
AUT Journal of Modeling and Simulation

AUT J. Model. Simul., 49(2)(2017)239-263
DOI: 10.22060/miscj.2016.874

A Survey of Dynamic Replication Strategies for Improving Response Time in Data
Grid Environment
N. Mansouri* and M. M. Javidi
Computer Science Department, Shahid Bahonar University of Kerman, Kerman, Iran

ABSTRACT: Large-scale data management is a critical problem in a distributed system such as cloud,
P2P system, World Wide Web (WWW), and Data Grid. One of the effective solutions is data replication
technique, which efficiently reduces the cost of communication and improves the data reliability and
response time. Various replication methods can be proposed depending on when, where, and how
replicas are generated and removed. In this paper, different replication algorithms are investigated to
determine which attributes are assumed in a given algorithm and which are declined. We provide a tabular
representation of important factors to facilitate the future comparison of data replication algorithms. This
paper also presents some interesting discussions about future works in data replication by proposing
some open research challenges.

Review History:

Received: 8 August 2016
Revised: 6 December 2016
Accepted: 6 December 2016
Available Online: 21 December 2016

Keywords:
Data Grid
Dynamic Replication
Data Availability
Simulation

239

R
ev

ie
w

 A
rti

cl
e

1- Introduction
This paper covers the issues regarding with data management
in Data Grid environment with a special focus on the problem
of the replication process. The idea of Data Grids and their
constituent components are explained in section 2. The
definition of a Data Grid used throughout the rest of the paper
is provided in section 3. Section 4 presents some examples by
motivating Data Grid use. Section 5 explains data replication
process and then discusses some general issues and challenges
in replication for Data Grids. The taxonomy of replication
processes is shown in section 6. The taxonomy of replication
validation methods is described in section 7. Section 8
introduces the different architectures for Data Grids. Section
9 gives an overview of previous works on data replication.
Section 10 shows the simulation results using OptorSim, which
is proposed by European Data Grid Project. Finally, section 11
concludes our paper and gives proposals for future works.

2- Overview of the Idea of Grids
The definition of a Grid has now moved on from the simple
analogy with the electrical power Grid. In [1], the idea of
virtual organizations (VOs) was presented. These include
“dynamic collections of individuals, institutions, and
resources” for which the Grid provides an infrastructure to
solve their challenges. A VO is described by a set of rules
and conditions by which they share the Grid resources and
examples, including an international team collaborating
on the design of a new aircraft, a group that uses satellite
imaging to investigate climate modeling, or members of an
experiment in high energy physics. With such a wide variety
of VOs, it is important to determine the set of standards that

is acceptable to all and that enables interoperability of the
Grid between each of the VOs sharing its resources. A main
three-point checklist that describes a Grid is given in [2]. To
be truly called a Grid, a system must:

1. coordinate resources that are not subject to a centralized
controller. The resources on a Grid are owned and
controlled by various institutes but the Grid must manage
access to them and deal with the issues of security,
payment, and agreements with local strategies.
2. Use standard, open, common-purpose protocols and
interfaces. It is important that these protocols and interfaces
be standard and open.
3. Deliver non-trivial qualities of service. The Grid must
guarantee the main level of resource availability, security,
throughput and response time for the users such that the
utility of the combined system is considerably higher than
that of the sum of its parts.

3- The Data Grid
In 1999, [3- 4] proposed a specialization and extension of
the classic grid as a data grid system. They considered a
multilayer structure (Fig. 1) to handle different requirements
similar to the one explained in [4]. There are two main
levels. The lower layer contains important services and the
higher layer services are built on the top. The lower level
services present abstract heterogeneous storage elements to
enable common operations such as read, remove, generate,
and modify data files. In addition, a metadata service that
can control information about the data, as well as replicated
data, is another core service. One of the obvious differences
between classical grids and data grids is the replica system
and its subsystems: components of replication selection and
replica management.The corresponding author; Email: n.mansouri@uk.ac.ir

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

240

4- Motivating Examples For Data Grid
The scale of scientific experiments has grown so fast, thus,
traditional computational procedures used to answer the
questions are inadequate.
The Information Power Grid: NASA is establishing the
Information Power Grid (IPG) [5] to enhance their ability
to find a solution for their big data and computationally
intensive problems. They are developing an infrastructure to
combine the resources at geographically distributed NASA
centers to present a shared resource, while still allowing local
management of these resources.
NEES grid: The Network for Earthquake Engineering
Simulation Grid (NEESgrid) [6] is being developed to make
a link between earthquake engineers and their distributed
instruments and computational resources. NEES grid presents
a common infrastructure to help scientists with building
more complex and perfect models and a simulation of the
results for earthquakes.
GridPP: GridPP [7] is the UK Grid for Particle Physics. It
is aimed to generate a Grid of resources at UK institutes for
studying physics data from experiments in the LHC at CERN
and others. GridPP is helping to provide applications for
physics studies using the Grid, contributing to middleware
development, and presenting the hardware infrastructure at
the various organizations.
LCG: Its fundamental task is the deployment of existing Grid
middlewares in a consistent package, the constructing of a
Grid for the study of data from the LHC experiments [8]. It
uses the Globus Toolkit and Condor-G along with services
provided by the European Data Grid.
EDG: The European Data Grid (EDG) [9] project was
supported by the European Union to enable access to
geographically distributed resource elements for three
important data-intensive applications: high energy physics,
biological and medical image processing, and the Earth
observation science.

5- Data Replication
This section provides an introduction to data replication
and then discusses some general issues and challenges in
replication for Data Grids. One of the practical techniques
to enhance the efficiency of data sharing in Data Grid is
data replication. In addition, load balancing, fault tolerance,
reliability, and the quality of service can be improved with the
help of data replication strategy [10- 12].
When the data are placed at a single data server, that server
can be a bottleneck if too many requests need to be served at
the same time. Consequently, the whole system slows down.
In other word, access time in terms of requests per second
is increased. By storing multiple replicas at different sites,
requests can be served in parallel with each replica providing

data access to a smaller community of users. If several users
access data file over a network from geographically distant
locations, data access will be slower than in a small local-
area network given that LANs have lower network latencies
than WANs. By providing data as close to the user as possible
(data locality), the smaller distances over the network can
also contribute to a better performance and lower response
times. Moreover, if a single data file is only placed at a single
server, this data file cannot be used if the server crashes or
does not respond. In contrast, if a replica of the data file is
stored on multiple servers, this additional server can provide
the data file in case of a server or network failure. Thus, the
availability of data can be improved even in the event of
natural disasters like earthquakes.
However, despite the several advantages, the justifications
of using copies are largely bounded by their storage and
communication overheads. The following fundamental issues
are identified.
a) Replica placement method is necessary to improve the
overall performance according to the goals of applications.
b) The degree of replications should be set to create a
minimum number of replicas without wasting the resources.
c) Replica selection should choose the replica that best
matches the user’s quality of service (QoS) requirements.
d) Replica consistency management should guarantee that
the several replicas of a given file are kept consistent in the
presence of concurrent updates.
e) The impact of data replication on job scheduling
performance must also be considered.
Fig. 2 shows a visual taxonomy of these issues, which will be
used in the following subsections.

5- 1- Replica Placement
Although data replication is one of the key optimization
techniques for enhancing high data availability, reliability, and
scalability, the problem of replica placement has not been well
investigated for large-scale distributed environments [13- 14].

To obtain the maximum possible benefits from file replication,
dynamic replica placement strategy in the Grid environment
is necessary. Replica placement strategy determines where
in the system new replica should be stored. In fact, various
replication algorithms can be designed depending on when,
where, and how replicas are generated and removed.

5- 2- Replica Selection
A system that includes replicas also needs a strategy for
choosing and locating them based on the file access time.
Selecting and accessing suitable replicas are very critical to
minimize the usage of Grid resources. A replica selection

Fig. 1. Data Grid structure [4].

Fig. 2. Taxonomy of issues in data replication.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

241

strategy determines the available replicas and chooses the
“best” replica given the user’s location and, possibly, the
quality of service (QoS) requirements [15-16].
Typical QoS requirements when doing replica selection might
include access time, location, security, computation power,
cost, and other constraints. Network performance can play
an important role when choosing a replica. High access time
decreases the efficiency of data transfer regardless of client
and server implementation. Correspondingly, one of the
primary strategies to choose the best replica from different
sites is the checking of the available (or predicted) bandwidth
between the requester and provider sites. The best site, in
this case, would be the one that has the minimum predicted
retrieval time required to move the data files to the requester
site. Although network bandwidth plays an important role in
choosing the appropriate replica, other parameters, including
additional features for transferring data- most notably,
latency- replica host load, and disk I/O performance are
significant, as well.

5- 3- Replica Consistency
One of the important problems is the consistency of replicas
in Data Grid environments that is not well investigated in
the existing studies with files often being regarded as being
read-only. However, as Grid solutions are increasingly used
by a range of application types, requirements will arise for
strategies that keep the consistency of replicated data that can
change over time. The replica consistency issue deals with
concurrent updates made to several replicas of a file. When
the content of one file is changed, all other replicas then have
to have the same data and thus present a consistent view.
Replica consistency is a traditional problem in distributed
systems, but it introduces new challenges in Data Grid
environments [17].
Traditional consistency maintenance approaches such as
invalidation protocols [18], distributed locking mechanisms
[19], atomic operations [20] and two-phase commit protocols
[21] are not necessarily appropriate for Data Grid systems
because of the long delays introduced by the use of a wide-
area network and the high level of autonomy of data Grid
resources [22]. For example, in a Data Grid, the replicas of
a file may be distributed over various countries. Thus, if one
site, which keeps a replica, is not available when the update
operation is underway, the whole update process could fail.

5- 4- The Impact Of Data Replication On Job Scheduling
Performance
Dealing with a large number of data files that are
geographically distributed causes many problems in a Data
Grid. One that is not regularly considered is the scheduling
of jobs to take data location into account when specifying
job scheduling. The locations of data required by a job
obviously impact Grid scheduling decisions and performance
[23];therefore, it is essential to pick a suitable job execution
site. Traditional job schedulers for Grid environments are
responsible for allocating user jobs to sites in such a way
that some popular parameters are met, such as the reduction
of the average access time, the maximization of throughput,
and processor utilization. Therefore, the appropriate job
scheduling considers not only the abundance of computational
resources but also data locations. A node with the high number
of processors may not be the best candidate for computation

if it does not have the needed data nearby. Similarly, a site
with local replicas of the needed file is not an optimal site to
compute if it does not have adequate computation capability.
A successful scheduling strategy is required that will allow
the fastest possible access to the needed data, hence, reducing
the data access time. Since generating several replicas can
obviously reduce the data access cost, a tighter integration
of job scheduling, and dynamic data replication could bring
substantial improvement in job execution performance.

6- Taxonomy Of Replication Methods
Fig. 3 indicates the taxonomy for different replication
management. Generally, replication management is classified
as centralized or decentralized. The centralized method
determines the replica placement using a single entity (i.e.,
job scheduler or replica catalog) [23]. But decentralized
method places the replicas by different entities (i.e., sites or
users) [24].
Replication type can be static or dynamic. Static methods
generate replicas and will exist in the same location till
users remove them explicitly. The main drawback for the
static replication method is that it cannot adapt to the user’s
behavior. But static replication has some benefits such as
low overhead in comparison to the dynamic replication [25,
26]. On the other hand, the dynamic method generates and
replaces replicas based on the changes of the system, i.e.
data access pattern [27,31]. Dynamic data replication leads
to the better overall performance. Due to the dynamic nature
of Grid environment, the requirements of users are variable
during the time [32]. It is necessary to note that large-scale
data transfer that is a consequence of dynamic replication can
waste the resource of the network. Therefore, we must avoid
the inessential replication during job execution. A dynamic
replication may be considered centralized or in a distributed
structure. These structures also have some problems, e.g. the
centralized structure has a high overload if the system nodes
enter and leave frequently. Decentralized manner needs
further synchronization procedure in its decision.
Another feature of replication process that belongs to the
middleware or user’s level is replication actor. For instance,
in [33] storage element determines which file should be
replicated based on its profit. In general, the middleware
implements the replica placement methods that are more
efficient. It guarantees a uniform consistent process
across the infrastructure. We can classify the user space as
dedicated managers and applications. In the primary case,
the application decides on replica placement, allowing more
specific optimizations. In [32], [34] and [35], replication
methods are implemented as middleware services.

In the sequel, there is a superiority between data replication
methods that can cooperate with the job broker and those that
cannot. The authors in [34, 36] showed that we could reduce

Fig. 3. Taxonomy of the replication processes [27].

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

242

the retrieval time and makespan with the interaction between
data replication and job scheduling. For instance, high-energy
physics experiments schedule their data-intensive jobs on the
sites where the most required data are located.

7- Different Replication Validation Methods
Fig. 4 presents the different methods for replication validation.
There are various Grid simulators such as MicroGrid [37]
Bricks [38] SimGrid [39], GridSim [40] and OptorSim [41].
In some cases such as [42] and [43], evolution results are
reported based on a real environment. In addition, theoretical
validation (i.e., mathematical modeling or formal proofs) is
applied for the performance evaluation [44].

