تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,180 |
تعداد دریافت فایل اصل مقاله | 4,882,930 |
Thermo-Electro Mechanical Impedance based Structural Health Monitoring: Euler- Bernoulli Beam Modeling | ||
AUT Journal of Modeling and Simulation | ||
مقاله 2، دوره 49، شماره 2، اسفند 2017، صفحه 143-152 اصل مقاله (4.33 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22060/miscj.2016.841 | ||
نویسندگان | ||
N. Sepehry1؛ F. Bakhtiari-Nejad* 2؛ M. Shamshirsaz3 | ||
1Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology, Shahrood, Iran | ||
2Dept. of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran | ||
3New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran | ||
چکیده | ||
In recent years, impedance measurement method by piezoelectric (PZT) wafer active sensor (PWAS) has been widely adopted for non-destructive evaluation (NDE). In this method, the electrical impedance of a bonded PWAS is used to detect a structural defect. The electro-mechanical coupling of PZT materials constructs the original principle of this method. Accordingly, the electrical impedance of PWAS can sense any change in the mechanical impedance of the structure. A thermal stress on a structure, which was generated by environmental temperature, could change the electrical impedance of PWAS. The thermal stress which affects the output impedance of PWAS is also developed. A temperature-dependent model, the temperature dependency of PWAS, and structure material properties are investigated for a PWAS bonded to an Euler Bernoulli clamped-clamped beam. The Rayleigh-Ritz and spectral element methods are studied and, then, verified by 3D finite element method (FEM). | ||
تازه های تحقیق | ||
[1] V. Giurgiutiu, C. Rogers, Electro-mechanical (E/M) impedance method for structural health monitoring and nondestructive evaluation, Structural Health Monitoring—Current Status and Perspective, (1997) 18-20. [2] G. Park, H.H. Cudney, D.J. Inman, Feasibility of using impedance‐based damage assessment for pipeline structures, Earthquake engineering & structural dynamics, 30(10) (2001) 1463-1474. [3] S. Bhalla, A.S.K. Naidu, C.K. Soh, Influence of structure-actuator interactions and temperature on piezoelectric mechatronic signatures for NDE, in: Smart Materials, Structures, and Systems, International Society for Optics and Photonics, 2003, pp. 263-270. [4] K.-Y. Koo, S. Park, J.-J. Lee, C.-B. Yun, Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects, Journal of Intelligent Material Systems and Structures, 20(4) (2009) 367-377. [5] G. Park, K. Kabeya, H.H. Cudney, D.J. Inman, Impedance-based structural health monitoring for temperature varying applications, JSME International Journal Series A Solid Mechanics and Material Engineering, 42(2) (1999) 249-258. [6] A. Bastani, H. Amindavar, M. Shamshirsaz, N. Sepehry, Identification of temperature variation and vibration disturbance in impedance-based structural health monitoring using piezoelectric sensor array method, Structural Health Monitoring, 11(3) (2012) 305-314. [7] N. Sepehry, M. Shamshirsaz, F. Abdollahi, Temperature variation effect compensation in impedance-based structural health monitoring using neural networks, Journal of Intelligent Material Systems and Structures, 22(17) (2011) 1975-1982. [8] N. Sepehry, M. Shamshirsaz, A. Bastani, Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature, Structural Health Monitoring, 10(6) (2011) 573-585. [9] V. Giurgiutiu, Structural health monitoring: with piezoelectric wafer active sensors, Academic Press, 2007. [10] A.N. Zagrai, V. Giurgiutiu, Electro-mechanical impedance method for crack detection in thin wall structures, in: 3rd Int. Workshop of Structural Health Monitoring, 2001, pp. 12-14. [11] S. Bhalla, C.K. Soh, Electromechanical impedance modeling for adhesively bonded piezo-transducers, Journal of Intelligent Material Systems and Structures, 15(12) (2004) 955-972. [12] D.M. Peairs, D.J. Inman, G. Park, Circuit analysis of impedance-based health monitoring of beams using spectral elements, Structural Health Monitoring, 6(1) (2007) 81-94. [13] S. Bhalla, C.K. Soh, Structural health monitoring by piezo-impedance transducers. I: Modeling, Journal of Aerospace Engineering, 17(4) (2004) 154-165. [14] W. Yan, W. Chen, C. Lim, J. Cai, Application of EMI technique for crack detection in continuous beams adhesively bonded with multiple piezoelectric patches, Mechanics of Advanced Materials and Structures, 15(1) (2008) 1-11. [15] U. Lee, Spectral element method in structural dynamics, John Wiley & Sons, 2009. [16] Y. Kiani, S. Taheri, M. Eslami, Thermal buckling of piezoelectric functionally graded material beams, Journal of Thermal Stresses, 34(8) (2011) 835-850. | ||
کلیدواژهها | ||
Thermal Stress؛ Euler Bernoulli Beam؛ Spectral Element Method؛ Impedance-based Structural Health؛ Monitoring؛ 3D FEM | ||
مراجع | ||
[1] V. Giurgiutiu, C. Rogers, Electro-mechanical (E/M) impedance method for structural health monitoring and nondestructive evaluation, Structural Health Monitoring—Current Status and Perspective, (1997) 18-20.
