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Abstract: The microgrid is described as a localized low-voltage power distribution system 

integrating DG units and ESS to supply electricity to some small or remote communities. In 

this respect, the ESS stores energy when demand is low and releases the stored energy during 

peak hours. Real-time power balancing remains a major issue for isolated micro-grids using 

intermittent renewable DG sources. Battery Energy Storage Systems (BESS) can solve the 

problem as they can offer reserve capacity to meet the load changes. However, battery 

degradation significantly affects the BESS lifetime performance because degradation depends 

upon the cumulative energy throughput which has units in terms of kilowatt-hours (kWh) or 

megawatt-hours (MWh). When there is degradation affecting capacity reduction, there is a 

direct impact on the energy delivered to the load, and therefore it must be considered in system 

optimization. To reduce the operation costs and to make the electricity prices affordable for 

the consumers, the degradation effects must be included while optimizing the microgrid 

operation. For this, more detailed simulation on an hourly basis of battery discharge profile 

needs to be performed so as to assess the degradation effects based on actual discharge 

patterns. Then degradation costs and life estimations are included in the optimization. It is 

observed that higher average kWh and actual MWh throughput parameters increase operation 

costs in general while lower the electricity cost for the end user. This study presents an 

optimization method for minimizing microgrid operating costs and customer electricity 

expenses over the 24-hour period under consideration, with explicit modeling of BESS 

degradation. Accelerated Particle Swarm Optimization (APSO), the Modified Jaya (M-JAYA) 

algorithm, and the Linear Programming Interior-Point (LP-IP) method are implemented to 

optimize parameters related to degradation. Comparative results showcase the ability of these 

algorithms with respect to BESS lifetime, degradation cost, system operating cost, and 

customer electricity cost. 

KEYWORKS: Battery Energy Storage Systems (BESS), Microgrid, Distributed 

Generations, Throughputs, Degradation effect, optimization. 
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Introduction 

Microgrids integrating Distributed Energy Resources (DERs) are increasingly 

recognized as future smart grid system implementations of the new age. Microgrids, by 

being equipped with renewable DG units and ESS, pump power to local as well as 

remote communities while simultaneously improving the resilience of the entire 

system. But the intermittent generation of renewable DG is often not synchronized with 

load demand fluctuations, which results in fluctuations in voltage and frequency. These 

fluctuations, however, can be regulated through the export and import of energy using 

ESS by storing energy at times of low load demand and discharging it at times of high 

demands, thus, ensuring reliable and stable power supply. While many ESS 

technologies are present, Battery Energy Storage Systems (BESS) have attracted 

considerable interest due to their immense energy/power density levels, scalability, and 

potential for applications such as peak shaving, renewable integration, and load 

levelling within Microgrids [1]. For grid-connected applications, Lithium-ion batteries 

are broadly used, mainly because of their high energy density, longer cycle life, and 

ability to operate at high depths of discharge (DoD). The performance of a BESS 

depends highly on its lifetime and discharge rate, which directly affect energy 

efficiency and system economics [2], [3]. 

Until the settings are optimized to offer uninterrupted power supply, Microgrids need 

operation in a manner that takes both operational and electricity costs into 

consideration. This staircase requires proper determination of BESS sizing and aging 

consideration over time. Battery degradation, mainly caused by energy throughput and 

cycling of discharging and charging cycles, is the most vital factor affecting both 

lifetime and capital cost of the storage system [4]. However, while there are many 

studies on cost minimization of microgrid systems using BESS, most of them neglect 

degradation consideration or consider it in a very simplified capacity-based approach 

[5]. More recently, microgrid operation and battery sizing have been addressed by 

many different optimization approaches, including In [6], a Mesh Adaptive Direct 

Search (MADS) algorithm was employed to identify the optimal operating strategy of a 

microgrid, focusing on operating cost minimization while satisfying load and 

generation constraints. An Adaptive Modified Particle Swarm Optimization (AMPSO) 

approach was developed in [7] to optimize the 24-hour operational scheduling of a 

microgrid comprising Distributed Generators (DGs) and BESS. Similarly, [8] proposed 

a Mesh Adaptive Direct Search (MADS) framework for operating strategy 

determination and operating cost minimization in a hybrid microgrid environment. 

Model Predictive Control (MPC)-based optimization framework is presented in [9-10] 

to determine the optimal size of BESS that maximizes the total profit from wind power 

firming. The study highlights that incorporating an MPC scheme and enables dynamic 

decision-making that accounts for forecasted wind power variability and market prices, 

leading to better economic performance compared to static scheduling methods. An 
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adaptive modified firefly algorithm (AMFA) was developed in [11] to manage the 

operational uncertainties of distributed generators (DGs) and energy storage devices 

within the microgrid. This metaheuristic approach enhances the convergence speed and 

avoids local minima, providing robust and near-optimal solutions for cost-effective 

operation and optimal sizing of the storage units under stochastic conditions. 

                      Linear/Integer Programming and Mixed-Integer Linear 

Programming (LP/MILP) when non linearities are linearized are used when tractability 

is needed and data are deterministic and are widely applied for techno-economic 

optimization and planning [13]. Scenario-based stochastic programs or 

chance-constrained formulations to capture renewable and load uncertainty improve 

out-of-sample economic performance but increase computational cost [14]. [15] 

propose KKT reductions and heuristics for detailed battery degradation, converter 

nonlinearities, or market interactions; sometimes invoked as bi-level problems 

(planning upper level, operational scheduling lower level[16]. 

  

[12] utilized the Particle Swarm Optimization (PSO) technique to determine the 

optimal size of BESS aimed at minimizing the microgrid operating cost. The proposed 

method leverages peak load levelling and energy-saving strategies to reduce both the 

total energy cost and peak demand charges. The PSO-based approach effectively 

balances computational simplicity and accuracy, demonstrating significant cost 

reductions when compared to heuristic or deterministic methods While these 

approaches offer some degree of promise, degradation cost is either completely ignored 

or models based on cycle life or calendar life are adopted, which are not useful in 

expressing the truly real-time operational conditions. On the other hand, 

throughput-based degradation models are able to offer a better operational 

representation for microgrid cost optimization and lifetime prediction, estimating cost 

and lifetime as a function of the total energy discharged [14-16].  

The present study attempts to fill this uncertainty gap by developing a 

throughput-based degradation model for a BESS within a hybrid renewable energy 

microgrid. The proposed framework outputs average kWh throughput, total MWh 

discharge, degradation costs, and BESS lifetime and then integrates them within a cost 

optimization problem. The objective is to minimize microgrid operating cost (OC) in 

conjunction with the cost of electricity (COE) while guaranteeing reliable power 

dispatch from DGs and BESS. Predicted power from wind, PV, and microturbine drops 

are used over a 24-hour time horizon, and four optimization algorithms, LP-IP, PSO, 

APSO, and M-JAYA, are deployed for comparative evaluation. Our study's uniqueness 

is found in its dual-objective cost framework, throughput-driven degradation model, 

and comparative optimization approach using LP-IP, all of which work together to 
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create a methodology for BESS sizing and operation in hybrid mcrogrids that is more 

precise, economical, and practically implementable. 