8- Architectures Of Data Grids
Grid architecture has a great impact on our data replication and
job scheduling performance. There are various architectures
for the grid implementation such as multi-tier architecture,
tree, graph, P2P, and hybrid topology. Hierarchal topology,
i.e., multi-tier, which is used by the GriPhyN project, is
the most common structure. Ranganathan et al. discussed
six data replication methods based to the GriPhyN project
architecture [45]. The later researchers used this hierarchal
topology as a basis and modified it. For example, sibling tree
is a modification to hierarchal topology that the sibling nodes
are also connected. Most replication works considered the
hierarchal architecture and extended their study to general
graphs.

9- Dynamic Replication Strategies
In this section, first, feature comparison of data replication
strategies is given. Second, we categorize the dynamic
replication strategies into various groups based on their
nature and architecture.

9- 1- Feature Comparison And Its Tabular Representation
To evaluate different approaches theoretically, we focus on
the comparison of different features:
Scalability: This is the ability of an algorithm to place replicas
for a system with any finite number of sites. This parameter
should be improved.
Usability: This shows that a user can achieve goals with
effectiveness of, efficiency of, and satisfaction with this
product.
Popularity: This option determines whether the replication
strategy considers data popularity, i.e. replica frequency, in
replica creation or not.
Availability: This option determines whether the strategy
provides a predefined data availability level or not.
Fault tolerance: If the replication strategy detects a failure in
the system and tolerates it, we call the method “fault tolerant.”
Bandwidth consumption: This option indicates whether
replication strategy tries to decrease the bandwidth
consumption by storing replicas as close to the user as

possible.
An optimal number of replicas: Some replication strategies
determine the number of replicas in the system based on the
cost of keeping them.
Replica placement in wise manner: The replica placement
step is another critical process because it affects the
performance of system significantly. For instance, if the
new copy is placed in the best site, it optimizes the workload
of various servers.
File access pattern: File access pattern specifies the order of
file requests by jobs. There are five different access patterns
in the Grid environment. Five important access patterns
are described as follows: sequential pattern (data files are
requested based on the job configuration file), random pattern
(successive file requests are exactly one element away from
the previous file request and direction is random), unitary
random pattern (data file requests are one element away from
prior file request but the orientation is random), Gaussian
random walk pattern (data files are accessed according to the
Gaussian distribution), and Random Zipf pattern (given by
Pi = K/ is , where Pi shows the ith-ranked item frequency, K
indicates the most frequently accessed data popularity, and s
is the distribution shape).
Storage assumption: The traditional replication strategies
consider unlimited storage space in their replication process.
But new replication methods assume a limited amount of
storage capacity.
Table 1a- 1h show the results of the comparative study on
different data replication strategies cited in the article. The
notation + shows that the option is considered. The notation
− shows that the replication strategy does not consider
that parameter. Finally, NR indicates that the option is not
reported in the article. In the sequel, we discuss various data
replication algorithms in four subsections.

9- 2- Techniques For Peer-to-peer Architecture
Dafei et al. [46] proposed a new replication strategy based
on the Peer-to-Peer Geospatial Data Grid prototype. Their
replica generation uses the feature P2P, spatial content and
DHT directory, then, it put forward the replica selection and
the maintenance issue [47]. In this strategy, the user propose
an initial threshold, e.g. three, and then adapts it based on the
replica popularity. The proposed strategy logs the history of
user’s access to each file. It replicates file with a high popularity
(hotspot) in different sites to balance the load of servers.
Therefore, it uses a searching process, i.e. DHT, based replica
dissemination to determine suitable site in the P2P system.
After the proposed strategy determines some appropriate nodes
as destinations, then it saves the information of replica, i.e.
replication directory, when placing the replica on them. In the
first step, the spatial information of the local nodes is created.
Next, it gets information of other sites and updates its own
history. At the same time, it also sends its own catalog to other
nodes. After several iterations, the local replication directory
is converted to the global consistent resource metadata. In
the sequel, it uses the message queue to deliver the message,
broadcast and collect heartbeat for replica maintenance.
Abdullah et al. [48] presented a P2P model that improves
different performance metrics such as, reliability, data
availability, and scalability. They assumed that all works are
placed in different groups independently. All peers of a group
perform a predefined set of services. At any time, peers can
leave or join a group and a peer can be assigned to more than
one group. After a peer affiliates to a group, it should share its

Fig. 4. Taxonomy of replication validation.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

243

data with other peers and access to the data of others without
knowing from which peer they are obtaining the data. When
a data request is sent to the nodes based on the information
of routing table, data discovery process is triggered. If the
requested data is not available locally, it forwards the request
to the other nodes until its time-to-live and also it saves a
track of hop count. The authors investigated four replication
strategies as follows: ‘‘requester node placement strategy’’,
‘‘path node placement strategy’’, ‘‘path and requester node
placement strategy’’, and ‘‘N-hop distance node placement’’
strategy. ‘‘requestor node placement strategy’’ replicates file
in requester site when it gets the requested file. But ‘‘path
node placement strategy’’ stores replica of the file in all nodes
on the path from the provider to the requester site. ‘‘N -hop
distance node placement’’ stores the replica of the file in the
neighbors of provider site within an N-hop distance. They
designed a Grid simulator that tests the proposed strategies in
terms of execution time and bandwidth usage. The experiments
indicated the proposed strategy has better success rates and
execution time in comparison with the others.

9- 3- Qos Aware Data Replication
Andronikou et al. [49] designed a complete replication
strategy that consists of replica generation, replica placement,
replica replacement and retirement based on the QoS
parameters such as replica cost, workload balancing, network
bandwidth, and data importance value. In the first step, it
assigns ‘Importance’’ value to each data file in terms of which
is directly related to the profit (money, kind, reputation,
etc.). One of the important problems in Grid is the profit
maximization based on the QoS requirements of different
users. Therefore, the authors considered two factors as
Requested Access Latency (TL) and Requested Availability
(RA). TL shows how fast the data can be made available
and depends on the features of the site, e.g. CPU, memory,
hard disk access delays, and features of the network such as
bandwidth and distance. RA shows the probability that this
request will be fulfilled. Higher the importance of data, more
copies are to be created and stored in different locations. It
specifies an appropriate number of replicas based on the free
storage space and the Importance value of the file.
Then, it must determine where to place replicas based on
the network availability. A site is a suitable candidate if
its connection with the frequent requester site has high
bandwidth. In addition, it constructs a distance metric
based on the network structure, administrative barriers,
and bandwidth. Consequently, replica relocation strategy
identifies the best location for available replicas in the system
based on the access pattern of current users. It is obvious that
a replica retirement step is necessary since data replication is
the resource-consuming approach. It deletes replicas that are
no longer requested. But it always keeps at least one copy of
each file in the system to provide reliability and availability
for the data files.
Shorfuzzaman et al. [50] presented a decentralized replication
strategy based on the hierarchical structure. In the first step,
it determines the number of replicas to provide predefined
quality requirements. In the second step, it determines the
location of popular replicas to decrease the replication cost
such as read and update cost and improves access time
based on the traffic pattern. In addition, they used dynamic
programming to overcome the disadvantages of centralized
algorithms such as reliability and performance bottlenecks.
The proposed strategy is triggered at different time periods

to determine the location of new replicas according to the file
popularity value. When sufficient storage is not available, the
oldest replicas must be deleted and replaced with new replicas.
It sets time period based on the request rate. If the arrival
rate is high, it considers a short period. This leads to a higher
computational cost but adapts more accurately to dynamic
access patterns. Experiments demonstrated that the suggested
strategy reduces the mean job execution time and has relatively
low bandwidth usage. In addition, when the QoS parameters
become more stringent, the improvement of the performance
of this strategy is more visible. Simulation results are based
on the different storage configurations and access patterns
in constant and fluctuating arrival rates. In the sequel, the
proposed replica placement shows a good performance with
high quality assurance.
Jaradat et al. [51] presented a new data replication called
Balanced QoS Replica Selection Strategy (BQSS). BQSS is
according to the mathematical model, the balanced QoS time,
availability, and security. In the first stage, BQSS specifies the
best location of the replica with a high quality, high capacity,
timely, and consistent balanced rates of QoS factors. In the
second stage, BQSS computes the value of QoS factors (i.e.
time, security and availability) in one value. The range of each
factor is between 0% and 100% based on the site capabilities.
They rated the time based on the equations introduced by E.
Husni et al. [52], which considers replica requests waiting
in the queue for storage. BQSS defines the site availability
according to the relation between the operation time of the
provider to present certain VOs and the time of file transfer
from the same provider in replica selection progress. They
considered the computing trust factor (TF) proposed by V.
Vijayakumar et al. [53] in their security model. Trust factor
includes the Self-Protection Capability (SPC) and reputation
weightage. The SPC of a site shows the ability to detect the
viruses and unauthorized access to provide a secured files
storage. Reputation procedure builds a reliable way through
social control based on the community-based feedback
about the past experiences of elements. Simulation results
demonstrated that the value of standard deviation for the
three QoS factors were improved in most scenarios.
Cheng et al. [54] presented a new dynamic replication strategy
based on the general graphs and a more realistic model. It
considers storage cost, update cost, replica access cost, and
server load in replica decision. Therefore, each data request
can be quickly answered without wasting the limited capacity
of servers. The authors presented two heuristic methods for
efficient replica placement based on the storage cost, update
cost, and satisfaction of user’s requirements. They defined
storage cost for the replication as an aggregation of all storage
costs for replica servers during the replication process. In
the final phase, it performs consistency procedure. For this
purpose, the origin server R sends the update messages to
every replica servers. The number of update messages that
are sent by R in each interval is μ. The authors assumed that
update distribution tree T that links all the servers in the
system is available. When server V needs to get data from
replica server U, it must corporate with U. The access cost for
replication is defined as an aggregation of the communication
costs of servers to get the required data. This strategy is
suitable in the real environment since it can find the near-
optimal solutions. For the evaluation step, they used the
Waxman model [55], which has N nodes in an s-by-s square.
Analytical results indicated that Greedy-Remove and Greedy-
Add found near-optimal situations in all cases.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

244

Nong et al. [56] proposed a new replication strategy in three
steps by considering the QoS parameter and TP-GABMAC
matrix. For replica consistency step, they considered a
replica ring process with update conflicting procedure. In
the first step, it solves a local problem and an issue by a
new technique. Therefore, the main problem is divided into
several small problems by a landmark-based clustering
method. In the second step, it solves the small problems
based on the matrix-based technique with the name of
GABMAC. In the sequel, it integrates all small problems
into the original replica process.
Previous works mostly considered a replica-updating tree (i.e.,
primary replica method) [57-58] while in this work [56], the
authors introduced two replica types. An original data file is
named primary and the others are secondary. In the proposed
tree topology, the primary performs updating operations and
secondary replicas are synchronized with the primary. It is

obvious that the primary files are bottleneck. For ratification
of requirements and enhancing the consistency efficiency,
replicas in the network are linked one by one, and the first
replica links to the last. Therefore, the replica ring (RR)
structure is yielded.
RR topology can solve the bottleneck issue in the primary-
secondary replica procedure. Also every node in RR structure
can perform the read/write operation concurrently. For
consistency problem, the proposed strategy [56] locally
performs the data file writing operations and it adheres to the
global negotiation. Then, only the winner’s writing operation
is run and all others are dropped. In this case, there is not
simultaneous updating process since only the winner can do
the updating process in one-time interval. The results showed
that the suggested method is stable and scalable and has a good
performance in various configurations and access patterns.

