تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,209 |
تعداد دریافت فایل اصل مقاله | 4,882,946 |
بررسی اثر تنش های چسبنده لبه ترک بر رفتار بار - تغییر شکل تیرهای بتن مسلح | ||
نشریه مهندسی عمران امیرکبیر | ||
مقاله 8، دوره 50، شماره 1، فروردین و اردیبهشت 1397، صفحه 89-96 اصل مقاله (1.05 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/ceej.2017.11366.5012 | ||
نویسندگان | ||
وحید بروجردیان* ؛ ابوالفضل شرافتی؛ حسین کریم پور | ||
دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران | ||
چکیده | ||
در سه دهه اخیر پیشرفتهای بسیار زیادی در زمینه تحلیل غیرخطی سازههای بتن مسلح به کمک روش عناصر محدود صورت گرفته است، اما هنوز پیشبینی دقیق در خصوص پاسخ تیرهای بتن مسلح در شرایط مختلف هندسه و بارگذاری، به کمک روش عناصر محدود، نیاز به تحقیقات بیشتری دارد. محققان نشان دادهاند برای شبیهسازی پاسخ غیر الاستیک بتن در منطقه صدمهدیده نزدیک نوک ترک میتوان از یک توزیع تنش چسبنده روی لبههای ترک که مایل به بستن ترک است، استفاده نمود. هدف این مقاله، بررسی عددی تأثیر تنشهای چسبنده ترک بر رفتار بار-تغییر مکان تیرهای بتن مسلح با استفاده از مدل آسیب ـ پلاستیک و مکانیک شکست بتن است. در تحلیل عددی بهکار رفته، رفتار غیرخطی بتن در ناحیه فشاری با استفاده از نظریه آسیب ـ پلاستیک مدلسازی شده است. برای شبیهسازی رفتار غیرخطی بتن در ناحیه کششی و مسئله ترکخوردگی و گسترش ترک، از مکانیک شکست غیر خطی مبتنی بر مدل ترک چسبنده استفاده شده است. در این راستا، با استفاده از نرمافزار عناصر محدود آباکوس یک سری تیرهای بتن مسلح آزمایشگاهی موجود، شبیهسازی شدهاند. با توجه به محدودیتهای نرمافزار آباکوس در این خصوص، یک روش گام به گام مورد استفاده قرار گرفته است. در روش ارائه شده امکان گسترش چندین ترک چسبنده در تیر در نظر گرفته شده است. مقایسه نمودار بار-تغییر مکان تیرهای بتن مسلح بهدستآمده از تحلیل عددی و نتایج آزمایشگاهی هماهنگی قابل قبولی را نشان میدهد. | ||
کلیدواژهها | ||
تیر بتن مسلح؛ روش عناصر محدود؛ تنش های چسبنده ترک؛ مکانیک شکست؛ رفتار بار-تغییر مکان | ||
موضوعات | ||
تحلیل خطی و غیر خطی؛ سازه بتنی؛ مکانیک محیط پیوسته | ||
عنوان مقاله [English] | ||
Effect of Crack Cohesive Stresses on the Load-Deformation Response of Reinforced Concrete Beams | ||
نویسندگان [English] | ||
V. Broujerdian؛ A. Sherafati؛ H. Karimpour | ||
Department of Civil Engineering, Iran University of Science and Technology, Tehran, Iran | ||
چکیده [English] | ||
It is well known that the behavior of concrete is extensively affected by the initiation of cracks and their propagation. Among these cracks, diagonal or shear cracks have more complicated and less known behavior. In spite of extensive research in this field, current codes of practice do not provide a uniform margin of safety against shear failure of reinforced concrete yet. To simulate the non-elastic behavior of concrete in the fracture process zone, the distribution of cohesive forces through the crack sides have been used by researchers. The aim of this study is to evaluate the effect of the crack’s tip cohesive forces on the load-deflection response of reinforced concrete beams using fracture mechanic. In the numerical analysis used in this study, the non-linear behavior of concrete in the compression field is simulated by damage-plasticity model. To simulate the non-linear behavior of concrete in the tension area and simulating the onset and evolution of cracking, non-linear fracture mechanics based on cohesive crack model is used. Using finite element software of ABAQUS, a step by step approach is used. In the presented approach, the probability of possibility of crack evolution in beams is considered. Comparing the calculated load-deflection curves for several reinforced concrete beams with the experimental ones showed a good consistency. | ||
کلیدواژهها [English] | ||
Reinforced Concrete Beams, finite element method, Crack, Cohesive Stresses, Fracture mechanics | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] S.W. Hu, Z.X. Mi, J. Lu, A study on the crack propagation process in concrete structures using energy method, in: Applied Mechanics and Materials, Trans Tech Publ, 2012, pp. 3151-3155. [2] M. Kaplan, Crack propagation and the fracture of concrete, in: Journal Proceedings, 1961, pp. 591-610. [3] S.P. Shah, F.J. McGarry, Griffith fracture criterion and concrete, Journal of the Engineering Mechanics Division, 97(6) (1971) 1663-1676. [4] D.S. Dugdale, Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids, 8(2) (1960) 100-104. [5] A. Hillerborg, M. Modéer, P.-E. Petersson, Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and concrete research, 6(6) (1976) 773-781. [6] Y. Jenq, S.P. Shah, Two parameter fracture model for concrete, Journal of engineering mechanics, 111(10) (1985) 1227-1241. [7] F.J. Vecchio, M.P. Collins, The modified compression-field theory for reinforced concrete elements subjected to shear, ACI J., 83(2) (1986) 219-231. [8] F.J. Vecchio, M.P. Collins, Compression response of cracked reinforced concrete, Journal of Structural Engineering, 119(12) (1993) 3590-3610. [9] T.T. Hsu, L.-X. Zhang, Tension stiffening in reinforced concrete membrane elements, Structural Journal, 93(1) (1996) 108-115. [10] H.-G. Kwak, F.C. Filippou, Finite element analysis of reinforced concrete structures under monotonic loads, Department of Civil Engineering, University of California Berkeley, CA, 1990. [11] V. Broujerdian, M.T. Kazemi, Smeared rotating crack model for reinforced concrete membrane elements, ACI Structural Journal, 107(4) (2010) 411. [12] L. Hsu, C.-T. Hsu, Complete stress—strain behaviour of high-strength concrete under compression, Magazine of Concrete Research, 46(169) (1994) 301-312. [13] B.L. Wahalathantri, D. Thambiratnam, T. Chan, S. Fawzia, A material model for flexural crack simulation in reinforced concrete elements using ABAQUS, in: Proceedings of the first international conference on engineering, designing and developing the built environment for sustainable wellbeing, Queensland University of Technology, 2011, pp. 260-264. [14] B. Code, ACI 318-11 Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Retrieved, 8 (2012). [15] S. Kumar, S.V. Barai, Concrete fracture models and applications, Springer Science & Business Media, 2011. [16] S. Xu, Determination of parameters in the bilinear, Reinhardt’s non-linear and exponentially non-linear softening curves and their physical meanings. Werkstoffe und Werkstoffprüfung im Bauwesen, Hamburg, Libri Bod, 15 (1999) 410-424. [17] H.W. Reinhardt, H.A. Cornelissen, D.A. Hordijk, Tensile tests and failure analysis of concrete, Journal of structural engineering, 112(11) (1986) 2462-2477 [18] B. Bresler, A.C. Scordelis, Shear strength of reinforced concrete beams, in: Journal Proceedings, 1963, pp. 51-74. | ||
آمار تعداد مشاهده مقاله: 1,366 تعداد دریافت فایل اصل مقاله: 1,288 |