The present paper is organized as follows: Section 2 describes the microgrid 

topology and component modeling. Section 3 includes the problem formulation and 

BESS degradation simulation parameters. Section 4 entails the problem optimization 

and algorithmic implementation. Section 5 closes with a discussion and comparison of 

results, including operating cost, electricity cost, and degradation parameters. Section 6 

summarizes the study and describes scope for future research, followed by references in 

Section 7. 

 

2. System model and configuration 

 
Fig .1.  Test system consisting of Hybrid DGs and BESS in microgird 

The discussed energy management framework is based on a grid-tied residential 

microgrid that interfaces with multiple HRES along with the BESS. The Renewable 

Generation Units comprise PV panels, WTs, and MTs as viewed in Fig. 1. The inverter 

operates on a bidirectional mode to enable power conversion from DC to AC or vice 

versa, whereby energy stored in BESS can be dispatched into the utility grid during 

peak demand or local load support. The control strategy of the operating system is 

dictated by minimum and maximum states of charge of BESS, which forbids the 

overcharge or deep discharge of the battery to prolong battery life and safe operation. 

So, it is an optimization system against operating costs and costs of electricity 

considering degradation effects and lifetime constraints of BESS under reliable load 

demand.  

Islanding of the microgrid starts if an outage occurs in the grid and it can be 

islanded manually or automatically depending on load characteristics and system 

capacity. Manual islanded operation, mainly identifiable in hardly large or complex 
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installations like hospitals, hotels, and manufacturing plants, consists of load 

prioritization carried out by the operator. Priority loads are connected dynamically 

depending on operational requirements during daytime, nighttime, or seasonal 

variations. On the other hand, automatic islanded operation offers a fast and seamless 

transition from grid disconnection through electronically controlled circuit breakers. 

This way is preferable for sites with single buildings such as a residential house or a 

supermarket where easy load distribution allows the microgrid to meet demands for 

base and peak. 

In general, islanded operation is adopted for disaster recovery or emergency 

situations given that it is technically and economically less feasible for a standalone 

system to operate perpetually. However, the system can indefinitely sustain critical 

loads until restoration of grid service, provided the BESS is adequately sized and 

resources are scheduled properly. On reconnection, the microgrid switches back to 

grid-tied mode without compromising supply reliability. This dual-mode operation 

thereby ensures that the proposed system can provide continuously, highly reliable 

power during both normal and contingency situations, thus solidifying resilience and 

improving the overall efficiency of energy management at a residential level. 

2.1 Modelling of Photovoltaic system 

A photovoltaic (PV) system in the proposed microgrid environment constitutes part of 

the hybrid renewable energy sector for conversion of solar radiation into electrical 

power. Being highly dependent on sunny irradiance and with its statistics in turn 

subject to considerable temporal variability arising from weather conditions and 

environmental factors, the PV power output is stochastic in nature, and thus it requires 

accurate modeling so as to guarantee its reliable energy management with integration 

into other Distributed Generation (DG) units and the Battery Energy Storage System 

(BESS).STC and NOCT are then referenced for achieving accurate modeling. STC 

assumes an irradiance of 1000 W/m², a cell temperature of 25°C, and an air mass of 1.5. 

NOCT, however, represents more reasonable operating conditions with respect to 

ambient temperature and actual irradiance levels. Depending on temperature, the 

temperature coefficient further affects the performance of PV modules because it 

accounts for output reduction at higher temperatures[17-18].The PV system could 

extract the optimum energy with varied solar conditions with help from the Maximum 

Power Point Tracking (MPPT) controller. The MPPT sets the PV array operating point 

dynamically under all conditions of irradiance and temperature to deliver maximum 

power to the microgrid or battery storage. 

The instantaneous electrical power output (t)-of the PV system at time 𝑡 is obtained 

from the following relation: 

PPV=PSTC. (GC/GSTC) [1 + k (TC – TSTC )]        (1) 
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Where PSTC is the rated power of a PV module at STC, 𝐺𝐶 is the solar 

irradiance on the working plane of the PV system (kW/m²), 𝐺𝑆𝑇𝐶 is the irradiance at 

STC (1 kW/m²), 𝑇𝐶 is the cell temperature, 𝑇𝑆𝑇𝐶 is the temperature at STC, and 𝑘 is the 

temperature coefficient of power.  

The model provides a robust framework to forecast photovoltaic power 

generation under varying environmental conditions and will thus serve as input for the 

optimization of energy dispatch in the hybrid microgrid system.  

2.2 Modelling of Wind power system 

Wind energy conversion interprets the kinetic energy of moving air masses into 

the mechanical energy by means of a wind turbine, which is then converted into the 

electrical energy through a generator. Mainly, it is wind speed to determine the power 

generated by the wind turbine and that cannot be held constant due to meteorological 

and geographical restraints [19-20]. The truly random nature of wind speed thus calls 

for an adequate modeling scheme for enhancing predictive capabilities on power 

generation and aiding in the effective coordination of other DG-type generation units 

along with the BESS.Wind harnessing is proportional to the cube of wind speed; 

therefore, any small variation in the velocity can translate into huge fluctuations in 

power output. The relationship between the electrical power and the wind speed is 

governed by parameters specific to the turbine, cut-in speed (minimum wind speed 

required to generate power), rated speed (wind speed at which maximum rated power is 

achieved), and cut-out speed (wind speed beyond which the turbine ceases operation to 

prevent mechanical damage). These parameters characterize the performance of the 

turbine under given environmental conditions.At time 𝑡, the electrical power output 

PWT of a wind turbine can be expressed as follows: 

 

a + b*Vw              Vci ≤ Vw ≤ Vr 

PWT=     0             Vw ≤ Vci ,Vw≤ Vco                                                (2) 

   Pr                       Vr ≤ Vw ≤ Vco 

 

 

Where   a = (Pr .  Vci Vci⁄ − Vr)andb = (Pr Vr −⁄ Vci) 

Vci , Vco , Vw and Vr are the cut in, cutout, nominal and rated wind speeds respectively. 

The behavior of wind speed can be simulated by using Weibull distribution function. 

This piecewise function considers the turbine's operation limits for a proper depiction 

of the power curve. When combined with real- or forecasted wind speed data, the 

system can estimate hourly energy contributions from wind power to include in the 

overall optimization framework for the hybrid renewable energy microgrid. 

2.3 Modelling of Microturbine  
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Microturbines are compact single-stage combustion turbines that find various 

applications for distributed generation due to the ability to ensure production of reliable 

power of some kilowatts to several megawatts. In construction, microturbines are 

simplified versions of gas turbines with a rotating turbine and compressor and usually 

fuelled by natural gas, diesel, and biogas. Their modularity and efficiencies at partial 

load as well as their capability of CHP make them appropriate choices for hybrid 

renewable microgrids, especially at the residential and small commercial level [21]. 