Strategy Dafei et al.
[46]

Abdullah et al.
[48]

Andronikou et
al. [49]

Shorfuzzaman
et al. [50]

Jaradat et al.
[51]

Cheng et al.
[54]

Year 2007 2008 2012 2011 2011 2009
Replication

type Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic

Replication
management Decentralized Decentralized Centralized Decentralized Centralized Decentralized

Replication
actor

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Grid topology P2P P2P NR Multi-tier NR Waxman Model
(graph)

Availability + + + + + +
Popularity + - + + - -

Response time NR + - + + +
Fault tolerance - - - - + -

Bandwidth
consumption NR Average Low Average Low NR

Consistency + - - - + +
Storage

assumption Limited Limited Limited Limited Limited Limited

File access
pattern NR Random Random

Sequential,
random, unitary

random,
Gaussian

random walk

NR NR

Optimal
number of

replicas
+ - + + - +

Place of replica + + + + - +
Replica

condition Cost model When requested
file is not in site

Importance
factor

Invoked at
regular intervals NR When requested

file is not in site
Integration with

job scheduler - - - - - -

Validation
method Theoretical Simulation Simulation Simulation Simulation Simulation and

Theoretical
Main additional

features Spatial content Number of hops Retirement
mechanism Replication cost Security rating Replication cost

Table 1a. Features of replication algorithms.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

245

9- 4- Strategies For Multi-tier Architecture
Dan-wei et al. [59] proposed a new replica placement strategy
using the degree of distribution for large-scale networks. The
authors presented two candidates replica nodes: a degree-
based candidate pool and a frequency- based candidate pool.
It sets a threshold for replica creation. For example, setting λ=
20% means that when the cost is reduced to 20%, it creates
the second replica. Considering the environment, they copied
data in the node with a minimum local cost. Measures of
complex networks consist of degree distribution, average
path length, clustering coefficient, and other metrics. Degree
distribution is a key metric, in which ki is the degree of
node i, which represents the number of edges connected to
node i. Degree distribution p(k) means that the probability
of randomly choosing a node is k. According to the law of
complex networks, if a site has a higher degree, then it is
more significant. Moreover, other nodes are more likely to
connect to such a node. Therefore, Data Grid replicas should
be stored in nodes having high degrees so that all Grid nodes
can easily access replicas. Further, they presented and proved
a replica creation theorem. For the implementation of the
new model, they presented a dynamic multi-replicas creation
strategy (DMRC). Simulation results demonstrated that the
proposed strategy could improve the performance in terms of
makespan and storage usage.
Wang et al. [60] presented a novel data replication as
well as replica deletion based on the data access history
known as Closest Access Greatest Weight with Proactive
Deletion (CAGW_PD). The main goal of CAGW_PD is
the minimization of total data transfer cost (DTC) based on
the read cost and the write cost. Therefore, the number of
messages that are transfered among nodes of the system must
be small. It is obvious that the cost of the write operation
from the ordinary server to the primary one is inevitable.
Consequently, CAGW_PD should minimize the read cost and
update the cost of a primary server to reduce the DTC. When
the number of replicas is increased, the read cost decreases
significantly. In addition, the cost of updating data is high
and the DTC might be minimized. Therefore the number of
replicas must be controlled and unnecessary replications must
be avoided. In the first step, the authors applied the popularity
concept for each file. If the popularity of file is higher than the
mean popularity of all the files, then CAGW_PD replicates
it. In addition, they assigned weight to each file based on
the access time since some files were popular a long time
ago but are unpopular now. A file with a very recent access
has a higher value of weight. CAGW_PD uses a proactive
deletion method to remove replica when free storage space of
the server is not enough for storing new replica. CAGW_PD
deletes files in which the benefit of reducing read cost is less
than the detriment of increasing update overhead.
Almuttairi et al. [61] proposed a high-level brokering service
based on the replica location information for Data Grid
environment. Broker chooses an appropriate provider among
storage replica to ensure reliable bulk data transfer in the
limited access time. Therefore, a server with stable status and
the closest match to the particular user is a suitable selection to
this problem. They designed a two-level broker that finds the
best providers based on the transfer time. Two-phased Service
Oriented Broker (2SOB) acts according to the data mining
methods such as associated file discovery. Association rules
technique extracts a group of site providers that have low

latency and packet drops [62]. 2SOB transfers data files in a
parallel way. In step one, it considers Coarse-grain selection
metrics as sifting replica sites with uncongested links. Next,
it assumes fine-grain selection metrics. In other words, 2SOB
selects a site that has the lowest cost and satisfies the QoS
requirements. Analytical results demonstrated that it could
have a reasonable access time in comparison with current
algorithms and reduce the mean job execution time.
Yang et al. [63] proposed a new maintenance strategy
known as Dynamic Maintenance Service (DMS) and a novel
consistency strategy as Replica Consistency Service (ORCS).
DMS considers data file access frequency, free space of
storage, and condition of the network for replica placement
phase. In ORCS, the authors designed an asynchronous
replication method with consistency ability to improve storage
usage for new temporary data generated by simulations. It can
find the best replica provider for transferring the needed data
set and increase the storage device usage. In addition, DMS
stores replica in appropriate locations based on the number
of requests, thus the number of remote access is decreased
significantly. On the other hand, ORCS method keeps the
content of replicas in the system consistent, thus the access
performance is increased. One of the important parameters
that DMS and ORCS strategies consider is the available
storage capacity, thus, the probability of applications crashing
or having to resubmit jobs to other locations are decreased.
The simulation results demonstrated that DMS and ORCS
could improve the overall performance and storage usage.
Choi et al. [64] proposed a new dynamic hybrid protocol
that efficiently improves the current protocols such as Grid
protocol and Tree Quorum protocol. Some protocols use
all replicas for read and write operations. For instance, the
Quorum consensus protocol has 16 replicas, thus sum read
quorum and write quorum needs to be higher than 16.
Assigning a logical structure to the replicas and combining
Grid topology can solve this problem. But tree protocol has
a major problem that the number of replicas quickly grows as
the level of tree grows. On the other hand, when the number
of failures increases, the value of read cost grows. In addition,
Grid protocol has the main disadvantage that has the identical
operation cost whether a faulty node exists or not. However
it provides a higher availability than the tree structure. It is
obvious that the combination of Grid and Tree topologies
yields the low operating cost of Tree Quorum protocol and high
availability of Grid protocol. This paper merges the previous
protocols to achieve the benefit of the low operating cost if
there exists no failure and the number of replicas is small. The
suggested structure can be flexibly adapted based on the three
configuration parameters as the tree’s height, the number of
descendants, and the Grid depth. If we want to increase the
availability, then the tree’s height and the number of descendants
must be decreased and the depth of topology must be increased.
However, to increase the write availability, tree’s height and
the depth should be decreased and the number of descendants
should be increased. The simulation results showed that a
combined topology could reduce the communication overhead
and he cost of operation. It also allowed significantly smaller
response time.
Taheri et al. [65] proposed a new heuristic approach for Grid
environment, called JDS-HNN. JDS-HNN assigns tasks to
appropriate locations and replicates data files in multiple sites to
reduce the mean job execution time and the total delivery time

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

246

for requested files by dependent jobs. A natural distribution
of a variety of stones among different jars inspired JDS-
HNN. In addition, it applies a Hopfield Neural Network in the
optimization steps to minimize the makespan. The matchmaking
procedure in schedulers was designed and its main idea was
a holistic scheduling strategy to reduce the makespan of all
tasks and the total data transfer time. JDS-HNN uses important
information in their scheduling and replication decision such
as characteristics of computing/storage nodes in a system, the
dependency of tasks and requirements, and the bandwidth
between the provider and requester sites. The authors applied
different benchmarks in medium- to very-large-sized systems
to evaluate the suggested strategy. Experiments indicated that
JDS-HNN improved execution time by replicating data and job
scheduling in an effective manner.
Ma et al. [66] proposed a new replica placement strategy based
on the Quantum Evolutionary Algorithm (QEA) for Data Grid.

In addition, the authors provided the Computing Intelligent
Algorithm (CIA) to optimize the strategy. QEA-based
replication reduces the decision-making cost and improves
the resource utility rate by pre-creating replica according
to bandwidth, storage usage, and data access frequency. In
other words, QEA-based strategy stores the required replicas
before job execution. For improving the response time and
bandwidth usage, it merges the optimization techniques.
Broker selects the site for job execution according to the
estimated time for providing the required files of the job
and providing all files for all jobs in the queue at that site. It
assigns a high priority to the site provider that has the lowest
response time. QEA-based replication strategy contains three
stages for parameter initialization as single replica generation,
multi replica generation, and comprehensive optimization.
The experiment results with OptorSim indicated that QEA-
based strategy reduced the mean job time and bandwidth

Strategy Nong et al.
[56]

Dan-wei et al.
[59]

Wang et al.
[60]

Almuttairi et al.
[61] Yang et al. [63] Choi et al. [64]

Year 2010 2010 2011 2013 2010 2012
Replication

type Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic

Replication
management Decentralized Centralized Centralized Decentralized Decentralized Decentralized

Replication
actor

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Grid topology General General
Multi-tier,
Random

graph
General Multi-tier Tree structure

Availability + + + + + +
Popularity - + + - + +

Response time + + + + + +
Fault tolerance - - - + + +

Bandwidth
consumption Average Low Low Average Low Low

Consistency + - - - + +
Storage

assumption Limited Limited Limited Limited Limited Limited

File access
pattern NR NR Random Random,

Sequential Random NR

Optimal
number of

replicas
- - + - - +

Place of replica + + + - - -
Replica

condition NR Set one
threshold

Set one
threshold NR Set one

threshold NR

Integration with
job scheduler - - - - - -

Validation
method Simulation Simulation Simulation Simulation Simulation Simulation

Main additional
features

Update
eliminating
mechanism

Complex
network theory Cost model

Associated
replicas

discovery
Cost model Node search

algorithm

Table 1b. Features of replication algorithms.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

247

usage in comparison with Genetic Algorithms (GAs), Ant
Colony Optimization (ACO), Particle Swarm Optimization
(PSO) methods.
Zhang et al. [67] decreased the data transfer time to improve
the job scheduling performance. For this goal, the authors
presented a parallel downloading scenario that replicates
partitions of data and downloads them in a parallel way to
reduce data transfer time. In a Grid environment, the size
of storage is restricted, thus it is not possible to replicates
all the complete files across the system. Therefore, they
divided the file into N (N∈{2,3,4,...}) segments and placed
it on N different locations. If one server needs a particular
file, the fragments of it are transferred from different servers
simultaneously and resembled there. They stored popular
replicas on the best server based on the merit value [9]. The
merit value for servers is given by

where Ci shows the computing power for site i, CS is the set
of all the computing sites, and Bi,s denotes the bandwidth
between requester site i and provider site s. It is obvious that
parallel downloading and the completeness are preserved
concurrently that can improve retrieval time. The authors
compared the parallel downloading approach with non-
parallel downloading based on three scheduling strategies
that were Shortest Turnaround Time (STT), Least Relative
Load (LRL) and Data Present (DP). The experiment results
presented that the proposed parallel downloading strategy
reduced the mean job turnaround time in all three scheduling
cases. In addition, when a distributed system has a low
network bandwidth and comparatively high computing power
server, the benefit of the parallel system is more obvious.
Chang et al. [68] presented a new downloading strategy based
on the dynamic status of all servers. The proposed strategy
reevaluates the current servers; if they unsatisfactorily perform,
then it replaces them with others that provide the reusable
performance. All previous downloading methods transferred
the load of the ill-performing servers to the more powerful
servers. However, intuitively if there are idle servers near
that and have the required data, why not apply them? Thus,
the suggested downloading method checks all servers that
have the requested files even if a server is not available in the
downloading process initially. Therefore the load is transferred
from busy servers to nonworking servers instead of just
moving to another working server. In addition, the authors used
the available bandwidth, processor utilization, and memory
usage in the determination of server suitability. This method
is tested in a real Grid environment. The proposed strategy
could reduce the completion time about 1.63%- 13.45%
lower than the recursive co-allocation approach in a real Grid
system. In addition, it could reduce the completion time about
6.28%- 30.56% in the Grid system with other injected load.
The suggested downloading method is suitable in a dynamic
environment. This is because it adapts to the variation of the
environment and decreases the access time effectively.
Taheri et al. [69] proposed Job Scheduling using Bee Colony
(JDS-BC) optimization technique. In the first step, JDS-BC
assigns the jobs to the site with minimum load. In the second
step, it replicates the required data file among sites to reduce
the makespan and file transmission time in the heterogeneous
distributed system. They modified the BCO procedure

accurately to match with the important requirement of
replication and scheduling problems. In this case, bees act in
more than one role since the number of computing nodes are
limited. Moreover, every bee searches its neighborhood as a
scout and then pays attention to dancing bees on the dance
floor as a follower to find its collecting nectar source. Thereby,
it provides advantages from its selection after it selects food
and its nectar. It is possible that one of the dancing bees is
replaced when it collects more benefit than it. The authors
divided the overall replicating process into two independent
sub-processes that will be described in the following. It has
been demonstrated to be more effective [70]. Besides, it can
decrease the problem complexity, thus convergence time is
reduced accordingly. For these purposes, it uses the BCO-
based strategy to assign jobs to computing nodes and, then,
replicates files to reduce the access files in dependent jobs.
The following procedure describes such processes: (1) For
each data file, Dx. (2) Determine the total upload time of
Dx to all its dependent jobs if it is copied on each storage
node; keep computed uploading times in an array called
ArrUpTimes. (3) Sort ArrUpTimes in ascending order. For
k=1 to MaxNumReplicas.

