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ABSTRACT: In this study, an observer-based tracking controller is proposed and evaluated 
experimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturation 
in the presence of model uncertainties and external disturbances. In comparison with the state-of-the-art 
observer-based controllers in the literature, this paper introduces a saturated observer-based controller 
based on a radial basis function neural network. This technique helps the controller produce feasible 
control signals for the robot actuators. As a result, it efficiently diminishes the actuators saturation risk 
and consequently, a better transient performance is obtained. The stability analyses of the dynamics 
of the tracking errors and state estimation errors are given with the help of a Lyapunov-based stability 
analysis method. The theoretical analyses will systematically prove that the errors are semi-globally 
uniformly ultimately bounded and they converge to a small set around the origin whose size is adjustable 
by a suitable tuning of parameters. At last, some real experiments are performed on a laboratory robotic 
arm to illustrate the efficiency of the proposed control system for real industrial applications.
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1- Introduction
Many research efforts have been accomplished in the recent 
decades where the various nonlinear control methods have 
been utilized to address the controller design of robot 
manipulators with limited inputs. One interesting aspect is 
the design and development of output feedback controllers 
(OFBCs), that eliminate velocity sensors to improve the 
noise immunity and save the volume, cost, and weight of 
the robot control system [1-4]. A main deficiency in the 
most of available works in the literature is that they suppose 
robot actuators are able to receive every arbitrary amount 
of generated control signals. In reality, robot actuators are 
subjected to physical constraints which restrict the amplitude 
of the available torques. Some problems that may be the 
result of the implementation of controllers based on the 
unlimited available torque assumption are: (i) degraded link 
position tracking, and (ii) thermal and mechanical damage. 
To overcome this problem, some researchers have proposed 
saturated tracking controllers [5-11]. A controller with 
limited amplitude signals has been designed in [5] for robot 
manipulators in the presence of uncertainties in the dynamic 
and kinematic models. In [6], an adaptive controller with 
bounded signals and a guaranteed robustness performance 
has been proposed for the tracking control of robotic arms. 
Dixon et al. [7] have introduced a tracking control law for 
robotic arms with bounded torque inputs. Reference [8] has 
proposed a bounded feedback controller to solve the robot 
trajectory tracking problem with the saturation constraint. 
The saturation function such as the hyperbolic tangent one 
has been used to design bounded tracking controllers for 
robotic arms in [9-11] in which a PID controller has been 

employed in their schemes. Loria et al. [12] presented a global 
output feedback regulator with bounded signals for the first 
time for robotic manipulators in 1997. However, they have 
not addressed the control problem under model uncertainties. 
Later, this work was improved by the theory of singularly 
perturbed systems [13].
In this paper, mathematical properties of the hyperbolic 
tangent function, generalized saturation functions, adaptive 
robust techniques, and artificial neural network (ANN)-based 
estimation capabilities are efficiently combined to address 
the above problems by proposing a saturated output feedback 
controller (SOFBC) for the robot trajectory tracking problem 
for the first time.
The remaining parts of this paper are categorized in the 
following order. In section 2, preliminaries and basic 
mathematical theories are presented. A saturated output 
feedback tracking control system is introduced in section 
3. The experimental results are provided in section 4 to 
demonstrate the superiority of the proposed controller. 
Eventually, section 5 concludes the paper.

2- Preliminaries
In this section, we briefly review some background materials 
required in this paper.

2- 1- Robotic Arm Model
The dynamic equation of a rigid n-link direct-drive robot is 
demonstrated by the following form:

where the signals                                          represent the link
position, velocity and acceleration vectors, respectively; 
M(q)∈Rn×n shows the inertia matrix and
denotes a matrix of the centripetal and Coriolis terms. The 
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matrix D∈Rn×n is the diagonal positive-definite damping 
matrix. The vector G(q)∈Rn points out the gravity effects; 
td(t)∈Rn is a vector of external disturbances and static 
friction, and ta=[ta1,ta2,...,tan]T∈Rn demonstrates a vector of 
input torques with                                               .
The model (1) satisfies the following properties:
Property 1 [10], [14], [15]: The mass and inertia matrices 
satisfy the important property M(q) = MT(q) > 0 such that

,and 0<lm≤lM<∞ 

where                                          and                                      .