 

In a hybrid framework, microturbines are treated as controllable power sources that 

complement variable renewable energy units such as PV panels and wind turbines. In 

contrast to renewable units whose power output cannot be controlled, a microturbine's 

power output can be controlled, within operational limits, according to load requests 

and fuel availability to provide the much-needed quick assessment of-demand 

fluctuations. Indeed, the operating cost of a microturbine depends on fuel consumption 

as well as maintenance cost, for which proper cost modelling should be adopted for 

optimization. In this study, the power output of the microturbine is assumed to change 

randomly between minimum and maximum operational limits, thus describing the real 

power load-following operation of the microturbine [22-23]. The cost function of the 

microturbine power is assumed to be a linear function expressed as: 

                        C (PMT) =a +b P                                 (3)    

where 𝐶𝑀𝑇 is the cost of power generation (in $/kWh), 𝑃 is the output power expressed 

as a fraction of the rated capacity of the turbine, while 𝑎 and 𝑏 are parameters of the cost 

function and were taken as 0.0325 and 0.014, respectively [29]. 

This cost function has been integrated into the overall optimization framework of the 

microgrid so that its operating costs can be assessed under various dispatch strategies. 

By taking advantage of the predictable behavior of microturbines and the stochastic 

nature of renewable outputs, the hybrid system can provide better levels of reliability 

and cost efficiency. The flexible operation of the microturbine supports microgrid 

performance when solar or wind generation is low and bridges operation between 

grid-connected and islanded modes. 

2.4 Modelling of Lithium Ion Battery Energy Storage Systems 

Battery Energy Storage Systems are considered very important in view of actually 

operating a microgrid with an intermittent renewable DG and backup power to ensure 

load reliability. Batteries during storage absorb surplus power during low-demand 

periods and discharge during high demand, increasing system stability and otherwise 

reducing costs for power in the customer's cost calculation. Li-ion batteries stand very 

popular among many kinds due to their excellent energy density, long cycle life, 

extremely low self-discharge, for islanded and grid-connected microgrid 
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operations[24-25] 

The degradation characteristics determine the performance and economics of 

Li-ion Battery Energy Storage Systems, thus relevant to its lifetime and operating cost. 

A battery degrades by aging through charge-discharge cycles, therefore, degradation is 

strongly related to the energy throughput over time. Hence degradation modeling 

becomes inevitable since it is used to assess lifetime costs and optimizes microgrid 

operation. 

In this case, the Li-ion battery is proposed to be represented by throughput-based 

degradation parameters, restricting charge and discharge rates hourly. Energy stored to 

or supplied by a battery at time 𝑡 is always constrained by its minimum and maximum 

capacity limits to always ensure that the battery is not under unsafe or undesirable 

operating conditions such as overcharging or deep discharging. 

 

2.4.1 Charging mode: 

CBES,t+1 = min{(CBES,t − ∆𝑡PBES,t)
c
,  CBES min}                (4) 

PBES charge(t) = max {PBES min, (CBES,t −

CBES max)
charge

∆t
}                    (5) 

2.4.2 Discharging mode: 

CBES,t+1

= max {(
CBES,t − ∆tPBES,t


d

) , CBES min}                                          (6) 

PBES discharge(t) = min {PBES max , (CBES,t −

CBES min)
discharge

∆t
}                          (7) 

PBES charge and PBES discharge are the charge and discharge powers at each hour instant wrt 

PBES. PBESmin and PBES max are minimum and maximum BESS capacity limits in terms of 

power. CBESmin and CBESmax are the minimum and maximum stored energy capacity 

limits of BESS.charge and discharge are the charge and discharge efficiencies, which 

plays a significant role in delivering discharging power to the load. 

2.5 Utility grid                               

The utility grid acts as a secondary source of supplying power to meet the promissory of 

24 hours of load demand of the microgrid. During grid-connected mode, any deficit 

created from renewable generation and BESS output is met with power drawn from the 

grid. Load-one-fifty forecast mode supply and DG dispatch and BESS dispatch are 
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optimized for supply reliability to minimize use of grid power. The BESS-size is 

dynamically adapted to load changes for each hour to increase reliability and 

operational efficiency. Such an integrated approach helps to reduce microgrid operating 

costs, leading to continuity of supply against ever-changing demand conditions. 

3. Problem formulation of microgrid operating cost with BESS degradation 

cost and electricity cost 

In this work, a microgrid system based on HRES comprises essentially two wind 

turbine units, two PV units, two MT units, and a BESS. This configuration is conceived 

to supply the forecast hourly load demand with a view to enhancing supply reliability 

and minimizing utility grid dependency, thus minimizing electricity cost for the 

consumer. The proposed microgrid is supposed to meet the average load demand of 

about 1.78 kW through optimal dispatch of DGs and BESS, explicitly considering the 

degradation of the batteries.HRES, for microgrid, basically means continuous 

availability of power; proper load management; better system efficiency; and less 

maintenance of the system due to minimum servicing requirements. These benefits 

have therefore led the HRES to gain popularity in small-scale microgrid 

implementations involving residential, office, and similar low-power demand 

situations. 

In this study, the optimization target was set at minimizing the total operating cost of 

the microgrid, including DG operation and maintenance cost, BESS degradation cost, 

and TDC of energy supply, while reducing electricity prices for consumers in 

grid-connected mode through the fast and smart utilization of renewable resources and 

storage. 

𝐌𝐢𝐧(𝐎. 𝐂)𝐌𝐆 = ∑ {𝐃. 𝐆𝐜𝐨𝐬𝐭  + 𝐆𝐫𝐢𝐝𝐜𝐨𝐬𝐭  +  (𝐂)𝐁𝐄𝐒𝐒 + 𝐃𝐄𝐆𝐂𝐁𝐄𝐒𝐒}𝐓
𝐭=𝟏 (8) 

𝐌𝐢𝐧(𝟎. 𝐂)𝐌𝐆 = 𝐌𝐢𝐧 ∑ (𝐂𝐏−𝐃𝐆 +  𝐎𝐌𝐃𝐆 + 𝐂𝐠𝐫𝐢𝐝  + (𝐂)𝐁𝐄𝐒𝐒 +  𝐃𝐄𝐆𝐂𝐁𝐄𝐒𝐒 +𝐓
𝐭=𝟏

 𝐑𝐂𝐁𝐄𝐒𝐒)                                                                                                                   

(9) 

The operational cost of the microgrid is one that embraces respective costs paid on 

Distributed Generators, grid power, and BESS degradation as presented by equations (8) 

and (9) as the objective function. The cost components such as 𝐷𝐺Cost and 𝐶𝐵𝐸𝑆𝑆 relate 

to the energy supplied by the DG and BESS, operation and maintenance cost (O&M), 

replacement cost (RC) , 𝐃𝐄𝐆𝐂𝐁𝐄𝐒𝐒 reflects degradation cost and Costs for electricity 

supplied from the grid are referred to 𝐶𝑔𝑟𝑖𝑑. The BESS degradation cost is another 

important aspect, 𝐷𝐸𝐺C𝐵𝐸𝑆𝑆, which considers aging caused by charge–discharge cycles 

using throughput-based modeling. The degradation time calculations and life 

estimations outlined by Equations (10)–(12) are embedded into the operating cost 
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formulation to generate an operationally cost-optimized solution with satisfactory 

system disruption reliability [26-27]. 