They evaluated the JDS-BC in three different tests with
varying configurations from small to large. Experiments
demonstrated that JDS-BC is suitable for data-intensive and
computation intensive systems as well as other systems that
are data and compute intensive. JDS-BC can automatically
adapt to the environment based on its optimization process.
In addition, it decides in a balanced way, where it sometimes
relaxes one of its goals (e.g. transfer time) to gain more from
optimizing the other one (e.g. makespan).
Jaradat et al. [71] presented a new replica selection strategy
based on the availability parameter and data transmission
time. They can accurately estimate the response time
using site availability. It is obvious that if it selects an
unavailable site or site with insufficient time, then it leads to
disconnection and the wasting of resources since they must
transfer data/job to another site for resuming the download
process or starting the download from scratch based on the
fault tolerance strategy. The authors defined site availability
as a proportion of the required time for downloading a
replica and the remaining time obtained by the provider site.
The remaining overtime to provide service for the user is
considered as the remaining time of a site. The time passed
for data transmission from one site to another is defined as
the response time. Resource broker must find the requested
physical file names and their locations with the help of the
replica location service. All necessary information can be
achieved from GRIS, e.g. Network Weather Service (NWS)
[72], Meta-computing Directory Service (MDS) [73] and
Grid File Transfer Protocol (GridFTP) [73]. Then, it selects
the best replica provider (i.e., a site with the minimum
response time and the minimum probability of disruption) for
user’s job. The experiment results indicated that the proposed
strategy significantly decreased the mean execution time.
Saadat et al. [74] presented Pre-fetching based Dynamic Data
Replication Algorithm in Data Grids (PDDRA) to improve
the overall performance. The authors tried to pre-replicate
necessary files before requests are triggered, assuming that

,∈

= ∑ i
s

i CS i s

C
Merit

B (1)

()
2

()
If then, replicate Dx onto SNx.<

x

ArrUpTimes k

MinUpTime D

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

248

users have a similar interest in files. They predicated future
file requirements based on the history of file accesses in the
system, thus most of the time each site can get necessary
files locally. Data mining techniques can predicate files
that will be requested in the near future. PDDRA includes
three main steps. In the first step, it creates a global database
that contains the file access sequences. In the second step,
when a site needs a file and it doesn’t have in local storage,
replication is triggered. It must check whether replication
provides significant benefits or not. If yes, then PDDRA pre-
fetches adjacent files. In the third step, if enough space is not
available for the new replicas, it replaces some old replicas.
The experimental results showed that PDDRA could reduce
job execution time and enhance effective network usage, and
decrease the number of replications. But the main drawback
of PDDRA is that it does not mention the replica selection.
Lei et al. [75] focused on the maximization data availability

issue in the Grid environment. The authors considered two
important factors as System File Missing Rate SMFR and
System Byte Missing Rate SBMR to address the system
reliability. In addition, they assigned a higher value to the
hot data file than the cold data file for the replacement step.
The data file frequently requested is defined as a hot data. It
is obvious that total system availability is more critical than
single file availability and correctness of available data is
necessary too. The relation between the number of files that
are not available and the total number of requested files by
all jobs is indicated as SMFR factor. The relation between
the bytes that are not available and the total number of bytes
requested by all jobs is indicated as SBMR factor. MinDmr
optimization strategy has four steps. In the first step, it controls
whether the requested file is available on the local site or not,
if it is present, then replication does not trigger. In the second
step, if the required file is not available locally, then MinDmr

Strategy Taheri et al.
[65] Ma et al. [66] Zhang et al.

[67]
Chang et al.

[68] Taheri et al. [69] Jaradat et al.
[71]

Year 2013 2013 2011 2010 2011 2013
Replication

type Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic

Replication
management Decentralized Centralized Centralized Centralized Centralized Centralized

Replication
actor

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Grid topology General General General General General General
Availability + + + + + +
Popularity - - + - + -

Response time + + + + + +
Fault tolerance - - - - - +

Bandwidth
consumption Low Low Low Low Average Low

Consistency - - - - - -
Storage

assumption Limited Limited Limited Limited Limited Limited

File access
pattern Random NR Unitary

random NR NR Sequential

Optimal
number of

replicas
- + - - + -

Place of replica + + Minimum
location merit - - -

Replica
condition NR Population size

File with a
larger number

of accesses
When requested
file is not in site

ArrUpTimes(k)/
MinUpTime

(Dx)<2
NR

Integration with
job scheduler + - + - + -

Validation
method Simulation Simulation Simulation Real

environment Simulation Simulation

Main additional
features

Hopfield
neural network

Quantum
evolutionary

Parallel
downloading

Parallel
downloading

Bee Colony
based

optimization
Site availability

Table 1c. Features of replication algorithms.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

249

strategy checks the free space, if there is sufficient storage,
the requested file is stored. In the third step, if the available
storage is not sufficient, MinDmr strategy candidates files
based on their weights for replacement. In the fourth step,
MinDmr strategy removes candidate files if the replication
gain is more than replacement loss. The experimental results
demonstrated that MinDmr strategy could increase data
availability in different file access patterns and job schedulers.
Horri et al. [76] proposed an advanced methodology
to determine the time of file transfer for various sites.
Accordingly, the lowest calculated transfer time is considered
as a criterion to fetch replication. Transfer time is estimated
by the employment of common sub-routes between the
paths and the bandwidth of each part of the network. They
indicated each path by vector V. The length of the path is
determined by the number of edges in the network graph. Si
(site i) is situated in LPT array, in which LPT[j] is defined
as the transfer time between Sj to Si, and is estimated using
weighting average time of three paths in Si‘s catalog with
the highest similarity to the current path. This algorithm
can be employed as common traffic factors calculator, e.g.,
round trip time (RTT) for every network. They investigated
the ability of cosine similarity replication model, regression
methodology, and neural network model for four various file
access patterns. The simulation output of OptorSim revealed
that compared to the multi-regression and neural network
methods, this strategy has a higher performance. Moreover, in
the case of available storage that is not enough for replication,
the proposed algorithm is able to copy the files that are not
available in the closest site. Accordingly, compared to LRU
strategy, this strategy shows a lower response time. In the
case of enough available storage for replication as well as
bandwidth between the source and destination, LRU and the
proposed strategy have the same behavior.
Bellounar et al. [77] presented a strategy with considering
placement of replicas and redistribution of replicas in Data
Grid. Their strategy is able to determine the destination of
replicas by employing the cost model. They used four main
criteria for the construction of replication model as (1) service
of creating replicas (2) service for suppression replicas (3)
service for fault management (4) maintenance service.
Accordingly, replication is done when one of the following
cases is carried out:
If a node needs a data, which is not available in the local
cluster, the leader searches into the other clusters, beginning
with the nearest cluster in terms of low bandwidth, and
generates a replica of the given data on the node with the
lowest load.
If the cost of access to the data exceeds the cost of its
replication, the leader generates a replica of the data in the
node with the lowest load.
In the case of insufficient space to sort out a new replica,
removing the least popular replica is inevitable. The proposed
strategy employed the message aya(•) (Are You Alive) to
maintain the alivesystem. Periodically, the message aya (•) is
sent to the node of the cluster and if no ack (•) is received after
the predefined deadline, another message is sent again. In the
case of any response to the third message, the leader realizes
that the node is failed. According to simulation results, the
presented strategy is able to decrease bandwidth consumption,
minimize data access costs, and improve data availability.
Moreover, it is able to reduce the number of the inter-cluster

message with considering intra-cluster interactions.
Yi et al. [78] illustrated a decentralized architecture for
integration of task scheduling by employing game theory for
replica placement. They divided the task scheduling into online
mode task scheduling and batch-mode processes [79]. In the
case of batch mode task, the task completion time is accurately
calculated and the proposed strategy uses it in scheduling
decision. It was necessary to note that during the fast variation
of bandwidth in Data Grid, the estimation of data transmission
time is relatively hard. Moreover, the responsibility of task
scheduling is the only task assignment to virtual organizations.
As a consequence, it can be considered that the number of
task scheduling requests received by a task scheduler at a
time is small. Online-mode task scheduling strategy is able
to assign every new arrival task immediately by current grid
performance and locations of data in a way that the Data
Grid performance was satisfied. In other words, the online-
mode task is executed as quickly as possible. In this study,
the summation of task execution time and task waiting time
in computing resources are considered as completion time. In
the proposed strategy after broadcasting the data request by
data manager in the computing resource, the time of requests at
predefined time interval is determined based one file frequency
and hot file, i.e., files with the highest frequency are considered
for replication. Moreover, the replica placement process would
be started when the candidate file for the replication does not
exist in storage resource and the frequency of candidate files is
higher than the predefined threshold simultaneously.
Application of Game theory [80] to solve such problem with
various competitor demands and resources is popular. In fact,
the decentralization of replica placement can be considered
as a game in which all the storage resources engaged in
competition for replication of one specific hot file. Finally,
with consideration of average job completion time and
average network load, four compositions of task scheduling
and replica placement strategies were compared with each
other. The simulation results demonstrated that the centralized
integration strategy has acceptable performance, especially in
the case of storage resource and disk space restrictions.
Meroufel et al. [81] presented a hierarchical replication
strategy in the Grid that employs the crash failure parameter.
It considers the availability and the popularity of the data in
replication decisions. The availability must be maximized
for every portion of data and estimated from its access
history in the past, since each node has its own stability
probability. It was possible to depict the replica availability
as the stability of the node on which was placed. Access
information of data is saved in the local history table. If the
number of total accesses for the data surpasses a particular
value, replication is performed in the best site, i.e. the node
with the highest number of access to the specific portion
of data. In the case of requesting for a new replica, the
availability or the popularity criterion must be checked
again. Then, the nodes check the possibility of enough
space to store new replica. All existing files arranged by a
predefined program on the base of access frequency and the
file items in the sorted list are removed until enough space is
produced for the new replica. The simulation results showed
that this strategy has a reasonable performance compared to
the dynamic strategies with considering the response time
and the data availability in replication decision.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

250

JeyaSheeli et al. [82] proposed an efficient centralized
data replication algorithm in the Grid system. The authors
discussed the limitations of current replication algorithms and
then presented a new greedy centralized replication algorithm
to store replicas at a specific site in a way to improve the
benefits of replication. The different users of the Grid execute
tasks with different resource requirements.
The scheduling of jobs is carried out in FIFO order. It stores
new replicas in different locations to maximize the total
access cost reduction in the system. Different parameters
such as bandwidth consumption of the file during
transmission, the number of file requests, and the number

of hops between requesters and provider sites can affect the
access cost value. The algorithm ends when the replication
consumed the free storage space or further access cost
reduction is impossible (Eq. 2).

where, a(G,R) is defined as the total access cost of n data
files across m sites. R represents the set {w1 , w2, …, wn}
where each member consists of a set of sites where data
file Dj, 1 < j < n, is replicated. The parameter minhopsij

Strategy Saadat et al.
[74] Lei et al. [75] Horri et al.

[76]
Bellounar et al.

[77] Yi et al. [78] Meroufel et al.
[81]

Year 2011 2008 2011 2012 2010 2012
Replication

type Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic

Replication
management Decentralized Decentralized Decentralized Decentralized Decentralized Semi-

centralized
Replication

actor
Middleware

service
Middleware

service
Middleware

service
Middleware

service
Middleware

service
Middleware

service
Grid topology General Graph General Multi-tier Multi-tier Multi-tier
Availability + + + + + +
Popularity + + - + + +

Response time + + + + + +
Fault tolerance - - - + - +

Bandwidth
consumption Low + Low Low Low Low

Consistency - - - - - -
Storage

assumption Limited Limited Limited Limited Limited Limited

File access
pattern

Sequential,
random,
unitary
random,
Gaussian

random walk,
random Zipf

Sequential,
random,
Gaussian

random walk,
random Zipf

Sequential,
random,
Gaussian

random walk,
random Zipf

NR NR NR

Optimal
number of

replicas
- - - + - -

Place of replica + - - - + +

Replica
condition

When
requested file
is not in site

When
requested file is

not in site
Set a

threshold
Cost of

access, cost of
replication

Invoked at
regular intervals Set a threshold

Integration with
job scheduler - + - - + -

Validation
method Simulation Simulation Simulation Simulation Simulation Simulation

Main additional
features

Predicts future
need, Pre-fetch

files
Minimize data

missed rate

Cosine
similarity
predictor
function

Cost model Game theory Crash failures
in the system

Table 1d. Features of replication algorithms.

(2)
m n

ij ij j
i 1 j 1

(G,R) minhops needcount s /
= =

a = × × β∑∑

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

251

shows the minimum number of hops between the site i and
site j. needcountij indicates the number of times Si requests
file Dj. Sj shows the size of file Dj. β indicates bandwidth/
rate of transmission. The main advantage of this strategy
can be depicted as the extensive area of the data usage and
applications.
Tu et al. [83] considered data partitioning approach as well
as dynamic replication to improve the security and data
access performance in Data Grid. They tried to optimize
the allocation for the segments of important data based
on ensuring coding scheme and secret sharing scheme.
They used Grid topology in two layers. The upper
layer consists of various clusters to indicate the network
topology. In addition, the topology of each cluster is tree
graph. The proposed strategy is able to divide the shared
replica allocation issue into the two forms. The first form
is Optimal Inter-cluster Resident Set Problem (OIRSP),
which determines clusters that request common files. The
second form is Optimal Intra-cluster Share Allocation
Problem (OISAP), which determines locations of common
files with the appropriate number of replicas.
To solve subproblems, two heuristic strategies are employed.
Comparison of simulation results between OIRSP and
randomized K-replication presented good performances on
reducing the communication cost. Moreover, the effect of
graph size that is equal to the cluster number in system, the
graphs of a cluster, and the update/read ratio, i.e. the ratio of
the total number of update requests to the average number
of read requests from the single cluster are investigated.
The results confirmed that in the case of larger graph size,
the OIRSP heuristic strategy showed a better performance
in comparison to no replication method. In larger graph
size, the clusters number that requests the replicas enhances
dramatically. In this condition, allocation share replica
schema is able to decrease communication cost, and as a
consequence, the heuristic algorithm presents a lower job
execution time compared to no replication method.
Shorfuzzaman et al. [84] illustrated a Popularity-Based
Replica Placement (PBRP) for hierarchical Data Grids.
In their proposed strategy, they considered the access
rate of a file by the client and the higher tendency of the
recently popular file for the near future requests as criteria
for determination of popularity value. PBRP is invoked at
predefined time periods. It checks the access histories to
find the most popular file as a new replica. PBRP tries to
store a replica of popular files close to users for reducing
the network and storage resources. It was necessary to
note that the performance of PBRP strategy is effectively
proportional to the threshold value for popularity files.
Also, they proposed an advanced version of PBRP with
the ability of dynamically determination of threshold by
employing data request arrival rates and available storage
capacities at servers of the replica as criteria. PBRP is able
to enhance the performances of Aggregate Bottom-Up
(ABU) strategy by replica generation at the site nearest
to the clients with high access counts. Simulation results
confirmed that the proposed strategy could decrease job
execution time as well as bandwidth consumption in a
distributed system.
Chang et al. [85] presented Latest Access Largest Weight
(LALW) in three steps. Firstly, by employing access