The operators lmax and lmin yield the largest and smallest 
eigenvalues associated with the matrix M(q), respectively.
Property 2 [14]-[15]: The Coriolis and centripetal matrices 
meet the following properties:
2.1) 

2.2)  

2.3)  

2.4)  

2.5)  

Property 3 [14]-[15]: The vector of gravity is bounded as   

                                                   where lG is an unknown positive 
scalar constant.
Property 4 [14]: The matrix D satisfies D = DT > 0,
                                                                         and 0<ld≤lD<∞

where ld:=lmin(D) and lD:=lmax(D).
Property 5 [6], [19]: The positive scalars zM, zC, zD and zG 
exist for all                           such that:

2- 2- Control objectives
The following control objective is of interest in this paper:
Let qd(t):[0,∞]—>Rn be a smooth bounded desired trajectory 
that is created by a timing law. The control objective of 
this study is to develop a control law for a robotic arm to 
address the trajectory tracking problem under the following 
conditions:

1. The parameters of the robot manipulator’s model are 
completely unknown and the robot is subjected to external 
disturbances;
2. The velocity signals are not measurable for the feedback;
3. The controller shall guarantee that input constraints 
are not violated in the sense that                   where  
taM=max{tai,max}, i=1,2,...,n, ∀t≥0. Subsequently, the actuator 
saturation problem is mitigated such that a poor transient 
response is prevented.
4. The controller gains can be adjusted freely without 

restricting their performance adjustment role.
Assumption 1. The links position signals are measurable in 
real-time.
Assumption 2. The reference trajectory qd(t) is selected such 
that                                                          and   

where Bdp, Bdv and Bda are bounded positive constants.

2- 3- Mathematical preliminaries
Definition 1. Given a positive scalar constant Mi, the function 
si:R—>R:z—>si(z) is called a generalized saturation one with 
bound Mi, if it is non-decreasing, locally Lipschitz, and meets 
the following items:

1. 

2. 

Lemma 1. Let si:R—>R:z—>si(z) be a generalized saturation 

function which is strictly increasing and continuously 
differentiable with the bound Mi. Let k1 and k2 be positive 
parameters and                                 . Then, the following 
always hold.
1. 

2. 

3.          is bounded and positive, that is, there exists a parameter   

                      such that                                            ;

4. 

5.   

6. 

7. 

8. 

9. From (8), it is clear that   

10. From (4), it turns out that                                                 .

Proof. See the reference [8].
As it is conventional in the literature of the adaptive control 
[16], a projection operator is presented here to force the 
parameter estimates to remain within a bounded convex set 
yq:={q∈Rp:g(q)≤0}, where g(q) is a constraint function 
on q which should be defined by the user based on a prior 
knowledge of q [16]. The vector of parameters’ estimates, i.e.   
             , is provided by the following adaptive rule:
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where        ,and     and d(yq) demonstrate the interior and the 
boundary of yq, respectively;                          is the outward unit 
normal vector at                   ,where G∈Rp×p shows the adaptive 
gain matrix, that is symmetric and                     .

Lemma 2 [17]. A class of saturation functions shi(x) with 
the property |shi(x)|≤1,∀x∈R exist such that xshi(x)≥0 and 
h|x|≤xhshi(vhx/gd)+gd hold for any gd >0 and ∀x,h∈R where v 
denotes a parameter which satisfies the equality v=e−(v+1), 
that yields v=0.2785.

2- 4- RBF neural network
In this subsection, RBFNN is presented to estimate uncertain 
nonlinear functions of the robot dynamics. Fig. 1 shows the 
structure of a three-layer RBFNN. This structure is extensively 
employed to approximate uncertain functions [14], [18]. 

An RBFNN for an arbitrary continuous function f(x):U—>Rp, 
where U denotes a compact set, is written in the following 
form:

where em is the approximation error of RBFNN, l and p are 
representing the number of nodes in the hidden and output 
layers, respectively, sk(x) is k-th Gaussian basis function 
where mk=[mk1, mk2,..., mkq]T shows the center vector and lk  
denotes the standard deviation. Then, the nonlinear function 
is stated by the following expression:

where f(x)=[f1(x),...,fp(x)]T, W∈Rp×l shows the matrix of 
weights, s(x)=[s1(x),...,sl(x)]T and e=[e1,e2,...,ep]T is bounded 
as ||e||≤Be with the upper bound Be. Therefore, the uncertain 
nonlinear function is estimated as f̂(x)=W ̂s(x) where W ̂  
displays the estimation of the weights matrix, that should be 
updated by designing an adaptation rule.