 

𝐃𝐄𝐆𝐂𝐁𝐄𝐒𝐒 = [𝐖 ∗ 𝐂𝐁𝐄𝐒𝐒−𝐌𝐚𝐱](10) 

The parameter 𝑊 indicates the degradation cost for the Battery Energy Storage System 

(BESS) in Rs/kWh, derived from simulations using the average energy throughput and 

the initial cost of the battery. This value is added to the total operating costs to account 

for the aging of the battery from an economic perspective.  

𝐁𝐚𝐭𝐭𝐞𝐫𝐲𝐃𝐄𝐆 − 𝐂𝐨𝐬𝐭(𝐖) = {
𝐢𝐧𝐭𝐢𝐚𝐥𝐢𝐧𝐯𝐞𝐬𝐭𝐦𝐞𝐧𝐭𝐜𝐨𝐬𝐭𝐨𝐟𝐛𝐚𝐭𝐭𝐞𝐫𝐲(𝐑𝐬)

𝐀𝐯𝐞𝐫𝐚𝐠𝐞𝐤𝐖𝐡𝐫𝐭𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭𝐨𝐟𝐛𝐚𝐭𝐭𝐞𝐫𝐲
}(11) 

The degradation-based lifetime (𝐿𝑇) of the BESS is considered for its actual kWh 

throughput from the simulations and its average lifetime throughput specified by the 

manufacturer. The relationship is expressed mathematically through Equation (11), 

which is then used in the formulation of Total Day Cost to arrive at a proper 

lifetime-based cost. 

𝐁𝐚𝐭𝐭𝐞𝐫𝐲𝐋𝐢𝐟𝐞𝐓𝐢𝐦𝐞(𝐘𝐞𝐚𝐫𝐬) = {
𝐓𝐨𝐭𝐚𝐥𝐚𝐜𝐭𝐮𝐚𝐥𝐌𝐖𝐡𝐭𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭𝐟𝐨𝐫𝐲𝐞𝐚𝐫

𝐓𝐨𝐭𝐚𝐥𝐚𝐯𝐞𝐫𝐚𝐠𝐞𝐥𝐢𝐟𝐞𝐭𝐢𝐦𝐞𝐌𝐖𝐡
}(12) 

BESS total day cost (TDC) is implicit in Equation (13) and after taking degradation 

hazards into account, the total last cost functionally will be formed by Equation (14). 

 

   (𝐓𝐃𝐂)𝐁𝐄𝐒𝐒 =
𝐂𝐁𝐄𝐒,𝐌𝐚𝐱

𝟑𝟔𝟓
{

𝐈𝐑(𝟏+𝐈𝐑)𝐋𝐓

(𝟏+𝐈𝐑)𝐋𝐓−𝟏
∗ 𝐅𝐂 + 𝐌𝐂 + (𝐂𝐁𝐄𝐒,𝐌𝐚𝐱 ∗

𝐑𝐂

(𝟏+𝐈𝐑)𝐋𝐓)}           

(13) 

 

    (𝐓. 𝐂)𝐁𝐄𝐒𝐒−𝐃𝐄𝐆 = (𝐖 ∗ 𝐂𝐁𝐄𝐒−𝐌𝐚𝐱) ∗ (𝐓𝐃𝐂)𝐁𝐄𝐒𝐒(14) 

In computing the TDC for BESS, the average kWh throughput and real MWh 

throughput stand out as pivotal components for proper cost estimation. An accurate 

depiction of degradation would demand hourly simulations of different rates of battery 

discharge and could be contrasted with actual discharge profiles from the model. The 

total cost of electricity (COE), given in Rs/kWh and expressed in equation (15), is 

minimized subject to the load demand being completely satisfied. This cost of 

electricity is then multiplied by instantaneous load demand to obtain the electricity cost 

at each time step. 

𝐂𝐨𝐬𝐭𝐨𝐟𝐄𝐥𝐞𝐜𝐭𝐫𝐢𝐜𝐭𝐲(𝐂𝐎𝐄) =  
∑ (𝐂𝐏𝐕+ 𝐂𝐁𝐄𝐒𝐒+ 𝐂𝐌𝐓+𝐃𝐄𝐆𝐁𝐄𝐒𝐒)𝐓

𝐭=𝟏

∑ 𝐏𝐋
𝐓
𝐭=𝟏

(15) 

The maintenance cost equation for the DGs over the time horizon 𝑇 is said to be a 

summation of all maintenance costs of the DGs during every operating interval, stated 

as equation (16). 
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(MC)DG=[(MC)WT1+(MC)WT2 +(MC)PV1 + (MC)PV2 + (MC)MT]* T(16) 

3.1 Constraints 

The microgrid system with HRES and BESS is affected by inequality 

constraints. 

3.1.1 DGs constraints 

PWT1-Min ≤ PWT1  ≤  PWT1-Max                                         (17) 

 PWT2-Min ≤PWT2 ≤  PWT2-Max                                           (18) 

PPV1-Min≤ PPV1≤ PPV1-Max                                                 (19) 

PPV2-Min≤ PPV2 ≤ PPV2-Max                                                (20) 

PMT-Min≤ PMT≤ PMT-Max                                                   (21) 

The limits imposed set forth the minimum and maximum power-capacity constraints 

within which Distributed Generators must operate. Meeting these constraints ensures 

that predicted load demand is fulfilled. The integrated operating cost and cost of 

electricity functions are optimized, subject to full adherence to the DG capacity limits 

throughout the entire scheduling horizon. 

3.1.2 BESS constraints 

PBESS-Min≤ PBESS  ≤  PBESS-Max                       (22) 

SoCMin ≤ SoCBESS ≤SoCMax                            (23) 

From a sizing perspective, LI BESS is optimized with power capacity ranging 

from 50 kW to 500 kW and energy storage of 500 kWh for economic operation of the 

hybrid microgrid. One of the key issues in such optimization is that of estimation of 

SoC that shows the present level of energy stored in a battery. The SoC is required to be 

within the unit-ranged 0-to-1 for its correct working wherein 0 denotes fully discharged 

whereas 1 stands for fully charged states. Real-life working conditions would have LI 

BESS charging or discharging between 80 and 95 percent SoC, feeding on this window 

due to its energy density, steady power discharge, and extended cycle life [28-29]. 

In this research, BESS degradation cost analysis is carried out by estimating the 

lifetime from hourly discharge profiles while maintaining the SoC within prescribed 

limits; at about 35 percent SoC, accelerated aging sets in, with renewals possibly 

needed within its operational life. Hence, for minimum operating costs of the microgrid 

and to ensure system reliability as well as battery life, accurate determination of BESS 

size in terms of both average and actual energy throughput (kWh) is very essential. 