frequency as a criterion, the popularity of each file is
determined. Then, the number of needed replica that
must be created is estimated, and finally, the location of
new replica storing is determined. If T is defined as a
system parameter, then LALW is operated at the end of
each interval of T seconds. In this strategy, a dynamic
replication policymaker manages the replication process.
If the cluster is defined as several Grid sites, then a cluster
header is employed to manage the information of a cluster.
The information of accessed files is sent by headers to the
Policymaker. Also, the details of file access counting are
stored in each cluster headers. Therefore they can share
their information with each other. In this approach, a
cluster may be contributed with one or more replicas and
the cluster header is responsible to determine the location
of the necessary replica. In the beginning of replicating,
Policymaker determines the number of pre-existed replicas
through cluster header. If this value is less than the value set
by Policymaker, the replication is carried out. Accordingly,
LALW strategy provides higher weights to the recent
requested file and guides the replication to do only cluster
levels rather than the site level.
Sashi and Thanamani [86] proposed different versions
of Latest Access Largest Weight (LALW) strategy. This
algorithm decreases the average job execution time by
employing the number of file requests as well as response
time as criteria in replica placement step.
Mansouri [87] presented a Modified Latest Access
Largest Weight (MLALW). Like LALW, MLALW, at first,
determines the needed replica number for each region
and then specifies the best site (BS) at the region level.
BS selection in MLALW is done with consideration of the
highest number of replica access in the future. Prediction
of the next number of file access was carried out using
exponential decay. For replica deletion, MLALW considers
the least frequently used replicas, the least recently
used replicas, and the size of the replica as criteria. The
simulation results confirmed that MLALW strategy shows
a higher performance in terms of execution time, storage
usage, and effective network usage with respect to the other
replication strategies. One of the most common algorithms
for patterns of random requests is Fast Spread (FS) [88]. In
this algorithm, replication of the requested file is carried out
in all nodes between the source node and the client node.
In the case of insufficient storage in nodes, one or more
previously stored replicas are replaced with new replicas.
There are two traditional replacement algorithms for LRU
and LFU. The combination of FS with LRU deletes the
least recently replica first while a combination of FS with
LFU deletes the least frequency replica first. It is necessary
to note that some issues arise when the existing replicas
have a higher value with respect to the new replica.
This problem has been discussed by Bsoul et al. [89]
that introduce Enhanced Fast Spread (EFS) strategy. EFS
strategy considered frequency and the number of requests,
the replica size, and the last time in which the replica was
requested in replica value assignment. Simulation results
confirmed the higher performance of EFS in comparison
with the strategies of Fast Spread, FS-LFU, and FS-LRU
combination.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

252

Khanli et al. [90] proposed a replication strategy named
PHFS methodology to determine the relationship between
files for the next time interval. It is employed to diminish
the latency of data access. It estimates the future usage of
files and pre-replicates the candidate files in hierarchal Date
Grid between the sources and requester sites. Accordingly,
at first, the access information of all files called file access
log is created and then, PHFS by employing data mining
techniques (e.g., association rules) clusters the file access
logs. PHFS groups files that have a high probability of
accessing each other.. Then, it forms the most frequent files
based on the sequential access pattern and these files have
logical spatial locality. PHFS uses a predictive working set

(PWS) when one request is triggered and then it replicates
all items of PWS and requested file on all sites in the path.
PHFS is appropriate in a situation that the user works in the
same context for a long time and his requests are not random.
In summary, PHFS has three phases. (1) Monitoring step gets
the file access reports from all sites and creates a global log
file. (2) Analyzing step extracts a pattern of files based on the
data mining technique. (3) Replication step creates replicas of
PWS and manages replicas in the system.
Park et al. [91] proposed a Bandwidth Hierarchy based
Replication (BHR) with the ability to decrease data access
time by enhancing network-level locality as well as forbidden
network congestions. This algorithm partitions the sites into

Strategy JeyaSheeli et
al. [82]

Thuraisingham
et al. [83]

Shorfuzzaman
et al. [84] Sashi et al. [86] Mansouri [87] Bsoul et al. [89]

Year 2012 2010 2010 2012 2010
Replication

type Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic

Replication
management Centralized Decentralized Centralized Centralized Centralized Centralized

Replication
actor

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Grid topology General Graph Multi-tier Multi-tier Multi-tier Graph
Availability + + + + + +
Popularity + + + + + +

Response time + + + + + +
Fault tolerance - + - - - -

Bandwidth
consumption Low Low + Low Low Low

Consistency - - - - - -
Storage

assumption Limited Limited Limited Limited Limited Limited

File access
pattern NR Random

Sequential,
random,
unitary
random,
Gaussian

random walk,
random Zipf

Random Zipf

Sequential,
random, unitary

random,
Gaussian random

walk,

NR

Optimal
number of

replicas
- - - + + +

Place of replica + + + + + -
Replica

condition NR NR Set a
threshold

Invoked at
regular Intervals

Invoked at
regular intervals

When requested
file is not in site

Integration with
job scheduler - - - - - -

Validation
method Simulation Simulation Simulation Simulation Simulation Simulation

Main additional
features

Computing
access cost

Secure storage
mechanism

Adaptive
popularity-

driven replica
placement

Set different
weight for data

Concept of
exponential

decay

Keep the
important

replica

Table 1e. Features of replication algorithms.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

253

various regions in a way that the bandwidth within the regions
is higher than the bandwidth among the regions. The main
advantage of BHR is its ability to copy files, which are likely
to be needed frequently in the near future. BHR considers the
region as well as cooperation of sites in replication decision.
If the necessary files are not available on the local site and
there is enough free space, BHR transfers it form the provider
site and replicates it. But if there is insufficient storage, the
replacement strategy is triggered. Firstly, the presence of new
replica on another site in the local region was checked and
removed if it exists. Otherwise, another region that has the
requested replica is determined. Then, to provide enough
free space, any unpopular file must be deleted. All files are
arranged with considering the access frequency. BHR deletes
files from the sorted list until sufficient space is available. The
simulation results confirmed the better performance of BHR
especially in the case of a small capacity of storage elements
is available. Modified BHR [92] is an advanced version of
MBHR that considers access frequency and the possibility
of needed files in the future as criteria for replica placement.
A Hierarchical Cluster Scheduling strategy (HCS) and
Hierarchical Replication Strategy (HRS) are proposed by
Chang et al. [93] to improve the accessibility of data in Grid.
The former strategy (HCS) assumed hierarchical scheduling
as well as cluster information to diminish the time of search
for the proper computing node. HRS method employed the
concept of network locality similar to BHR strategy. The
replica creation is carried out in the case of the presence of
sufficient free storage space. If enough storage is not available
and the candidate replicas for the deletion belongs to the site
of the same cluster, it is situated to be deleted and replaced
with a new replica. In the case of the replica belonging to
the other cluster, some files must be deleted in the following
consequence. Firstly, the replicas that exist in other sites of the
same cluster must be removed. If the storage of the free space
is still not enough, the least frequently used replicas must be
deleted in the same trend. Accordingly, the main advantage
of HRS can be expressed as the consideration of inter-cluster
file transference, the possibility of checking site providers
for best replica, and employment of popularity of replicas at
the site level compared to HRS that employed popularity of
replica at the cluster level. A combination of HCS scheduling
with HRS replication strategy reduced the data access time as
well as the amount of inter-cluster communication compared
to the different scheduling algorithms and replication
strategies. However, deletion and selection of replica in HRS
are carried out only based on the bandwidth as criterion.
Pérez et al. [94] illustrated a replication algorithm as Branch
Replication Scheme (BRS) with three characteristics with
respect to the present algorithm that is optimization of storage
usage by preparation of sub replicas; enhancing the data
access performance using parallel I/O methodologies, and
preparing the possibility of replica modification based on
consistency technique during updating file. In this strategy,
the employment of naming arrangement strategy is carried
out on the base of RNS standards. The main characteristics of
BRS are given in the following.

• Root replica: a site that contains the original file is
named root.
• Parallel replication: to create a new replica, n nodes were
candidates to save the sub-replicas. BRS is able to break
the primary replica into chunks and generates sub-replicas
by copying the chucks in a parallel manner to target nodes

based on the GridFTP. In the current approach, it was
possible to decrease the replication time in comparison to
the time necessary to generate the complete replica of the
single storage node.
• Partial replication. It copies file fragments with
consideration of popularity or geographic distribution
metrics based on the parallel strategy.
• Parallel data access. Parallel I/O is applied as GRIDFTP
and parallel file system to access data of different sites.
• Better resource usage. BRS consumes low storage space
for storing fragmentations of the file. Therefore, it is
suitable for a network with a high storage restriction.

This method is able to check the writing, the reading or the
updating of available replicas. The authors modeled and
compared hierarchical (HRS), server-directed (SDRS), and
branched replication (BRS). The simulation results confirmed
that BRS is able to reduce data access time for various file
sizes during the reading and the writing operations.
In [95], a 3-level hierarchical strategy is used to propose a new
replication algorithm. In the proposed structure, regions show
the first level and linked by low bandwidth (i.e., Internet). The
second level is the local LANs within the region, which have a
higher bandwidth with respect to the first level. The third level
is determined by the computer within each local LAN with a
very high bandwidth within the interconnections. According
to this strategy, replication feasibility is checked at first. If the
requested file size is higher than storage size, the file will be
used from a remote location. Replica selection of proposed
strategy selects provider site that has the highest bandwidth
from the requester site. The same trend is repeated during the
deletion of file. This trend is able to enhance the performance
compared to LRU replacement strategy. Moreover, to provide
an efficient scheduling, their algorithm is able to select the best
region, LAN, and site. For example, the region with the most
essential files is known as the best region.
A Dynamic Hierarchical Replication (DHR) is proposed by
Mansouri et al. [96]. This strategy enables us to store a new
replica in appropriate location with the highest number of
requests. Similar to Horri et al. [95], a 3-level topology is
considered three levels as regions, LANs and nodes within
each LAN. Moreover, the proposed strategy decreases the
access latency with determination of the best replica in the
case of the presence of several replicas in various sites. It
takes into account the number of requests waiting in the
queue and data transfer time in replica selection step. The
proposed algorithm could decrease the job execution time in
system with storage restriction.
Mansouri et al. [97] illustrated a Combined Scheduling
Strategy (CSS) that employs the number of jobs waiting in
the queue, the location of required data for the job, and the
computational capability as criteria for making a decision.
The proposed strategy is able to improve file access time by a
good estimation of the responsible time (RT) that is given by

where T1 is the storage access latency and T2 is the
waiting time in the request queue. The simulation results
showed that the proposed algorithm could decrease the job
execution time and the number of replication compared
to the other strategies, especially, in storage restriction.
Moreover, the results confirmed that by increasing file
size as well as the number of jobs, the performance is
enhanced, significantly.

(3)1 2= +RT T T

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

254

According to the literature, in spite of DHR’s advantages, i.e.
some improvements in performance metrics like mean job
time; it suffers from some definitions due to low efficiency
during replica selection and the replica replacement.
Therefore, Modified Dynamic Hierarchical Replication
Algorithm (MDHRA) that improves DHR strategy is
proposed by Mansouri et al. [98]. MDHRA has two steps for
storing a new replica in the case of insufficient space. Firstly,
the files with the lowest transferring time are deleted and then
if the free space is still insufficient, it removes replicas based
on the last time that replica requested, access number and
replica file size. When various sites hold the same replica,
replication strategy improves the access latency by selection
of the best replica provider based on the data transfer time,
the storage access latency, the replica requests waiting in the
queue and the distance between nodes. They also proposed a
novel scheduling strategy that finds the most suitable region,

i.e. the region with the most requested files. This trend is able
to decrease the total transfer time, and, as a consequence,
decrease the traffic of the network. The number of jobs
waiting in the queue, the location of required data for the job,
the degree of parallelism and computational capability are
other parameters that are considered by this strategy.
Mansouri et al. [99] proposed a new replication algorithm, named
Enhanced Dynamic Hierarchical Replication (EDHR) that
modifies the Dynamic Hierarchical Replication (DHR) strategy
[31]. In the first step, EDHR determines the appropriate location
in a local region for storing new replica based on the frequency
of requests for the replica and the last time the replica was
requested. EDHR could reduce access time significantly since
the two former parameters imply the probability of requesting
the file in the near future. In addition, the authors presented an
economic model based on the future value of a data file in the
replacement step for providing sufficient space. The experiments

Strategy Khanli et al.
[90] Park et al. [91] Sashi et al.