[2] G. Park, H.H. Cudney, D.J. Inman, Feasibility of using impedance‐based damage assessment for pipeline structures, Earthquake engineering & structural dynamics, 30(10) (2001) 1463-1474.
[3] S. Bhalla, A.S.K. Naidu, C.K. Soh, Influence of structure-actuator interactions and temperature on piezoelectric mechatronic signatures for NDE, in: Smart Materials, Structures, and Systems, International Society for Optics and Photonics, 2003, pp. 263-270.
[4] K.-Y. Koo, S. Park, J.-J. Lee, C.-B. Yun, Automated impedance-based structural health monitoring incorporating effective frequency shift for compensating temperature effects, Journal of Intelligent Material Systems and Structures, 20(4) (2009) 367-377.
[5] G. Park, K. Kabeya, H.H. Cudney, D.J. Inman, Impedance-based structural health monitoring for temperature varying applications, JSME International Journal Series A Solid Mechanics and Material Engineering, 42(2) (1999) 249-258.
[6] A. Bastani, H. Amindavar, M. Shamshirsaz, N. Sepehry, Identification of temperature variation and vibration disturbance in impedance-based structural health monitoring using piezoelectric sensor array method, Structural Health Monitoring, 11(3) (2012) 305-314.
[7] N. Sepehry, M. Shamshirsaz, F. Abdollahi, Temperature variation effect compensation in impedance-based structural health monitoring using neural networks, Journal of Intelligent Material Systems and Structures, 22(17) (2011) 1975-1982.
[8] N. Sepehry, M. Shamshirsaz, A. Bastani, Experimental and theoretical analysis in impedance-based structural health monitoring with varying temperature, Structural Health Monitoring, 10(6) (2011) 573-585.
[9] V. Giurgiutiu, Structural health monitoring: with piezoelectric wafer active sensors, Academic Press, 2007.
[10] A.N. Zagrai, V. Giurgiutiu, Electro-mechanical impedance method for crack detection in thin wall structures, in: 3rd Int. Workshop of Structural Health Monitoring, 2001, pp. 12-14.
[11] S. Bhalla, C.K. Soh, Electromechanical impedance modeling for adhesively bonded piezo-transducers, Journal of Intelligent Material Systems and Structures, 15(12) (2004) 955-972.
[12] D.M. Peairs, D.J. Inman, G. Park, Circuit analysis of impedance-based health monitoring of beams using spectral elements, Structural Health Monitoring, 6(1) (2007) 81-94.
[13] S. Bhalla, C.K. Soh, Structural health monitoring by piezo-impedance transducers. I: Modeling, Journal of Aerospace Engineering, 17(4) (2004) 154-165.
[14] W. Yan, W. Chen, C. Lim, J. Cai, Application of EMI technique for crack detection in continuous beams adhesively bonded with multiple piezoelectric patches, Mechanics of Advanced Materials and Structures, 15(1) (2008) 1-11.
[15] U. Lee, Spectral element method in structural dynamics, John Wiley & Sons, 2009.
[16] Y. Kiani, S. Taheri, M. Eslami, Thermal buckling of piezoelectric functionally graded material beams, Journal of Thermal Stresses, 34(8) (2011) 835-850. | ||
آمار تعداد مشاهده مقاله: 1,471 تعداد دریافت فایل اصل مقاله: 613 |