3.1.3 Grid Constraints 

A function of precision enhancement is ascribed to this cost in optimizing the efficient 

operations of the microgrid. Once power flow has been dispatched from the DGs and 

BESS, the grid supplies any remaining load demand at the prevailing unit energy price 

[33]. Hence, this formulation has ensured that operational costs were modeled under 

resource conditions when loads are varied. The power exchange between the grid and 
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microgrid is bounded by maximum and minimum power limits at each time step and is 

mathematically stated as follows: 

Pgrid-Min≤Pgrid≤Pgrid-Max                     (24) 

4. Implementation strategy with heuristic and LP-IP optimization algorithms 

Operating profiles and electricity costs are minimized and functions accounting for 

battery degradation and lifetime technically are solved using heuristics and a Linear 

Programming Interior Point (LP-IP) solver. The LP-IP technique provides better 

optimality in scheduling cost minimization compared to heuristics. Under heuristic 

optimization techniques, Particle Swarm Optimization (PSO), Accelerated Particle 

Swarm Optimization (APSO) and MJAYA algorithms are used to solve the objective. 

Linear Programming and interior point (LP-IP) solver based approach is used to solve 

the problem and compared with heuristic techniques to show the effectiveness of LP-IP 

solver. Results of operating cost and electricity bill minimizations, degradation costs 

and life time, average kWh and actual kWh throughputs of microgrid for 24hrs have 

been presented in a comparative analysis. 

4.2 Accelerated Particle Swarm Optimization 

An enhanced version of PSO, the Accelerated PSO (APSO), works with the global best 

(Gbest) only, to speed up convergence. With a Pbest and Gbest component, 

conventional PSO often can struggle to achieve better-quality solutions. Accordingly, 

to maintain diversity of search directions, APSO has removed Pbest and introduced 

some controlled randomness into the search process. This change tempers the 

shortcomings of the standard PSO by providing faster convergence and better 

optimization capabilities. The velocity update of APSO includes a random factor and is 

given in [30]. 

𝐕𝐢+𝟏 = 𝐕𝐢 + ( ∗ 𝐑𝟏) + 𝐑𝟐 ∗ (𝐆𝐛𝐞𝐬𝐭 − 𝐗𝐢)       (27) 

In APSO, the random variables R1 and R2are independently drawn from the uniform 

distribution in (0,1). To improve convergence even further, a monotonically decreasing 

function of randomness is introduced, defined as follows: 

 = 𝟎
𝐭(28) 

Where 0is also called an initial randomness parameter and lies usually between 0.5 

and 1. Product information, 0=0.5, and 𝑡 counts iterations. This approach slowly 

decreases the degree of randomness and helps efficiently converge while maintaining 

diversity. Simulation parameters include learning factors C1 = C2 = 2, inertia weight in 

the range 𝑊𝑚𝑎𝑥 = 0.9 to 𝑊𝑚𝑖𝑛 = 0.1, and overall 200 iterations. 

4.4 Modified JAYA (MJAYA) Optimization 

MJAYA optimization proposed in [31] is the modified version of original JAYA, to 

overcome the problem of premature convergence without trapping the solutions in local 

optima. The MJAYA optimization technique is the population based algorithm having 
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only 2 control parameters of population size and total number of generations. The 

change in MJAYA algorithm compare to original JAYA is the change in the solution 

update equation, which overcomes the problem of premature convergence still present. 

In MJAYA algorithm, the solution having best fitness acts as a reference to all other 

members (good and worst solutions) to intensify their position towards near to the best 

fit solution. The position update equation of MJAY A algorithm is given by following 

equation (30). 

𝐗𝐢,𝐣
′ = 𝐗𝐢,𝐣 +  𝐑𝟏(|𝐗𝐢,𝐣| − 𝐆𝐛𝐞𝐬𝐭,𝐣) + 𝐑𝟐(𝐆𝐰𝐨𝐫𝐬𝐭,𝐣 − |𝐗𝐢,𝐣|)

− 𝐌                             (30) 

Where ‘L’ is the iteration coefficient. If R1 and R2 ˃ 0.5 then L= 1 else L= -1. 

The solutions obtained by MJAYA are superior and more effective than all other 

implemented optimization methods in solving the problem of operating and electricity 

cost minimizations considering the best and worst solutions of the objectives in 

obtaining optimal solutions. 

 

4.5 Linear programming based interior point (LP-IP) solver 

LP-IP solver is used to solve both linear and nonlinear optimization problems 

considering inequality and equality constraints as variables. LP-IP solver finds 

minimum of a function specified by following expression.  

minx f(x) = {
𝐴. 𝑥 ≤ 𝑏

𝐴𝑒𝑞 . 𝑥 = 𝑏𝑒𝑞

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

}                                                                                         (31) 

Where f(x), b, beq, lb, ub are vectors and A andAeq are matrices. A and b corresponds to 

inequality constraints , Aeqand beq correspond to equality constraints and the lower 

bounds(lb) and upper bounds(ub) correspond to limits of the function which the 

objective is to be optimized. LP-IP based solver obtains optimal results because, the 

objective function will acts as a barrier which penalizes the  non-feasible solutions by 

satisfying the inequalities x ≥ 0 by using Karush- Khun- Tucker conditions[32-33], 

there by obtaining the minimized optimal solutions within the selected value of 

function tolerance. LP-IP solver method can handle the objective functions which are 

discontinuous by approximating the constraints of objective as a set of boundaries by 

changing them without reaching global minima. Therefore LP-IP solver algorithm is 

more accurate in solving the constrained minimization of the objective function within 

the bounds and converges to a global optimal solution. 

The Linear Programming interior point method (LP-IP) relies on having linear 

programming model with objective function and all the constraints being continuous 

and twice continuously differentiable. LP-IP solver expresses the objective function 
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with all the constraints, initial values, lower and upper bounds in the form of vector and 

matrices in a ‘linprog’ function and calls for Interior Point (IP) solver to execute the 

function. The syntax of LP-IP solver is given as in equation (32- 33): 

(X,fval,exitflag)=linprog(fun, Aeq,beq,A,b,lb,ub, options)(32) 

Options=optimoptions(‘linprog’,‘Algorithm’,‘interior-point’,‘display’,’iter’)(33) 

              The goal function uses a maximum of 200 iterations because the 

"linprog" function employs the interior point technique. "X" denotes the function's 

optimized value, and "fval" denotes the corresponding values of the objective function, 

where the best outcome was achieved. In this case, the LP-IP solver's maximum 

tolerance value is 1e-6. Because the LP-IP solver method converts the objective 

function to the standard form of LP-IP, it avoids the issues of implemented algorithms 

such as slow and premature convergence and stuck at local optima. This eliminates the 

non-feasible solutions that satisfy the constraint within the tolerance and maximum 

iteration count of the LP-IP solver algorithm method. 

4.5.1 Algorithm of LP-IP solver-based approach 

The proposed algorithm for microgrid operating cost and electricity cost minimization 

considering BESS degradation effect is described in the following steps. 