[92] Chang et al. [93] Pérez et al. [94] Horri et al. [95]

Year 2011 2004 2010 2007 2010 2008
Replication

type Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic

Replication
management Decentralized Decentralized Decentralized Decentralized Centralized Decentralized

Replication
actor

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Grid topology Multi-tier Multi-tier Multi-tier Multi-tier Multi-tier Multi-tier
Availability + + + + + +
Popularity + + + + + -

Response time + + + + + +
Fault tolerance - - - - + -

Bandwidth
consumption Low Low Low + + +

Consistency - - - - + -
Storage

assumption Limited Limited Limited Limited Limited Limited

File access
pattern Random Sequential Zipf access,

Sequential Sequential NR Sequential

Optimal
number of

replicas
- - - - + -

Place of replica + - + - + -

Replica
condition

When
requested file
is not in site

When
requested file
is not in site

When
requested file
is not in site

Invoked at
regular intervals NR When requested

file is not in site

Integration with
job scheduler - - - + - +

Validation
method Simulation Simulation Simulation Simulation, Real

environment Simulation Simulation

Main additional
features

Predict future
need

Network-level
locality

Store replica
in a particular

site

Inter-cluster
communications

cost

Branch
replication

scheme

The differences
between intra-
LAN and inter-

LAN

Table 1f. Features of replication algorithms.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

255

demonstrated that the proposed strategy reduced the storage
usage and the number of replications in a hierarchal structure.
Parallel Job Scheduling (PJS) and Threshold-based Dynamic
Data Replication (TDDR) algorithms are proposed by
Mansouri et al. [100]. The former (PJS) decreased the time
of the search in a parallel manner by employing hierarchical
scheduling structure. PJS considers network characteristics,
a number of jobs waiting in the queue, file locations, and
disk read speed of storage drive at data sources as criteria to
improving the performance.
The new version strategy, i.e. TDDR, works based on data
request arrival rates and available storage capacities in the
determination of the dynamic threshold. To compensate the
storage space limitation in every node, an efficient replica
replacement strategy is proposed in two steps. Firstly, the files
with the lowest transferring time are removed, and secondly,
in the case of insufficient storage space, the last time the
replica was requested, number of access, size of replica and
file transfer time must be considered for the further replica
removing. Simulation results confirmed that the proposed
strategy has a higher performance compared to the other
algorithms in such metrics as Mean Job Time, Number of
Inter-communications, Number of Replications, Computing
Resource Usage, and Effective Network Usage.
Another Hierarchical Job Scheduling Strategy (HJSS) and
Advanced Dynamic Hierarchical Replication Strategy
(ADHRS) are proposed by Mansouri [101]. HJSS employs
network characteristics, that are the number of jobs waiting in
the queue, location of the file, and disk read speed of storage
drive at replica providers, as criteria for replica selection.
While the ADHRS considers file transfer time as in the
following relation,
if (Bji < DiskSpeedi)
TransferTimefi = PropagationDelayij + (|fi| * 8) / Bji

else
TransferTimefi = PropagationDelayij + |fi| / Disk Speedi

where Bji is the bandwidth from site Si to the site Sj that fi resides.
DiskSpeedi is data transfer rate (in bytes per second) of storage
drives of the resource in Si. PropagationDelayij is propagation
delay/network latency (in seconds) from site Sj to site Si.
Mansouri et al. [102] designed a QoS Data Replication
(QDR) strategy. To guarantee the effectiveness and to ensure
the contentment of the grid users, the proposed strategy
replicates required files in a timely way and in a secure
technique. QDR considers the replica selection issue as the
main goal. The main advantages of QDR can be depicted
as the employment of response time estimation and security
parameter during replica selection process. Moreover, QDR
uses storage access latency, the distance between nodes, IDS
capabilities, firewall capabilities, authentication mechanism,
secured file storage capabilities, ‌ interoperability in selecting
the best replica provider. Due to the restriction of storage
capacity for each site, the employment of efficient replica
replacement is inevitable. To solve this issue, the authors
used the availability of the file, the last time the replica was
requested, the number of access, and the size of the replica as
criteria for data replica replacement step. With considering
the strategy’s mean job execution time, Effective Network
Usage, SE usage, Replication frequency, and Hit ratio were
used as the performance evaluation metrics. The simulation
results confirmed a better overall performance of QDR than
the reported algorithms’ in Data Grid.

Bsoul et al. [103] designed a round-based data replication
strategy with the name of Improved Popular File Replicate First
(IPFRF). IPFRF method is able to select the most appropriate
file at the final of every round using the number that was
requested in the last round and the file size as criteria. This
strategy is the advanced version of IPFRF [104] in which the
replica storing in the most appropriate cluster node is carried
out with consideration of the number of requests, free storage
space, and node centrality. In the case of insufficient free
storage space, using the popularity threshold it removes the
lowest popularity files to provide enough space. To compare
IPFRF with PFRF two different conditions are considered.
Firstly, requesting a file by cluster nodes has a uniform
distribution. In this case, requesting for any file has the same
probability. Secondly, requesting a file by cluster nodes has
Zipf distribution. The simulation results confirmed that IPFRF
could decrease the average file delay per request up to 18.00%
and 55.84% in the same condition. Moreover, IPFRF strategy
could improve the file found percentage up to 46.69% and
217.81 % in the first and second conditions, respectively.
A new schema with the name of Efficient Replica Consistency
Model (ERCM) is proposed by Guroob et al. [105]. The main
advantage of ERCM is its ability to decrease job execution
time as well as enhancing the replica consistency by updating
propagation. The first goal is satisfied by optimal allocation of
replicas to minimize the retrieval time. ERCM uses the local hash
table list for finding the needed files. If necessary files are not
available on the local site, the proposed strategy must transfer the
necessary files from the master server to local site and replicate it
for the future execution. The second goal is satisfied by optimal
allocation of replica consistency and updating propagation in
the writing process. ERCM contains an asynchronous replica
consistency inter-replica site to guarantee replica consistency for
changes that frequently happen by users, and then the updates are
distributed simultaneously, where the master server performs the
propagation operations to all sites that have a similar replica that
was just modified. The experiments showed that the ERCM has
a reasonable execution time for reading and writing operations
with a high availability. Unfortunately, they did not check the
update propagation methods under various factors settings.
Mostafa et al. [106] presented a new replication strategy
based on the neural network to reduce the response time
for satisfying the user’s data requirements. The presented
model predicates the location of necessary files based on the
predictive component. It finds the location of the file either
in the cache, local resources, or remote ones with the help
artificial neural network and the previous history of file
accesses. An artificial neural network determines the location
of the file after training features taken from GridSim. The
artificial neural network is a computing system that is trained
to determine the patterns of its inputs. In this case, the job
is to associate different combinations of job requirements
with file locations. The overhead of prediction depends on
the type of application. For example, the overhead and the
delay of prediction process in small applications are more
advisable than applications with higher execution times.
Their results showed that the delay for this estimation process
is significantly lower than that associated with the stored
replica catalogue search algorithm. The main drawback of
their work is that they considered the state-of-the-art search
and prediction procedure used in closely related disciplines to
improve accuracy and overhead.

(4)

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

256

Hamrouni et al. [107] presented an acronym of Replication
Strategy based on Correlated Patterns (RSCP) with
consideration of granularity as a set of correlation files. By
employing data mining technique, the maximal frequent
correlated strategy determines the groups of related files.
The strongpoint of RSCP is the strengthening of the support
measure and the ability to discover the most correlated
files. The authors investigated the impact of important
parameters such as the time interval and the support value
on the execution time. The simulation results revealed that
RSCP could decrease the execution time with respect to the
other reported strategies. The weakness of this strategy is the
consideration of read-only data and the algorithm ignoring
the consistency issues.

Rahmani et al. [108] proposed a new replica placement
strategy to balance the load of the system. In the first step, it
determines the hot spot and under-utilized servers based on
their workload. In the second step, it replicates files on the best
server, i.e. a server that has the lowest access load. In the third
step, it specifies the optimized distance between the requester
site and the replica provider site. Therefore, the suggested
strategy could decrease data transfer time significantly. In the
fourth step, they implemented a tree topology to show the Grid
environment. In the sequel, the authors assigned a label to each
node based on the Dewey Encoding that is generally applied
in XML databases operations. The simulation results indicated
that the proposed replication algorithm provides a good load
balancing in the system and enhances mean response time.

Strategy Mansouri et
al. [96]

Mansouri et al.
[97]

Mansouri et
al. [98]

Mansouri et al.
[99] Mansouri [100] Mansouri [101]

Year 2012 2012 2012 2013 2013 2013
Replication

type Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic

Replication
management Decentralized Decentralized Decentralized Decentralized Decentralized Decentralized

Replication
actor

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Grid topology Multi-tier Multi-tier Multi-tier Multi-tier Multi-tier Multi-tier
Availability + + + + + +
Popularity + + + + + +

Response time + + + + + +
Fault tolerance - - - - - -

Bandwidth
consumption Low Low Low Low Low Low

Consistency - - - - - -
Storage

assumption Limited Limited Limited Limited Limited Limited

File access
pattern Sequential Sequential Sequential Sequential

Sequential,
random,

unitary random,
Gaussian

random walk,
random Zipf

Sequential,
random, unitary

random,
Gaussian

random walk,
random Zipf

Optimal
number of

replicas
- - - - + -

Place of replica + + + + + +

Replica
condition

When
requested file
is not in site

When
requested file
is not in site

When
requested file
is not in site

When requested
file is not in site Set a threshold When requested

file is not in site

Integration with
job scheduler - + + + + +

Validation
method Simulation Simulation Simulation Simulation Simulation Simulation

Main additional
features

The replica
requests that
waiting in the

storage
Storage Speed

Distance
between
nodes

Economic model
for file deletion

Dynamic
threshold

File transfer
time

Table 1g. Features of replication algorithms.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

257

10- Simulation Results And Discussion
We evaluated new replication strategies as HRS, LALW,
BHR, EFS, DHRA, Modified BHR, MDHRA, TDDR, and
QDR with OptorSim simulator. Figure 5 indicates the network
structure in our simulation. In addition, main parameters
that are set in OptorSim are presented in Table 2. We set 10
GFLOPs for the speed of CPU and 300 for the maximum
queue size of computing element. We generate 50 different
job types that each one on average needs 15 files with 2 GB
for completion. Simulator randomly chooses jobs according
to the job probability and sends them to the resource broker
at regular intervals.
We can see that some types of jobs would be selected
frequently, thus some replicas are required repeatedly. We set

Queue Access Cost scheduler, which assigns the job to the site
with lowest access cost for the job and all jobs in the queue,
in our replication strategies evaluation. Figure 6 presents the
mean job time is determined as the average time needed to
run a job starting from the time it is scheduled to the site until
it complete processing all of the needed files. This is a very
common measure in evaluation of replication strategy in the
Grid environment.
In BHR strategy, replicas that have a high probability of
being needed again are placed in a location with a high
bandwidth. In other words, it stores different replicas in a
region to provide the benefit from the network-level locality.
In sequential access pattern, HRS strategy has 6% lower
mean job time in comparison to the BHR. This is due to the

Strategy Mansouri et
al. [102]

Bsoul et al.
[103]

Guroob et al.
[105]

Mostafa et al.
[106]

Hamrouni et al.
[107]

Rahmani et al.
[108]

Year 2016 2016 2016 2015 2015 2015
Replication

type Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic

Replication
management Decentralized Decentralized Decentralized Centralized Decentralized Decentralized

Replication
actor

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Middleware
service

Grid topology Multi-tier Multi-tier
Multi-tier,
Random

graph
General General Tree structure

Availability - + + - + +
Popularity - + - - + +

Response time + + + + + +
Fault tolerance + - - - -

Bandwidth
consumption Average Low Average Average Low Low

Consistency - - + - - +
Storage

assumption Limited Limited Limited Limited Limited Limited

File access
pattern

Sequential,
random,
unitary
random,
Gaussian

random walk

Uniform,
random Zipf Random Zipf NR

Sequential,
random,

Random Zipf,
Gaussian

random walk

random,
Random Zipf

Optimal
number of

replicas
- + - - - -

Place of replica - + + + + +
Replica

condition NR - - - - -

Integration with
job scheduler - - - - - -

Validation
method Simulation Simulation Simulation Simulation Simulation Simulation

Main additional
features

Security
factors

Round based
strategy

Update
propagation

ANN prediction
mechanism

Set of correlated
files

New labeling
scheme

Table 1h. Features of replication algorithms.

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

258

fact that HRS assigns a high priority to the required replica of
the local cluster while BHR algorithm searches all locations
for replica selection.
EFS strategy shows that the mean job time is lower (about
7%) than the one in LALW strategy. The main reason is that
when free space is insufficient, EFS removes a set of candidate
replicas only if the value of new replica is more than the value
for a set of candidate replica. LALW strategy executed faster
(on average 15%) compared to BHR algorithm. The main
advantage of LALW is that it assigns an appropriate weight to
the data file based on the time of access. Then, it replaces only
the most important file. In Zipf access pattern, TDDR has the

Fig. 5. Grid topology in the simulation

Fig. 6. Mean Job time for different replication strategies.
mean job time 50% lower than LFU strategy, and 22% lower
than ModifiedBHR strategy. Figure 6 indicates that QDR
strategy executes all jobs at the lowest time in all different
distributions. Especially in random distribution, a particular
file has a high probability to be requested again, thus the most
of the required files have been stored before. Consequently,
QDR methods and also all the other replication algorithms
are preferable for random file access patterns.

