horizon, is unavoidably
the best among all heuristics.
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Fig.4. Error variation with MJAY A and LP-IP solver methods for 24hrs
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Fig.5. Error with comparison heuristics and solver methods for 24hrs

Simulation results of grid power drawn over a 24-hour horizon are presented in Figs 4
and 5 using the LMJAYA, heuristic methods, and LP-IP solver. Here, "error" is the
residual supply that is drawn from the grid after power is dispatched by the DGs and

BESS towards meeting load demand during cost optimization. Results suggest that

LP-IP solver yields the minimum error in comparison with the heuristic approaches as

it maximizes the total throughput of BESS while considering degradation effects.

Tables 8 and 9 present the respective optimal power dispatch for DGs and BESS in

grid-connected mode accounting and non-accounting for degradation effects. The

results signify that the solver yields cost-efficient operation under all load conditions.

Time(H) | PWTL | PWT2 | PMT PV1 PV2 PBESS | PGRID
(kW) (kW) (kw) (kw) (kw) (kW) (kw)
1 483.90 | 244.45 | 261.63 0 0 42275 | 573
2 499.33 | 506.29 | 208.88 0 0 42.27 -71.8
3 486.63 | 371.67 | 193.40 0 0 12621 | -845
4 274.83 | 35746 | 114.15 0 0 40411 | -795
5 295.66 | 342.26 | 290.46 0 0 300.27 | -90.4
6 537.41 | 296.11 | 364.88 0 0 27119 | -418
7 318.49 | 390.64 | 352.92 0 48277 | 484.26 -117
8 318.67 | 44517 | 396.11 9.79 2127 | 32010 | -1441
9 377.90 | 330.64 | 391.24 | 4111 1651 | 300.34 | -185.9
10 309.77 | 378.82 | 272.05 | 32281 | 107.51 | 366.97 -176
11 306.85 | 352.26 | 280.38 | 109.53 | 77.32 | 429.17 | -101.4




AUT Journal of Electrical Engineering
10.22060/EEJ.2025.24659.5743

12 429.16 415.53 368.87 114.36 100.391 86.68 -151
13 254.21 356.91 324.91 149.208 | 108.294 270.41 -138.5
14 382.92 326.47 314.56 94.245 150.010 217.74 -156.9
15 367.86 354.06 361.57 104.127 | 114.757 240.46 -100.8
16 371.25 311.54 424.14 25.626 90.217 298.43 -156.7
17 418.93 490.26 468.41 87.093 36.550 257.28 -161.6
18 427.17 504.80 432.01 46.272 1.382 442.26 -147.4
19 546.35 474.49 547.32 4.679 2.503 492.42 -145.3
20 539.54 527.21 541.58 0 0.7077 470.52 -140.4
21 550.94 49551 537.42 0 0 441.27 -124.4
22 491.23 415.34 365.64 0 0 471.68 -158.2
23 310.69 457.92 298.61 0 0 365.42 -137.2
24 422.01 412.41 339.37 0 0 413.26 -76.5

Table.8. Optimal power discharges from DGs and BESS with degradation effect

Time(H) | PWT1 PWT2 PMT PV1 PV2 PBESS PGRID
(kw) (kw) (kw) (kw) | (kw) (kw) (kw)

1 483.91 245.45 258.65 0 0 428.75 -54.4
2 499.32 571.23 207.88 0 0 46.27 -65.8
3 486.6 622.6 193.4 0 0 128.21 -82.7
4 74.83 576.4 114.15 0 0 407.11 -80.8
5 296.6 249.2 292.46 0 0 306.27 -85.8
6 537.40 296.1 217.82 0 0 275.19 -37.3
7 417.49 490.64 462.91 0 48273 | 486.26 -114
8 519.67 546.17 360.11 9.79 21.27 324.10 -142.4
9 477.90 430.6 433.24 42.11 16.5 304.36 -182.7
10 409.78 478.83 377.06 32.280 | 108.51 | 366.98 -174
11 306.86 352.27 269.38 107.53 | 77.35 431.18 -98.5
12 429.18 550.5 368.87 115.36 | 100.39 | 90.68 -147
13 454.20 389.92 324.91 149.90 | 108.29 |473.4 -135.1
14 482.9 426.47 408.55 94.247 | 156.67 | 220.76 -155.9
15 367.85 394.05 361.57 104.12 | 11475 | 3434 -98.1
16 371.25 5115 513.15 25.627 | 90.217 | 300.4 -154.4
17 255.92 490.26 468.40 87.093 | 36.55 260.28 -160.1
18 427.18 504.80 463.00 46.272 | 1.38 445.27 -144.2
19 546.36 474.49 547.31 4.679 2.503 300.43 -143.1
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20 539.55 405.20 541.59 0 0.707 474.52 -139.3
21 550.90 595.52 558.45 0 0 445.27 -122.1
22 496.24 515.35 465.65 0 0 476.68 -155.6
23 410.62 557.96 598.63 0 0 402.42 -133.5
24 522.01 426.40 439.39 0 0 416.26 -72.5