1. Read the input data profile (DGs power generations,  maximum and minimum 

capacity limits of BESS and Load profile) 

2. Initialize population size and cost coefficients of BESS and DGs. 

3. Develop and simulate the DGs and BESS scheduling algorithms and check for 

constraint violations. 

4. After obtaining each sub algorithm's goal function values from step 3, initialize 

the assignment matrix using those values. 

5. By incorporating the assignment matrix in an optimizer or solver to initialize 

the values of the objective function.  

6. Verify that the LP-IP solver has all constraints, including equality, inequality, 

lower and upper bounds, and objective function matrix allocation.. 

7. If yes, then use function called ‘optimoptions’ by describing the algorithm type 

and uses ‘disp’ and ‘iter’ options to execute the solver. 

8. Run the program using tolerance conditions, which shows the function's 

minimized value while meeting the limitations, and until the maximum number 

of iterations has been reached. 

          The other primary benefit of using LP-IP solver methods over other 

approaches is that they provide the majority of global minimum solutions 

without faltering at local optima and enhance the quality of the solution within 

the LP-IP solver's fixed iterations. In comparison to previous methods, this 

approach has a rapid convergence time and produces early convergence within 
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the limited minimization of the constraints. Given the aforementioned benefits, 

we have used the LP-IP solver approach to accomplish the goals because it 

produces the best results in a shorter amount of time.. 

5. Results and discussions 

A minimization of microgrid operational cost and that of electricity considering the 

effect of battery degradation over a 24-h schedule are discussed. The power outputs of 

the WT, PV, and MT units are simulated within the maximum rated limits for load and 

DG capacities [34-35]. The goal of the scheduling is to optimize operating and 

electricity costs, while fully satisfying the load demand. This is achieved through 

modeling the key BESS degradation parameters which include average and actual 

energy throughput (kWh), degradation cost, and battery life. By simulating the 

throughput on an hourly basis, one can accurately estimate the effect of battery aging 

for cost optimization and well-informed scheduling decisions for the hybrid microgrid. 

 

 

 

Time(H) PWT1 

(kW) 

PWT2 

(kW) 

PMT (kW) PV1 (kW) PV2 (kW) Load (kW) 

1. 659 687 428 0 0 1469 

2. 697 706 439 0 0 1320 

3. 698 697 365 0 0 1258 

4. 666 575 452 0 0 1225 

5. 668 673 447 0 0 1316 

6. 717 672 347 0 15 1500 

7. 710 692 531 10 71 1660 

8. 710 731 496 66 88 1650 

9. 714 745 503 97 115 1636 

10. 705 686 507 121 139 1640 

11. 677 659 363 137 152 1642 

12. 697 637 372 144 162 1663 

13. 698 560 349 142 160 1590 

14. 693 650 400 132 154 1640 

15. 700 651 599 118 132 1635 

16. 697 656 137 93 106 1672 

17. 700 661 380 60 82 1910 

18. 698 658 617 15 45 1995 

19. 644 667 651 0 1 2208 
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20. 673 663 703 0 0 2215 

21. 675 660 743 0 0 2145 

22. 687 641 695 0 0 1900 

23. 692 673 710 0 0 1662 

24. 671 647 710 0 0 1660 

 

Table.1 Generation maximum limits on DGs and Predicted Load. 

 

Hourly maximum output power of each DG and predicted load demand profile 

were given in Table 1. Here, our microgrid framework minimizes operating and 

electricity costs while respecting these generation constraints and meeting hourly load 

requirements. Power allocation is achieved in the optimal coordination of the DGs and 

BESS, with degradation effects of batteries explicitly taken into consideration. 

Accelerated Particle Swarm Optimization (APSO), MJAYA algorithm, and an IP-LP 

solver are used for solving the problem. A comparative analysis is conducted with 

respect to operational cost, electricity cost, and BESS degradation parameters between 

heuristics and the IP-LP technique. Optimum solutions provide one-hour throughput 

and degradation cost, with the BESS lifetime being estimated within power limits 

(minimum and maximum) for 24 hours. Results describe the better performance of the 

IP-LP solver in cost minimization as well as in resource exploitation. 

 

Algorithm Type Average 

throughput 

(discharge) (kWh) 

Actual throughput 

(discharge)(MWh) 

for year 

Attained Life 

Time(LT)years 

APSO 396 3.480 3.13 

MJAYA 412 3.616 3.32 

LP-IP based solver 420 3.704 3.40 

Table.2.Life Time comparisons with average and actual throughputs from BESS 

 

Table 2 summarizes the comparison between BESS lifetime and the average energy 

throughputs corresponding to them and the actual energy throughput. It has been 

observed from the results that BESS lifetime is improved proportionally with 

throughput-based discharges; in other words, greater energy throughput implies longer 

operational life. Additionally, it can be inferred that the solver-based optimization 

technique outranks heuristic methodology in achieving the maximum lifetime of the 

battery and making the best use of throughput parameters. 
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Algorithm Type Unit Cost of BESS based on 

degradation (Rs/kWhr)  

Operating Cost(Rs) with BESS 

APSO 100.50 6475 

MJAYA 97.95 6356 

LP-IP based Solver 95.20 6202 

Table.3. Average degradation cost of BESS comparison with microgrid operating cost  

Table 3 presents a comparative performance analysis pertaining to the BESS 

degradation cost and overall operating costs incurred by the microgrid. The degradation 

cost of the BESS is computed from equation (11), considering investment cost and 

average energy throughput (kWh). Presented with the degradation costs, the microgrid 

operating cost is then calculated accordingly. From the results, it is abundantly evident 

that the solver-based optimization technique manages to perform better than heuristic 

techniques, with lesser degradation and overall operating costs. 

 

 

 

 

 

Algorithm Operating cost of BESS  without 

degradation effect (Rs) 

Operating cost of  BESS with 

degradation effect(Rs) 

APSO 6403 6473 

MJAYA 6223 6356 

LP-IP based 

Solver 

6160 6201 

Table.4. Average microgrid operating cost comparison with and without BESS 

degradation effect 

Table 4 presents the results for the microgrid operating cost, considering and ignoring 

the degradation effects of the BESS. As explained in equation (9), considering 

degradation cost adds an extra weight to the total operating cost formulation. Though 

the results indicate that operating costs go up when degradation is considered, the 

LP-IP solver has been able to produce lesser operating costs vis-à-vis heuristic methods, 

proving the solver's potential to dampen the cost implications of degradation and render 

superior cost optimization to the microgrid system.. 

Algorithm Average cost of electricity 

without degradation effect (Rs) 

Average cost of electricity 

with degradation effect(Rs)  
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APSO 13,115 12,970 

MJAYA 12,876 12.804 

LP-IP based 

Solver 

12,842 12,742 

Table.5  Electricity cost comparison with and without degradation effect 

The degradation process introduces yet another factor in the microgrid operating 

cost-increasing total cost of operation. This arises from the fact that degradation 

expenses come in addition to system operation expenses. Nevertheless, the 

acknowledgment of degradation allows the operator to pick an optimum size of the 

BESS matching the load considered, which prevents future escalation of costs. The 

significance of degradation modeling lies in that, in terms of electricity cost, this 

remains beneficial; the higher energy throughput of the BESS under this method tends 

to reduce electricity billing, which can work to its advantage in cost reduction under 

various load conditions. 