11- Conclusion And Future Research
In this work, we reviewed the different data replication
algorithms on the basis of different parameters. Also, the

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

259

Topology parameter Value
Region number 4

Size of storage (GB) 50
Bandwidth of Inter LAN 1000
Bandwidth of Intra LAN 100

Bandwidth of Intra Region 10
Job configuration Value

Access pattern RandomZipf
Job number 1500

Number of jobs types 50
Number of file access per

jobs 16

File size (GB) 2
Job delay (msec) 10000

Table 2. Parameter setting in the simulation.

different replication strategies were described and also their
simulation results for various parameters are discussed. A
comparison of the different strategies with respect to various
parameters such as availability, reliability, fault tolerance,
response time, etc. were presented. From this review paper, it
can be observed that there are still a lot of investigations to be
done in the area of data replication for Data Grid system. Some
open research issues are presented below.
We see that there is no particular architecture with proper
properties for a Data Grid system. Most of the related works
considered a hierarchal structure but actually, a general graph
is a more realistic topology. The main reason for this choose
is that the hierarchal structure reduces the message transfer
time of communications in each tier. In addition, it decreases
the number of messages transferred. Several studies modified
the hierarchal architecture to show the real Grid structure.
Most recent existing works investigated the effect of access
patterns on the different algorithms. It is obvious that data
access patterns change during jobs execution, thus dynamic
replication strategy must monitor data access distribution
to determine the number and the location of the replica
in a suitable way. Different investigations demonstrated
that Gaussian and Zipf distributions commonly model the
behavior of many applications, which apply Data Grid as
their data and computing system, and are widely applied in
statistics and many statistical evaluations. It is interesting
that the Sequential access pattern is appropriate for some
applications such as high-energy physics experiments.
In a distributed system, data files can be stored in various
locations. It makes the redirection of requests for that data file
to the most suitable site possible. Different critical decisions
need to be made, for example, the number of replicas to be
stored, replica replacement, and the location of new replicas
in order to improve performance. In other words, this target
is expressed as the QoS requirements such as high-reliability
level, and low infrastructure cost from user and service
provider side. Different studies showed the minimization
of replication cost is an NP-hard problem. Indeed, there are
many powerful techniques for replica placement. Few studies
have focused on the QoS factors. Most of them considered
several performance parameters such as access latency in
replication decisions. Although these factors of performance

are critical, they neither guarantee any high-performance
level nor provide the diverse QoS requirements of individuals
adequately.
Another important problem that is completely ignored by
most researchers is consistency. Users may modify data files
and present a critical issue of maintaining data consistency
among replicas stored in various Grid sites. For that reason,
how to maintain the consistency of those replicas is the
main question. Therefore, adaptive replica consistency will
be the best solution. Adaptive consistency is based on such
a fact that if the demand of an application is satisfied, the
consistency level can be relaxed wisely, and the update of
replicas causes a slight delay.
Most of the studies about Grid environment used the simulator
to test the performance of algorithms. As the next phase of
study, these replication techniques must be evaluated and
implemented in a real Grid environment. Then we have very
realistic results of the suppositions that have been made for
those methods.
Several papers tried to estimate the future file requirements
based on the past access sequences. We can see that data
mining tasks would be a good idea in the prediction of file
access patterns. Finally, fault tolerance and scalability of
local and global databases can be further research issues in
Data Grid environment.

REFERENCES
[1] 	M. Chetty, R. Buyya, Weaving computational grids: How

analogous are they with electrical grids?, Computing in
Science and Engineering, 4(4) (2002) 61.

[2] I. Foster, What is the Grid? - a three point checklist,
citeulike, 1(6) (2002) 1-4.

[3] C.H. Schulbach, Nasa’s Information Power Grid Project,
Computational Aerosciences in the 21st Century, (2000) 11.

[4] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S.
Tuecke, The data grid: Towards an architecture for the
distributed management and analysis of large scientific
datasets, Journal of Network and Computer Applications,
23(3) (2000) 187-200.

[5] G. Zhou, F. Lian, G. Li, Influence of alloy elements
on magnetic properties of Fe-based amorphous
alloys, JOURNAL OF MATERIALS SCIENCE AND
TECHNOLOGY-SHENYANG-, 16(2) (2000) 157-158.

[6] N. Chau, N.H. Luong, N.X. Chien, P.Q. Thanh, L.V. Vu,
Influence of P substitution for B on the structure and
properties of nanocrystalline Fe73.5Si15.5Nb3Cu1B7−
xPx alloys, Physica B: Condensed Matter, 327(2–4)
(2003) 241-243.

[7] M. Müller, N. Mattern, The influence of refractory
element additions on the magnetic properties and on the
crystallization behaviour of nanocrystalline soft magnetic
Fe-B-Si-Cu alloys, Journal of Magnetism and Magnetic
Materials, 136(1–2) (1994) 79-87.

[8] W. Liu, J. Tang, Y. Du, Nanocrystalline soft magnetic
ribbon with α″-Fe16N2 nanocrystallites embedded in
amorphous matrix, Journal of Magnetism and Magnetic
Materials, 320(21) (2008) 2752-2754.

[9] I. Maťko, E. Illeková, P.Š. Sr, P. Švec, D. Janičkovič,
V. Vodárek, Microstructural study of the crystallization
of amorphous Fe–Sn–B ribbons, Journal of Alloys and

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

260

Compounds, 615, Supplement 1(0) (2014) S462-S466.
[10] R.M. Rahman, R. Alhajj, K. Barker, Replica selection

strategies in data grid, Journal of Parallel and Distributed
Computing, 68(12) (2008) 1561-1574.

[11] D.T. Nukarapu, B. Tang, L. Wang, S. Lu, Data replication
in data intensive scientific applications with performance
guarantee, IEEE Transactions on Parallel and Distributed
Systems, 22(8) (2011) 1299-1306.

[12] C.Z. X. Meng, An ant colony model based replica
consistency maintenance strategy in unstructured P2P
networks, Computer Networks, 62 (2014) 11.

[13] R.M. Rahman, K. Barker, R. Alhajj, Replica placement
strategies in data grid, Journal of Grid Computing, 6(1)
(2008) 103-123.

[14] A. Benoit, V. Rehn-Sonigo, Y. Robert, Replica
placement and access policies in tree networks, IEEE
Transactions on Parallel and Distributed Systems, 19(12)
(2008) 1614-1627.

[15] H.H.E. Al-Mistarihi, C.H. Yong, On fairness, optimizing
replica selection in data grids, IEEE Transactions on
Parallel and Distributed Systems, 20(8) (2009) 1102-1111.

[16] K. Skakowski, R. Sota, D. Król, J. Kitowski, QoS-based
storage resources provisioning for grid applications, Future
Generation Computer Systems, 29(3) (2013) 713-727.

[17] Y.S. G. Belalem, A Consistency Protocol Multi-Layer
for Replicas Management in Large Scale Systems, World
Academy of Science Engineering and Technology, 16
(2008) 6.

[18] P.C. D. Li, M. Dahlin, WCIP: Web Cache Invalidation
Protocol, in: IETF Internet Draft, 2002.

[19] C.T. Wilkes, R.J. LeBlanc Jr, Distributed locking: A
mechanism for constructing highly available objects, in:
Proceedings - Symposium on Reliability in Distributed
Software and Database Systems, 1988, pp. 194-203.

[20] A. Devulapalli, D. Dalessandro, P. Wyckoff, Data
structure consistency using atomic operations in storage
devices, in: Proceedings - 5th IEEE International
Workshop on Storage Network Architecture and Parallel
I/Os, SNAPI 2008, 2008, pp. 65-73.

[21] G.P. S. Ceri, Databases- Principles and Systems,
McGraw-Hill, 1985.

[22] A. Domenici, F. Donno, G. Pucciani, H. Stockinger, K.
Stockinger, Replica consistency in a Data Grid, Nuclear
Instruments and Methods in Physics Research, Section A:
Accelerators, Spectrometers, Detectors and Associated
Equipment, 534(1-2) (2004) 24-28.

[23] M. Tang, B.S. Lee, X. Tang, C.K. Yeo, The impact of
data replication on job scheduling performance in the
Data Grid, Future Generation Computer Systems, 22(3)
(2006) 254-268.

[24] M.M. Deris, J.H. Abawajy, H.M. Suzuri, An efficient
replicated data access approach for large-scale distributed
systems, in: 2004 IEEE International Symposium on
Cluster Computing and the Grid, CCGrid 2004, 2004,
pp. 588-594.

[25] O. Tatebe, Y. Morita, S. Matsuoka, N. Soda, S.
Sekiguchi, Grid datafarm architecture for petascale data
intensive computing, in: 2nd IEEE/ACM International

Symposium on Cluster Computing and the Grid, CCGrid
2002, 2002.

[26] P.K. Kesselman, M. Ripeanu, B. Schwartzkopf, H.
Stockinger, K. Stockinger, B. Tierney, A Framework for
Constructing Scalable Replica Location Services, in:
Supercomputing, ACM/IEEE Conference, 2002, pp. 1-7.

[27] J. Ma, W. Liu, T. Glatard, A classification of file
placement and replication methods on grids, Future
Generation Computer Systems, 29(6) (2013) 1395-1406.

[28] U. Čibej, B. Slivnik, B. Robič, The complexity of static
data replication in data grids, Parallel Computing, 31(8-
9) (2005) 900-912.

[29] Y. Yuan, Y. Wu, G. Yang, F. Yu, Dynamic data replication
based on local optimization principle in data grid, in:
Proceedings of the 6th International Conference on Grid and
Cooperative Computing, GCC 2007, 2007, pp. 815-822.

[30] H. Lamehamedi, Z. Shentu, B. Szymanski, E. Deelman,
Simulation of dynamic data replication strategies in
Data Grids, in: Proceedings - International Parallel and
Distributed Processing Symposium, IPDPS 2003, 2003.

[31] K. Ranganathan, I. Foster, Identifying dynamic
replication strategies for a high-performance data grid,
in: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2001, pp. 75-86.

[32] R.S. A.H. Elghirani, A.Y. Zomaya, A proactive
Noncooperative Game-Theoretic Framework for Data
Replication in Data Grids, in: Eighth IEEE International
Symposium on Cluster Computing and the Grid
(CCGRID), 2008, pp. 433-440.

[33] R.S. A. Elghirani, A.Y. Zomaya, Intelligent Scheduling
and Replication in Data Grids: a Synergistic Approach,
in: IEEE International Symposium on Cluster Computing
and the Grid, 2007, pp. 179–182.

[34] M. Carman, F. Zini, L. Serafini, K. Stockinger,
Towards an economy-based optimisation of file access
and replication on a data grid, in: 2nd IEEE/ACM
International Symposium on Cluster Computing and the
Grid, CCGrid 2002, 2002.

[35] R.S. A. Elghirani, A.Y. Zomaya, Intelligent Scheduling
and Replication in Data Grids: a Synergistic Approach,
in, 2007, pp. 179–182.

[36] W.H. Bell, D.G. Cameron, R. Carvajal-Schiaffino,
A.P. Millar, K. Stockinger, F. Zini, Evaluation of an
economy-based file replication strategy for a data
grid, in: Proceedings - CCGrid 2003: 3rd IEEE/ACM
International Symposium on Cluster Computing and the
Grid, 2003, pp. 661-668.

[37] H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang,
K. Taura, A. Chien, The MicroGrid: A scientific tool for
modeling Computational Grids, Scientific Programming,
8(3) (2000) 127-141.

[38] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, U.
Nagashima, Overview of a performance evaluation
system for global computing scheduling algorithms, in:
IEEE International Symposium on High Performance
Distributed Computing, Proceedings, 1999, pp. 97-104.

[39] H. Casanova, Simgrid: A toolkit for the simulation of
application scheduling, in: Proceedings - 1st IEEE/ACM

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

261

International Symposium on Cluster Computing and the
Grid, CCGrid 2001, 2001, pp. 430-437.

[40] R. Buyya, M. Murshed, GridSim: A toolkit for the
modeling and simulation of distributed resource
management and scheduling for grid computing,
Concurrency Computation Practice and Experience,
14(13-15) (2002) 1175-1220.

[41] W.H. Bell, D.G. Cameron, L. Capozza, A.P. Millar,
K. Stockinger, F. Zini, OptorSim: A grid simulator for
studying dynamic data replication strategies, International
Journal of High Performance Computing Applications,
17(4) (2003) 403-416.

[42] H. Sato, S. Matsuoka, T. Endo, N. Maruyama, Access-
pattern and bandwidth aware file replication algorithm
in a grid environment, in: Proceedings - IEEE/ACM
International Workshop on Grid Computing, 2008, pp.
250-257.

[43] I.F. K. Ranganathan, Design and Evaluation of Dynamic
Replication Strategies for a High Performance Data
Grid, in: International Conference on Computing in High
Energy and Nuclear Physics, 2001.

[44] C.B. Y. Dafei, H. Zhou, L. Xin, Z. Ke, F. Yu, Replication
Strategy in Peer-to-Peer Geospatial Data Grid, in:
Geoscience and Remote Sensing Symposium, 2007, pp.
5013-5016.

[45] P. Knězevíc, A. Wombacher, T. Risse, DHT-Based
self-adapting replication protocol for achieving high
data availability, in: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 2009,
pp. 201-210.