3- Bounded Nn-based OFBC

3- 1- Controller development
A bounded RBFNN-based adaptive robust OFB controller is 
designed here to meet the conditions (i)-(iv). To systematically 
design the observer and controller, the tracking error is specified 
by e(t):=q(t)−qd(t) and the state observation error is described 
by z(t):=q(t)−q(̂t). The signal q̂(t) shows the estimation of q(t). 
Then, the following signals are taken into account:

where s(x):=[s1(x1),...,sn(xn)]T, ∀x∈Rn,         , i=1,...,n is defined 
by Definition 1,                            are the variables of the controller 
and observer [19] and L= LT∈Rn×n shows a diagonal positive-
definite matrix. By inserting (6) in (1), and using Properties 2.3 
and 2.4, the following open-loop error dynamics is achieved:

where

which is bounded as                                   by using Property 

5, where                                                     .

Also,
is the desired computed dynamics of the robot, which is stated 
as                                                                     . Then, the following 
saturated neural network adaptive robust OFBC controller is 
proposed in this paper:

where                                is a matrix which is positive-definite. 
The parameter       and ANN weights matrix are generated by

where Gw and ga denote the adaptation gain matrices. It is 
necessary to mention that           is the approximation of 
r1+r2 which is given as follows:

The approximation                              can be confirmed if 
the gains L and kd are selected large enough where kd is the 
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Fig. 1. A radial basis function neural network
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gain of the state estimator, which will be introduced below. 
For the aim of the stability analysis in the next subsection, the 
approximation error is defined by

from (6), (8) and (13) which is bounded as:

where x5 represents a positive constant. Now, a velocity 
estimator is proposed as follows which is inspired by the 
reference [19]:

where kd∈R shows the gain of the state estimator which is a 
positive constant. To run the observer, the initial values of the 
states are chosen as follows:

Then, considering that                           from (6) and (8) 
and substituting (10) in (9), the closed-loop system error 
dynamics is achieved as follows:

where

whose upper bound is expressed as follows by using 
Properties1, 2.5 and 4:

where x1,x2∈R are the positive upper-bounding constants. 
Also, x∈R4n is defined as follows:

If the weights matrix estimation error is defined by
, one attains

By inserting (21) in (17), the following error dynamic 
equation is established:

The time derivative of (15) results in
which is equal to                                                  by applying 

(6) and (8). The Properties 2.3 and 2.4 help write (22) as:

where

From (3) and (4), Properties 2.5 and 4, and Lemma 1, an 
upper bound for c2 is acquired as follows:

where x1 ,x2∈R are some positive parameters.

3- 2- Analysis of closed-loop stability
The stability of the control system is analyzed here by the 
following theorem:
Theorem 1: Let the dynamic model of robot manipulators 
be given by (1). Consider a continuous bounded desired 
trajectory under Assumptions 1–2. If the gains of the following 
proposed controller:

satisfy the following inequalities:

where                                and                                      , then,
the proposed bounded RBF neural network adaptive robust 
OFBC guarantees (i) the boundedness of all closed-loop 
signals, and (ii) the semi-global uniform ultimate boundedness 
(SGUUB) of the tracking and observation errors. In addition, 
an estimation of the region of attraction is given by

where
P=4n+pl+1, bm is a positive parameter which depends on 
control gains, xi, i=1,...,5 are defined in (14), (19) and (25), 
and lx and lu will be given later.
Proof: See the appendix section
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Remark 1 (guidelines for parameters tuning):
In practical situations, the accurately tuning of the controller’s 
parameters is a little cumbersome and it is often done by the 
trial and error methods. In this remark, a few guidelines are 
given for the users to adjust the control parameters properly. 
The controller’s parameters K1, L, kd, Gw, ga and gd(t) should 
be tuned carefully to adjust the transient and steady-state 
performances. Based on Lyapunov stability analysis which 
is presented in the appendix section, the following laws are 
provided here for a trade-off between the robustness and the 
tracking performance of the control system:

i. Controller and observer gains: The increasing of  gains 
of the controller and the observer, i.e. K, L, and kd, 
increase the convergence rate cm in (41) and consequently 
lead to a smaller glim/cm. In addition, an arbitrary increase 
in K1 does not change the amplitude of the control signals 
in the present controller (10) by recalling the saturation 
function properties in Lemma 1.
ii. Artificial neural network parameters: At first, a small 
number of neurons in the hidden layer are selected, then, 
one gradually increases this to gain a better performance 
for the trajectory tracking. The number of neurons is 
enough when there is no performance improvement. 
Large values of ANN gain, Gw, in (11) increase the rate of 
uncertain nonlinearities learning. However, it should be 
noted that the stability of the system might be jeopardized 
by choosing very large gains and the speed of learning is 
decreased by the selection of very small gains.
iii. Adaptive robust control parameters: The increase 
of adaptive gain ga in the update rule (12) improves the 
robustness and the tracking performance of the controller. 
It should be noted that larger values of the adaptive gain 
ga may increase the roughness of the control signals. It 
in turn leads to an unwanted chattering in the control 
signals which is impractical for the robot motors due 
to their restricted bandwidth. One can make a trade-off 
between the smoothness of the controller signals and 
the final tracking accuracy by a finely tuning of the time 
function gd(t) in the controller (10). The controller (10) 
generates smoother signals by setting a large value of 
gd(t). However, it should be noted that a larger magnitude 
of gd(t) increases the magnitude of glim in (41). Hence, a 
larger ultimate bound, i.e. glim /cm, is resulted and, thus, the 
final tracking error will be increased.