 

 

Algorithm Average operating cost of 

BESS degradation effect(Rs) 

Average  cost of electricity with BESS 

degradation effect(Rs) 

APSO 6475 12,975 

MJAYA 6356 12,804 

LP-IP based 

Solver 

6201 12,746 

Table.6.Average operating and electricity cost comparisons with degradation effect 

Table 6. Clearly shows that the degradation effects really influence the minimization of 

operating and electricity costs. Among heuristics, JAYA comes closest to perfect 

theoretical solutions; but the LP-IP solver always does better than any heuristics in 

terms of theoretical optimization. The results also confirm that greater degradation 

parameters, including average kWh and actual MWh throughput, result in greater 

operating costs but lower electricity costs simultaneously. Degradation-based analysis 

for BESS sizing shall be entertained for the purpose of predicting replacement intervals 

accurately, which leads to the planning of costs and, consequently, the lessening of 

operational burden on the microgrid in the future and making the whole cost system 

more efficient in the long run. 

 

Algorithm SoC (Min %) Soc (Max %) 

APSO 6.4 83.2 
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MJAYA 8.6 91.4 

LP-IP Solver 9.2 93.1 

Table.7. Range of Minimum and Maximum values of State of Charge (Soc) 

The minimum and maximum State of Charge values that define the charging state of 

the BESS are summarized in Table 7. It is very important for the SoC to be defined 

accurately as the sizing of the BESS depends directly upon it, with higher SoC 

implying more use of the stored energy so that the intermittent DGs and the utilities 

would be less involved in power generation, thereby reducing operating and electricity 

costs. For this paper, temperature effects on life cycles have been neglected, and 

degradation has been evaluated only in view of life, cost, and DoD. High DoD leads to 

accelerated aging of the battery; however, it has been confirmed that DoD does not go 

below 60% throughout the lifetime considered for evaluation. 

BESS sizing, when taking degradation effects into account, becomes optimal in terms 

of balancing costs relative to benefits. Using the LP-IP solver, 428 kWh size for BESS 

has resulted as an optimal size for 550 kW capacity system in which the BESS would 

incur an operating cost of nearly Rs. 6221 for one day (24 hours). The results inferred 

that whenever smaller BESS sizes are taken, one has to bear higher operating costs, but 

a slightly higher cost with larger sizes is there to give a very low mismatch between 

generation and load demand. 

 

Fig.2. Operating cost of Microgrid Comparison with MJAYA algorithm and LP-IP 

solver 
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Fig.3. Operating cost of Microgrid comparison with heuristics and LP-IP solver 

methods 

Figure 2 presents the side by side comparison between the Modified JAYA (MJAYA) 

algorithm and the LP-IP solver in the context of minimizing operating cost. The results 

show evidence proving that the LP-IP solver performs better than any other method 

considered, yielding the most optimal solutions in scheduling-based cost minimization 

problems.Figure 3 shows the universal comparison of all algorithms with respect to 

performance in cost reduction. Among the heuristic approaches, the JAYA algorithm 

seems to have yielded better results than other heuristics in most cases. Yet, the LP-IP 

solver, which aims to minimize the objective function in consideration of BESS 

degradation effects and satisfies load demand over the 24 hours horizon, is unavoidably 

the best among all heuristics. 

 

Fig.4. Error variation with MJAYA and LP-IP solver methods for 24hrs 
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Fig.5. Error with comparison heuristics and solver methods for 24hrs 

Simulation results of grid power drawn over a 24-hour horizon are presented in Figs 4 

and 5 using the LMJAYA, heuristic methods, and LP-IP solver. Here, "error" is the 

residual supply that is drawn from the grid after power is dispatched by the DGs and 

BESS towards meeting load demand during cost optimization. Results suggest that 

LP-IP solver yields the minimum error in comparison with the heuristic approaches as 

it maximizes the total throughput of BESS while considering degradation effects. 

Tables 8 and 9 present the respective optimal power dispatch for DGs and BESS in 

grid-connected mode accounting and non-accounting for degradation effects. The 

results signify that the solver yields cost-efficient operation under all load conditions. 

 

 

 

 

Time(H) PWT1 

(kW) 

PWT2 

(kW) 

PMT 

(kW) 

PV1 

(kW) 

PV2 

(kW) 

PBESS 

(kW) 

PGRID 

(kW) 

1 483.90 244.45 261.63 0 0 422.75 -57.3 

2 499.33 506.29 208.88 0 0 42.27 -71.8 

3 486.63 371.67 193.40 0 0 126.21 -84.5 

4 274.83 357.46 114.15 0 0 404.11 -79.5 

5 295.66 342.26 290.46 0 0 300.27 -90.4 

6 537.41 296.11 364.88 0 0 271.19 -41.8 

7 318.49 390.64 352.92 0 4.8277 484.26 -117 

8 318.67 445.17 396.11 9.79 21.27 320.10 -144.1 

9 377.90 330.64 391.24 41.11 16.51 300.34 -185.9 

10 309.77 378.82 272.05 32.281 107.51 366.97 -176 

11 306.85 352.26 280.38 109.53 77.32 429.17 -101.4 
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12 429.16 415.53 368.87 114.36 100.391 86.68 -151 

13 254.21 356.91 324.91 149.208 108.294 270.41 -138.5 

14 382.92 326.47 314.56 94.245 150.010 217.74 -156.9 

15 367.86 354.06 361.57 104.127 114.757 240.46 -100.8 

16 371.25 311.54 424.14 25.626 90.217 298.43 -156.7 

17 418.93 490.26 468.41 87.093 36.550 257.28 -161.6 

18 427.17 504.80 432.01 46.272 1.382 442.26 -147.4 

19 546.35 474.49 547.32 4.679 2.503 492.42 -145.3 

20 539.54 527.21 541.58 0 0.7077 470.52 -140.4 

21 550.94 495.51 537.42 0 0 441.27 -124.4 

22 491.23 415.34 365.64 0 0 471.68 -158.2 

23 310.69 457.92 298.61 0 0 365.42 -137.2 

24 422.01 412.41 339.37 0 0 413.26 -76.5 

 

Table.8. Optimal power discharges from DGs and BESS with degradation effect 

 

Time(H) PWT1 

(kW) 

PWT2 

(kW) 

PMT 

(kW) 

PV1 

(kW) 

PV2 

(kW) 

PBESS 

(kW) 

PGRID 

(kW) 