[46] A. Abdullah, M. Othman, H. Ibrahim, M.N. Sulaiman,
A.T. Othman, Decentralized replication strategies for P2P
based scientific data grid, in: Proceedings - International
Symposium on Information Technology 2008, ITSim, 2008.

[47] V. Andronikou, K. Mamouras, K. Tserpes, D. Kyriazis,
T. Varvarigou, Dynamic QoS-aware data replication in
grid environments based on data “importance”, Future
Generation Computer Systems, 28(3) (2012) 544-553.

[48] M. Shorfuzzaman, P. Graham, R. Eskicioglu, QoS-
aware distributed replica placement in hierarchical data
grids, in: Proceedings - International Conference on
Advanced Information Networking and Applications,
AINA, 2011, pp. 291-299.

[49] A. Jaradat, A. Patel, M.N. Zakaria, M.A.H. Amina,
Accessibility algorithm based on site availability to
enhance replica selection in a data grid environment,
Computer Science and Information Systems, 10(1)
(2013) 105-132.

[50] H.C. A. Husni, Response Time Optimization for Replica
Selection Service in Data Grids, Journal of Computer
Science, 4 (2008) 487-493.

[51] R.W. V. Vijayakumar, Security for Resource Selection
in Grid Computing Based on Trust and Reputation
Responsiveness, IJCSNS, 8 (2008) 12.

[52] C.W. Cheng, J.J. Wu, P. Liu, QoS-aware, access-efficient,
and storage-efficient replica placement in grid environments,
Journal of Supercomputing, 49(1) (2009) 42-63.

[53] B.M. Waxman, Routing of Multipoint Connections,

in: IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATION, 1991, pp. 347–352.

[54] C.B. Y. Dafei, H. Zhou, L. Xin, Z. Ke, F. Yu, Replication
Strategy in Peer-to-Peer Geospatial Data Grid, in:
Geoscience and Remote Sensing Symposium, 2007, pp.
5013–5016.

[55] A.H.M.A. A. Jaradat, M.N. Zakaria, Balanced QoS
Replica Selection Strategy to Enhance Data Grid, in: 2nd
International Conference on Networking and Information
Technology 2011, pp. 356-364.

[56] F.W. X. Nong, L. XiCheng, QoS-awared Replica
Placement Techniques in Data Grid Applications, Science
China Information Sciences, 53 (2010) 1487–1496.

[57] I.G. W. Jeon, K. Nahrstedt, QoS-aware Object Replication
in Overlay Networks, in: Proceeding of Global
Telecommunications, San Francisco, 2005, pp. 1–5.

[58] H. Wang, P. Liu, J.J. Wu, A QoS-aware heuristic
algorithm for replica placement, in: Proceedings - IEEE/
ACM International Workshop on Grid Computing, 2006,
pp. 96-103.

[59] Z.S.-t. C. Dan-wei, R. Xun-yi, K. Qiang, Method
for Replica Creation in Data Grids based on Complex
Networks, The Journal of China Universities of Posts and
Telecommunications, 7 (2010) 110–115.

[60] Z. Wang, T. Li, N. Xiong, Y. Pan, A novel dynamic
network data replication scheme based on historical
access record and proactive deletion, Journal of
Supercomputing, 62(1) (2012) 227-250.

[61] R.M. Almuttairi, R. Wankar, A. Negi, C.R. Rao, A.
Agarwal, R. Buyya, A two phased service oriented Broker
for replica selection in data grids, Future Generation
Computer Systems, 29(4) (2013) 953-972.

[62] K.W.R. J.F. Kurose, Computer Networking a Top–
Down Approach Featuring the Internet, ADDISON-
WESLEY, 2005.

[63] C.T. Yang, C.P. Fu, C.H. Hsu, File replication, maintenance,
and consistency management services in data grids, Journal
of Supercomputing, 53(3) (2010) 411-439.

[64] S.C. Choi, H.Y. Youn, Dynamic hybrid replication
effectively combining tree and grid topology, Journal of
Supercomputing, 59(3) (2012) 1289-1311.

[65] J. Taheri, A.Y. Zomaya, P. Bouvry, S.U. Khan, Hopfield
neural network for simultaneous job scheduling and
data replication in grids, Future Generation Computer
Systems, 29(8) (2013) 1885-1900.

[66] T. Ma, Q. Yan, W. Tian, D. Guan, S. Lee, Replica creation
strategy based on quantum evolutionary algorithm in
data gird, Knowledge-Based Systems, 42 (2013) 85-96.

[67] J. Zhang, B.S. Lee, X. Tang, C.K. Yeo, Improving job
scheduling performance with parallel access to replicas
in Data Grid environment, Journal of Supercomputing,
56(3) (2011) 245-269.

[68] R.S. Chang, C.F. Lin, S.C. Hsi, Accessing data from
many servers simultaneously and adaptively in data
grids, Future Generation Computer Systems, 26(1)
(2010) 63-71.

[69] I.F. K. Ranganathan, Computation and Data Scheduling
in Distributed Data-Intensive Applications, in: In:

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

262

Proceedings of 11th IEEE inter- national symposium on
high performance distributed computing (HPDC’02),
2002, pp. 352–358.

[70] Q.Y. T. Ma, W. Tian, D. Guan, S. Lee, Replica Creation
Strategy based on Quantum Evolutionary Algorithm in
Data Gird, Knowledge-Based Systems, 42 (2013) 85–96.

[71] I.F. S. Fitzgerald, C. Kesselman, G. Von Laszewski, W.
Smith, S. Tuecke, A Directory Service for Configuring
High-Performance Distributed Computations, in:
The Sixth IEEE International Symposium on High
Performance Distributed Computing, 1997, pp. 365-375.

[72] A.M.R. N. Saadat, PDDRA: A New Pre-Fetching based
Dynamic Data Replication Algorithm in Data Grids,
Future Generation Computer Systems, 28 (2012) 666-681.

[73] M. Lei, S.V. Vrbsky, X. Hong, An on-line replication
strategy to increase availability in Data Grids, Future
Generation Computer Systems, 24(2) (2008) 85-98.

[74] A. Horri, R. Sepahvand, G. Dastghaibyfard, A novel
replication method in data grid, in: 2011 1st International
eConference on Computer and Knowledge Engineering,
ICCKE 2011, 2011, pp. 291-296.

[75] A.K. F.Z Bellounar, B.Yagoubi, Dynamic Data Grid
Replication with Storage Constraint based on Cost
Model, in: 2nd International Symposium on Modelling
and Implementation of Complex Systems Constantine,
2012, pp. 11-16.

[76] K. Yi, H. Wang, F. Ding, Decentralized integration of
task scheduling with replica placement, in: Proceedings -
9th International Symposium on Distributed Computing
and Applications to Business, Engineering and Science,
DCABES 2010, 2010, pp. 332-336.

[77] S.A. M. Maheswaram, H.J. Siegel, D. Hengsen, R.
Freund, Dynamic Matching and Scheduling of a Class
of Independent Tasks onto Heterogeneous Computing
Systems, in: 8th Heterogeneous Computing Workshop
(HCW’99), 1999.

[78] a.A.R. M. Osborne, A Course in Game Theory, MIT
Press, 1994

[79] B. Meroufel, G. Belalem, Dynamic replication based
on availability and popularity in the presence of failures,
Journal of Information Processing Systems, 8(2) (2012)
263-278.

[80] a.M.A. P.G. JeyaSheeli, Efficient Centralized Data
Replication Algorithm for Data Grids, in: International
Conference on Computing, Electronics and Electrical
Technologies, 2012, pp. 900-904.

[81] P.L. M. Tu, I.L. Yen, Secure Data Objects Replication
in Data Grid, in: IEEE Transactions on Dependable and
Secure Computing, pp. 50-64.

[82] M. Shorfuzzaman, P. Graham, R. Eskicioglu, Adaptive
popularity-driven replica placement in hierarchical data
grids, Journal of Supercomputing, 51(3) (2010) 374-392.

[83] R.S. Chang, H.P. Chang, Y.T. Wang, A dynamic weighted
data replication strategy in data grids, in: AICCSA 08 -
6th IEEE/ACS International Conference on Computer
Systems and Applications, 2008, pp. 414-421.

[84] K. Sashi, A.S. Thanamani, Dynamic replication in a data
grid using a Modified BHR Region Based Algorithm, Future

Generation Computer Systems, 27(2) (2011) 202-210.
[85] N. Mansouri, An effective weighted data replication

strategy for data Grid, Australian Journal of Basic and
Applied Sciences, 6(10) (2012) 336-346.

[86] P.L. M. Tu, I.L. Yen, Secure Data Objects Replication in
Data Grid, IEEE Transactions on Dependable and Secure
Computing, 7 (2007) 50-64.

[87] M. Bsoul, A. Al-Khasawneh, E.E. Abdallah, Y. Kilani,
Enhanced fast spread replication strategy for data grid,
Journal of Network and Computer Applications, 34(2)
(2011) 575-580.

[88] L.M. Khanli, A. Isazadeh, T.N. Shishavan, PHFS: A
dynamic replication method, to decrease access latency
in the multi-tier data grid, Future Generation Computer
Systems, 27(3) (2011) 233-244.

[89] S.M. Park, J.H. Kim, Y.B. Ko, W.S. Yoon, Dynamic data
grid replication strategy based on internet hierarchy, in:
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2004, pp. 838-846.

[90] R.S. Chang, J.S. Chang, S.Y. Lin, Job scheduling
and data replication on data grids, Future Generation
Computer Systems, 23(7) (2007) 846-860.

[91] J.M. Pérez, F. García-Carballeira, J. Carretero, A.
Calderón, J. Fernández, Branch replication scheme: A new
model for data replication in large scale data grids, Future
Generation Computer Systems, 26(1) (2010) 12-20.

[92] N. Mansouri, G.H. Dastghaibyfard, A dynamic replica
management strategy in data grid, Journal of Network
and Computer Applications, 35(4) (2012) 1297-1303.

[93] N. Mansouri, G.H. Dastghaibyfard, Job scheduling
and dynamic data replication in data grid environment,
Journal of Supercomputing, 64(1) (2013) 204-225.

[94] N. Mansouria, G.H. Dastghaibyfard, Enhanced dynamic
hierarchical replication and weighted scheduling
strategy in data grid, Journal of Parallel and Distributed
Computing, 73(4) (2013) 534-543.

[95] B.D. Lee, J.B. Weissman, Dynamic replica management
in the service grid, in: IEEE International Symposium on
High Performance Distributed Computing, Proceedings,
2001, pp. 433-434.

[96] N. Mansouri, A Threshold-based Dynamic Data
Replication and Parallel Job Scheduling strategy to
enhance Data Grid, Cluster Computing, 17(3) (2014)
957-977.

[97] N. Mansouri, G.H. Dastghaibyfard, E. Mansouri,
Combination of data replication and scheduling
algorithm for improving data availability in Data Grids,
Journal of Network and Computer Applications, 36(2)
(2013) 711-722.

[98] N. Mansouri, Network and data location aware approach
for simultaneous job scheduling and data replication
in large-scale data grid environments, Frontiers of
Computer Science, 8(3) (2014) 391-408.

[99] N. Mansouri, QDR: a QoS-aware data replication
algorithm for Data Grids considering security factors,
Cluster Computing, 19(3) (2016) 1071-1087.

[100] M. Bsoul, A.E. Abdallah, K. Almakadmeh, N. Tahat,

N. Mansouri and M. M. Javidi, AUT J. Model. Simul., 49(2)(2017)239-263, DOI: 10.22060/miscj.2016.874

263

A Round-based Data Replication Strategy, IEEE
Transactions on Parallel and Distributed Systems, 27(1)
(2016) 31-39.

[101] M.C. Lee, F.Y. Leu, Y.P. Chen, PFRF: An adaptive data
replication algorithm based on star-topology data grids,
Future Generation Computer Systems, 28(7) (2012)
1045-1057.

[102] D.H.M. A.H Guroob, Efficient replica consistency
model (ERCM) for update propagation in data grid
environment, International Conference On Information
Communication And Embedded System, (2016).

[103] I.A.R. N. Mostafa, A. Hamza, An Intelligent Dynamic
Replica Selection Model within Grid Systems, in:
Proceedings of the 8th IEEE GCC Conference and
Exhibition, Muscat, 2015.

[104] T. Hamrouni, S. Slimani, F. Ben Charrada, A data
mining correlated patterns-based periodic decentralized
replication strategy for data grids, Journal of Systems
and Software, 110 (2015) 10-27.

[105] A.M. Rahmani, Z. Fadaie, A.T. Chronopoulos, Data
placement using Dewey Encoding in a hierarchical data
grid, Journal of Network and Computer Applications, 49
(2015) 88-98.

[106] N. Mostafa, I. Al Ridhawi, A. Hamza, An intelligent
dynamic replica selection model within grid systems,
in: 2015 IEEE 8th GCC Conference and Exhibition,
GCCCE 2015, 2015.

Please cite this article using:

N. Mansouri and M. M. Javidi, A Survey of Dynamic Replication Strategies for Improving Response

Time in Data Grid Environment, AUT J. Model. Simul., 49(2)(2017)239-263.

DOI: 10.22060/miscj.2016.874