4- Experimental Evaluation

4- 1- Experimental results
Here, the proposed controller is implemented on an industrial 
robot, SCARA IBM 7547 shown in Fig. 2. For the definition of 
the kinematics and dynamics of this type of robotic arms, the 
interested readers are referred to robotic textbooks [14-15] and 
references therein. 
This robot is a 4-DOF IBM 7547 SCARA robot manipulator 
which has three rotational joints and one prismatic joint is 
driven by gearbox DC motors equipped with incremental 
shaft encoders.
The controller signals are converted to 40 KHz PWM signals 
with 13 bits resolution, which are directly applied to DC 
motors via IRF540N-MOSFET (H-Bridge technique) power 
amplifiers according to Fig. 3. The control system of the 
robot has been designed and implemented on an Arduino Due 
board. This board uses Atmel SAM3X8E ARM Cortex-M3 

CPU microcontroller with 84 MHz clock frequency, 54 digital 
I/O pins (where twelve pins can be utilized for PWM outputs), 
12 analog inputs and 4 UARTs (serial inputs of the hardware). 
The test bed consists of a 4-DOF SCARA industrial robot, 
decoder counter latch, MOSFET power amplifier and Arduino 
Due controller is connected to a computer as shown in Fig. 4. 
In this figure, the required hardware for the implementation of 
the proposed controller has been illustrated completely. The 
following saturation function is selected in this experiment to 
bound the tracking and estimation errors in order to evaluate 
the proposed saturated observer-based controller:

(29( )

( )

( )

tanh ,

  ,                                               

tanh , 

+ − + − ∀ < − − 
∀ < −
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Fig. 2. SCARA IBM 7547 robot manipulator.

Fig. 3. MOSFET Power Amplifier

Fig. 4. The block diagram of the implementation system
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where Lj<Mj, j=1,2 denotes the saturation function parameter 
which is chosen by the user to obtain a desired performance. 
In these experiments, the parameters of the controller that 
produce an acceptable tracking response are given by 
K1=diag[0.32,0.15], L=diag[46,42], kd=18, Gw=2, Ga=0.1, 
and gd=150. The desired trajectory is chosen as x=63+25sin(t), 
y=25sin(2t) for this experiment. In this experiment, according 

to our previous paper [20], the robot is commanded to track 
an infinity-shaped desired trajectory whose center and radius 
are set to (0.63m, 0m) and 20 cm, respectively.
Figs. 5, 6 and 7 show task space trajectories of the robot, 
tracking errors, and controller signals for different types of 
saturation functions. In order to show the robot performance in 
this practice, a marker is placed at the end-effector of the robot 

Fig. 5. Trajectory tracking results on SCARA IBM7547 robot manipulator without saturation: (a) robot and desired trajectories, (b) 
a magnified view of the trajectory, (c) controller output signals, and (d) the tracking errors.

Fig. 6. Trajectory tracking results on SCARA IBM7547 robot manipulator with  : (a) robot and desired trajectories, (b) a magnified 
part of the trajectory, (c) controller output signals and (d) the tracking errors.

Fig. 7. Trajectory tracking results on SCARA IBM7547 robot manipulator with  : (a) robot and desired trajectories, (b) a magnified 
view of the trajectory, (c) controller output signals and (d) the tracking errors.

Table I.  Quantitative comparisons

Performance index
Proposed controller in [2] Proposed controller with tanh(.) Proposed controller of this 

paper
Link 1 Link 2 Link 1 Link 2 Link 1 Link 2

rms(e(t)) (m) 21.1701 10.1309 21.2460 10.3058 21.5090 11.0610
rms(u(t)) (V) 14.9235 7.2507 13.0695 6.9656 12.9680 5.2013

eM(m) 53.0414 21.4433 53.2399 26.7734 53.8735 28.1524
ef(m) 1.1607 1.4758 0.8866 1.0715 0.7845 0.5397
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to plot the trajectory clearly. Some different desired trajectories 
are commanded to the robot control system which are not 
shown in this paper due to space limit. All of experiments have 
validated the effectiveness of the proposed controller.