1 483.91 245.45 258.65 0 0 428.75 -54.4 

2 499.32 571.23 207.88 0 0 46.27 -65.8 

3 486.6 622.6 193.4 0 0 128.21 -82.7 

4 74.83 576.4 114.15 0 0 407.11 -80.8 

5 296.6 249.2 292.46 0 0 306.27 -85.8 

6 537.40 296.1 217.82 0 0 275.19 -37.3 

7 417.49 490.64 462.91 0 4.8273 486.26 -114 

8 519.67 546.17 360.11 9.79 21.27 324.10 -142.4 

9 477.90 430.6 433.24 42.11 16.5 304.36 -182.7 

10 409.78 478.83 377.06 32.280 108.51 366.98 -174 

11 306.86 352.27 269.38 107.53 77.35 431.18 -98.5 

12 429.18 550.5 368.87 115.36 100.39 90.68 -147 

13 454.20 389.92 324.91 149.90 108.29 473.4 -135.1 

14 482.9 426.47 408.55 94.247 156.67 220.76 -155.9 

15 367.85 394.05 361.57 104.12 114.75 343.4 -98.1 

16 371.25 511.5 513.15 25.627 90.217 300.4 -154.4 

17 255.92 490.26 468.40 87.093 36.55 260.28 -160.1 

18 427.18 504.80 463.00 46.272 1.38 445.27 -144.2 

19 546.36 474.49 547.31 4.679 2.503 300.43 -143.1 
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20 539.55 405.20 541.59 0 0.707 474.52 -139.3 

21 550.90 595.52 558.45 0 0 445.27 -122.1 

22 496.24 515.35 465.65 0 0 476.68 -155.6 

23 410.62 557.96 598.63 0 0 402.42 -133.5 

24 522.01 426.40 439.39 0 0 416.26 -72.5 

Table.9. Optimal power discharges from DGs and BESS without degradation effect  

 

The consideration of BESS degradation effects makes it possible to alleviate the utility's burden to 

some degree. Hence, under this consideration, both the microgrid operator and the end-user benefit 

significantly. Premature aging can be avoided by accurately estimating battery application lifetimes 

and degradation costs, thereby lessening electric bills and guaranteeing reliability. Correct sizing of 

the BESS under the HRES environment can guarantee power supply from a few kilowatts to several 

megawatts, especially in far-flung areas where lesser dependence on the grid is a serious 

constraint.Now, the LP-IP solver performs better because it converts the objective function into a 

constraint system (some call it "Presolve") and generates feasible initial solutions on the basis of 

Karush-Kuhn-Tucker (KKT) conditions to chop off the non-feasible regions. This way, it quickly 

reaches optimal power allocations down to minimum operating cost. The solver also treats 

discontinuous objective functions very well as constraints approximated to boundary conditions, so 

they can be re-evaluated in alternate operating scenarios. This approach guarantees global minima 

and hence makes the LP-IP solver very robust for constrained microgrid cost optimization. 

 

Simulation Parameters Values 

Population size 50 

Prediction horizon 24 hrs 

Maximum number of iterations 200 

BESS Power capacities 50 to 500 kW 

Operating cost of PV 67 Rs/kWh 

Operating cost of wind 60 Rs/kWh 

Operating cost of MT 49 Rs/kWh 

Wind Turbine ratings 0 to 700 kW 

Microturbine ratings 0 to 700 kW 

Solar PV ratings 0 to 150 kW 

Grid power ratings 0 to 300 kW 

 

Table.10. Simulation parameters and ratings of DGs 

BESS parameters with Degradation effect Values 

Battery Capacity 500kWh 
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Battery Power Ratings 50-500 kW 

Battery investment cost 45,000 Rs 

Operation and Maintenance Cost 600 Rs/kWh 

Replacement Cost 60 Rs/kWh 

Total average life time specified for one year 1.2 MWh 

Interest rate 0.06 

Table.11. Simulation parameters for BESS with degradation effect 

In Table 10, simulation parameters are given for Hybrid DGs and LI-BESS. The 

optimal operating and electricity costs are obtained considering the minimum and 

maximum bounds of power generation for the DGs and the BESS. Power outputs and 

throughput of DGs and BESS in hourly scheduling have to be within rated capacity to 

operate reliably and avoid overloading.Table 11 depicts the simulation parameters of 

BESS when degradation is taken into consideration. Using those parameters, 

degradation costs, and lifetime are computed based on battery investment costs and 

average total energy throughput (kWh). Then, this degradation cost is incorporated in 

the optimization framework to evaluate operating and electricity costs. The integration 

of BESS degradation modeling into the cost analysis of microgrids provides more 

accuracy and henceforth, a better ground for decision-making in DER-integrated 

systems. 

            The simulation was carried out for a grid-connected residential microgrid 

where the generation from PV, wind, and microturbine units, along with BESS dispatch, 

fully satisfies the hourly load demand under all constraint conditions (DG limits, SoC 

bounds, and grid power limits). This ensures the operational feasibility of the results. 

The results are presented with and without considering BESS degradation cost. The 

comparison clearly shows that including degradation in the optimization framework 

leads to a more accurate estimation of operating and electricity costs and provides 

longer effective battery life. This validates that the degradation-aware model better 

represents real operating condition. 

 

6. Conclusions and future scope 

Achieving reliable and economically feasible microgrid operation highly depends on 

appropriate battery sizing and cost-benefit analysis. This study proposed an 

optimization framework with the objective of minimizing microgrid operation and 

electricity costs while explicitly considering the degradation effect on life estimation. A 

Hybrid Renewable Energy System (HRES), combining wind, photovoltaic, and 

microturbine units with a Lithium-Ion Battery Energy Storage System (LI-BESS), was 

modeled and optimized using heuristic algorithms, such as APSO, MJAYA as well as a 
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Linear Programming Interior Point (LP-IP) solver. Simulations for a 24-hour period 

revealed the LP-IP solver to be superior to all other heuristic methods while also 

producing the least operating and electricity cost results and meeting the load demand. 

The LP-IP solver achieved the lowest total operating cost of Rs. 6202, outperforming 

M-JAYA (Rs. 6356) and APSO (Rs. 6475), while also producing the minimum average 

cost of electricity (Rs. 12,742) and extending BESS lifetime to 3.40 years compared to 

3.32 years (M-JAYA) and 3.13 years (APSO). The degradation cost was found to be 

lowest for LP-IP at Rs. 95.2/kWh, confirming its superior optimization capability. 

Results further revealed that higher BESS throughput (396–420 kWh daily, 3.48–3.70 

MWh annually) increases operating cost marginally but enhances lifetime and reduces 

user-side electricity cost. The proposed throughput-based degradation model also 

determined an optimal BESS capacity of approximately 428 kWh for a 550 kW hybrid 

system, satisfying all technical constraints and achieving reliable power supply. 

Overall, the results validate that degradation-aware optimization provides more 

accurate economic planning, improves BESS utilization, and supports sustainable 

microgrid operation, with the LP-IP solver emerging as the most effective and 

computationally efficient approach. Future research will improve this framework by 

considering calendar-life and capacity-based degradation models, incorporating DoD 

and SoC variations, and investigating HESS to yield enhanced performance and further 

cost reductions. 
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