Table.9. Optimal power discharges from DGs and BESS without degradation effect

The consideration of BESS degradation effects makes it possible to alleviate the utility's burden to
some degree. Hence, under this consideration, both the microgrid operator and the end-user benefit
significantly. Premature aging can be avoided by accurately estimating battery application lifetimes
and degradation costs, thereby lessening electric bills and guaranteeing reliability. Correct sizing of
the BESS under the HRES environment can guarantee power supply from a few kilowatts to several
megawatts, especially in far-flung areas where lesser dependence on the grid is a serious
constraint.Now, the LP-IP solver performs better because it converts the objective function into a
constraint system (some call it "Presolve") and generates feasible initial solutions on the basis of
Karush-Kuhn-Tucker (KKT) conditions to chop off the non-feasible regions. This way, it quickly
reaches optimal power allocations down to minimum operating cost. The solver also treats
discontinuous objective functions very well as constraints approximated to boundary conditions, so
they can be re-evaluated in alternate operating scenarios. This approach guarantees global minima

and hence makes the LP-IP solver very robust for constrained microgrid cost optimization.

Simulation Parameters Values
Population size 50
Prediction horizon 24 hrs
Maximum number of iterations 200

BESS Power capacities 50 to 500 kW
Operating cost of PV 67 Rs/kWh
Operating cost of wind 60 Rs/kWh
Operating cost of MT 49 Rs/kWh
Wind Turbine ratings 0 to 700 kW
Microturbine ratings 0 to 700 kW
Solar PV ratings 0 to 150 kW
Grid power ratings 0 to 300 kW

Table.10. Simulation parameters and ratings of DGs

BESS parameters with Degradation effect Values
Battery Capacity 500kWh
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Battery Power Ratings 50-500 kW
Battery investment cost 45,000 Rs
Operation and Maintenance Cost 600 Rs/kWh
Replacement Cost 60 Rs/kWh
Total average life time specified for one year 1.2 MWh
Interest rate 0.06

Table.11. Simulation parameters for BESS with degradation effect

In Table 10, simulation parameters are given for Hybrid DGs and LI-BESS. The
optimal operating and electricity costs are obtained considering the minimum and
maximum bounds of power generation for the DGs and the BESS. Power outputs and
throughput of DGs and BESS in hourly scheduling have to be within rated capacity to
operate reliably and avoid overloading.Table 11 depicts the simulation parameters of
BESS when degradation is taken into consideration. Using those parameters,
degradation costs, and lifetime are computed based on battery investment costs and
average total energy throughput (kWh). Then, this degradation cost is incorporated in
the optimization framework to evaluate operating and electricity costs. The integration
of BESS degradation modeling into the cost analysis of microgrids provides more
accuracy and henceforth, a better ground for decision-making in DER-integrated
systems.

The simulation was carried out for a grid-connected residential microgrid
where the generation from PV, wind, and microturbine units, along with BESS dispatch,
fully satisfies the hourly load demand under all constraint conditions (DG limits, SoC
bounds, and grid power limits). This ensures the operational feasibility of the results.
The results are presented with and without considering BESS degradation cost. The
comparison clearly shows that including degradation in the optimization framework
leads to a more accurate estimation of operating and electricity costs and provides
longer effective battery life. This validates that the degradation-aware model better
represents real operating condition.

6. Conclusions and future scope

Achieving reliable and economically feasible microgrid operation highly depends on
appropriate battery sizing and cost-benefit analysis. This study proposed an
optimization framework with the objective of minimizing microgrid operation and
electricity costs while explicitly considering the degradation effect on life estimation. A
Hybrid Renewable Energy System (HRES), combining wind, photovoltaic, and
microturbine units with a Lithium-Ion Battery Energy Storage System (LI-BESS), was
modeled and optimized using heuristic algorithms, such as APSO, MJAYA as well as a
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Linear Programming Interior Point (LP-IP) solver. Simulations for a 24-hour period
revealed the LP-IP solver to be superior to all other heuristic methods while also
producing the least operating and electricity cost results and meeting the load demand.
The LP-IP solver achieved the lowest total operating cost of Rs. 6202, outperforming
M-JAYA (Rs. 6356) and APSO (Rs. 6475), while also producing the minimum average
cost of electricity (Rs. 12,742) and extending BESS lifetime to 3.40 years compared to
3.32 years (M-JAYA) and 3.13 years (APSO). The degradation cost was found to be
lowest for LP-IP at Rs. 95.2/kWh, confirming its superior optimization capability.
Results further revealed that higher BESS throughput (396-420 kWh daily, 3.48-3.70
MWh annually) increases operating cost marginally but enhances lifetime and reduces
user-side electricity cost. The proposed throughput-based degradation model also
determined an optimal BESS capacity of approximately 428 kwh for a 550 kW hybrid
system, satisfying all technical constraints and achieving reliable power supply.
Overall, the results validate that degradation-aware optimization provides more
accurate economic planning, improves BESS utilization, and supports sustainable
microgrid operation, with the LP-IP solver emerging as the most effective and
computationally efficient approach. Future research will improve this framework by
considering calendar-life and capacity-based degradation models, incorporating DoD
and SoC variations, and investigating HESS to yield enhanced performance and further

cost reductions.
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