4- 2- Comparison of experimental results
This section assesses the controller performance for two 
following cases: (i) with the use of the saturation function 
and (ii) without any saturating function.
By comparing Fig. 6 with Fig. 7 precisely, we conclude that 
the use of saturation function (29) instead of a hyperbolic 
function improves the tracking performance and the control 
signals remarkably. Moreover, if the saturation function (29) 
is not used, non-smooth control signals are produced, which 
lead to serious physical damages of actuators. In the final 
section of this paper, a quantitative comparative evaluation 
will be presented.

4- 3- Quantitative comparisons
To examine the controllers’ behavior, some performance 
criteria are considered for the experiments as follows:

•                                                                   the RMS1 of  the

position error that is used to assess the average tracking 
performance where Tf represents the final time of the 
experiment and ej represents jth position error.

•                                                                            , the RMS of 

control signals which is provided to examine the amount of 
control efforts. This index is used to determine the magnitude 
of the power consumption of the controller.
•                                                              the maximum absolute
value of the position error is also used to measure the transient 
performance of the controllers.
•                                                	  , the maximum absolute

value of the position error within the final TL seconds of the 
experiment is utilized to evaluate the final tracking accuracy 
of all controllers.
Finally, Table I shows the superiority of the proposed 
controller in comparison with [2] with different saturation 
conditions.

5- Conclusion
In this paper, a neural network-based adaptive robust controller 
has been designed to tackle the trajectory tracking problem 
for robotic arms in the absence of velocity signals and in the 
presence of the input saturation and modeling errors. The 
saturation functions have been used efficiently to confine the 
error signals in the controller and observer laws for diminishing 
the actuator saturation risk. A stability analysis based on 
Lyapunov theory has been applied to demonstrate the semi-
global stability of the state observation and tracking errors. The 
experimental results were given on a laboratory robotic arm to 
validate that the proposed controller is effective in the presence 
of actuators saturation and uncertainties. A comparison was 

1- Root Mean Square

made to depict the superiority of the proposed controller over 
the previous controllers.

APPENDIX
The Proof of Theorem 1. Consider the following candidate 
Lyapunov function,

where                         and                        . From the item (iv) 
of Lemma 1, it is easy to verify that the above function is 
bounded as follows:

where                                 , and                               . Then, (31) 
is expressed again in the following form:

where                                              

and                                               and

According to (32) and items (v) and (vi) in Lemma 1, one can 
see that E(t) is a descending function, positive-definite and 
radially unbounded. Now, the time derivative of (30) along 
(6), (8), (22), and (23), using Property 2.1 and considering 
that the facts that                 and              , we have:
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A bound for the term e−td(t) is given as follows:

By considering the inequality in (14), recalling

                                                                 , adding and subtracting

                  , and substituting (11), (12), inequality (34) is 

written as follows:

By considering Lemma 2, taking the following facts into 
account from [16-17]:

and considering (19) and (25) and recalling items (vii) and 
(viii) in Lemma 1, we obtain:

where we note that               and

                                                                               .
By considering (11) and (12) and Assumption 2, q can be 
bounded as ||q||≤qm. Then, by considering 2ab≤a2+b2 and 
recalling (14), one can re-write (36) as follows:

where                                              and                               are 
defined as:

The control parameters are set such that bi>0, i=1,...,4. As a 
result, the conditions of Theorem 1 are met. Thus, (37) may 
be expressed as follows:

where x∈R4n is given by (20) and bm:min{b1,b2,b3,b4}. Hence, 
if bm is selected such that:

Then, inequality (39) can be written as

where cm is also a positive scalar and                              .This
points out that          is strictly negative when x(t) is out of the 

compact set                                                               , which shows

E(t) is decreasing out of the set Sx. This gives the following 
result:

where we used inequality (32). By recalling (32) and (42), 
one has

Thus, the following condition is sufficient to satisfy (40):

The above equation hints that RA in Theorem 1 is an estimation 
of the attraction region whose size depends on the controller 
gains. As a consequence, ||x(t)|| is SGUUB. Therefore, this 
result helps us to find that
by recalling the properties of saturation functions which 
are presented in Lemma 1. The above-mentioned argument 
is the evidence of SGUUB stability of the state estimation 
and tracking errors, weights, and parameters estimation 
errors. Furthermore, it is concluded that                         by 
considering (6) and (8). At last, equations (6) and 
(8), the controller (10), and Assumption 2 show that

                                                                               . It is clear 
that this statement completes the proof of Theorem 1. □
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