تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,180 |
تعداد دریافت فایل اصل مقاله | 4,882,930 |
3-RPS Parallel Manipulator Dynamical Modelling and Control Based on SMC and FL Methods | ||
AUT Journal of Modeling and Simulation | ||
مقاله 10، دوره 49، شماره 2، اسفند 2017، صفحه 217-226 اصل مقاله (6.39 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22060/miscj.2017.11945.4985 | ||
نویسندگان | ||
M. Shahidi* 1؛ J. Keighobadi1؛ A. R. Khoogar2 | ||
1Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran | ||
2Department of Mechanical Engineering, Maleke-Ashtar University of Technology, Tehran, Iran | ||
چکیده | ||
In this paper, a dynamical model-based SMC (Sliding Mode Control) is proposed for trajectory tracking of a 3-RPS (Revolute, Prismatic, Spherical) parallel manipulator. With ignoring small inertial effects of all legs and joints compared with those of the end-effector of 3-RPS, the dynamical model of the manipulator is developed based on Lagrange method. By removing the unknown Lagrange multipliers, the distribution matrix of control input vector disappears from the dynamical equations. Therefore, the calculation of the aforementioned matrix is not required for modeling the manipulator. It in trun results in decreased mathematical manipulation and low computational burden. As a robust nonlinear control technique, a SMC system is designed for the tracking of the 3-RPS manipulator. According to Lyapunov’s direct method, the asymptotic stability and the convergence of 3-RPS manipulator to the desired reference trajectories are proved. Based on computer simulations, the robust performance of the proposed SMC system is evaluated with respect to FL (feedback linearization) method. The proposed model and control algorithms can be extended to different kinds of holonomic and non-holonomic constrained parallel manipulators. | ||
تازه های تحقیق | ||
[1] P. Nanua, K.J. Waldron, V. Murthy, Direct kinematic solution of a Stewart platform, IEEE Transactions on Robotics and Automation, 6(4) (1990) 438-444. [2] P. Ji, H. Wu, A closed-form forward kinematics solution for the 6-6/sup p/Stewart platform, IEEE Transactions on robotics and automation, 17(4) (2001) 522-526. [3] J. Schadlbauer, D. Walter, M. Husty, The 3-RPS parallel manipulator from an algebraic viewpoint, Mechanism and Machine Theory, 75 (2014) 161-176. [4] J.-P. Merlet, Parallel robots, Springer Science & Business Media, 2006. [5] J.-P. Merlet, Direct kinematics of parallel manipulators, IEEE transactions on robotics and automation, 9(6) (1993) 842-846. [6] C.-f. Yang, S.-t. Zheng, J. Jin, S.-b. Zhu, J.-w. Han, Forward kinematics analysis of parallel manipulator using modified global Newton-Raphson method, Journal of Central South University of Technology, 17(6) (2010) 1264-1270. [7] W.-H. Ding, H. Deng, Q.-M. Li, Y.-M. Xia, Control-orientated dynamic modeling of forging manipulators with multi-closed kinematic chains, Robotics and Computer-Integrated Manufacturing, 30(5) (2014) 421-431. [8] S.-H. Lee, J.-B. Song, W.-C. Choi, D. Hong, Position control of a Stewart platform using inverse dynamics control with approximate dynamics, Mechatronics, 13(6) (2003) 605-619. [9] M.-J. Liu, C.-X. Li, C.-N. Li, Dynamics analysis of the Gough-Stewart platform manipulator, IEEE Transactions on Robotics and Automation, 16(1) (2000) 94-98. [10] W. Khalil, S. Guegan, Inverse and direct dynamic modeling of Gough-Stewart robots, IEEE Transactions on Robotics, 20(4) (2004) 754-761. [11] H. Pendar, M. Vakil, H. Zohoor, Efficient dynamic equations of 3-RPS parallel mechanism through Lagrange method, in: Robotics, Automation and Mechatronics, 2004 IEEE Conference on, IEEE, 2004, pp. 1152-1157. [12] E. Özgür, N. Andreff, P. Martinet, Linear dynamic modeling of parallel kinematic manipulators from observable kinematic elements, Mechanism and Machine Theory, 69 (2013) 73-89. [13] M. Diaz-Rodriguez, A. Valera, V. Mata, M. Valles, Model-based control of a 3-DOF parallel robot based on identified relevant parameters, IEEE/ASME Transactions on Mechatronics, 18(6) (2013) 1737-1744. [14] M. Zeinali, L. Notash, Adaptive sliding mode control with uncertainty estimator for robot manipulators, Mechanism and Machine Theory, 45(1) (2010) 80-90. [15] J. Cazalilla, M. Vallés, V. Mata, M. Díaz-Rodríguez, A. Valera, Adaptive control of a 3-DOF parallel manipulator considering payload handling and relevant parameter models, Robotics and Computer-Integrated Manufacturing, 30(5) (2014) 468-477. [16] M.R. Sirouspour, S.E. Salcudean, Nonlinear control of hydraulic robots, IEEE Transactions on Robotics and Automation, 17(2) (2001) 173-182. [17] I. Davliakos, E. Papadopoulos, Model-based control of a 6-dof electrohydraulic Stewart–Gough platform, Mechanism and machine theory, 43(11) (2008) 1385-1400. [18] M.A. Khosravi, H.D. Taghirad, Robust PID control of fully-constrained cable driven parallel robots, Mechatronics, 24(2) (2014) 87-97. [19] J.-M. Yang, J.-H. Kim, Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots, IEEE Transactions on robotics and automation, 15(3) (1999) 578-587. [20] M.A. Hussain, P.Y. Ho, Adaptive sliding mode control with neural network based hybrid models, Journal of Process Control, 14(2) (2004) 157-176. [21] P. Doostdar, J. Keighobadi, Design and implementation of SMO for a nonlinear MIMO AHRS, Mechanical Systems and Signal Processing, 32 (2012) 94-115. [22] K.-M. Lee, D.K. Shah, Kinematic analysis of a three-degrees-of-freedom in-parallel actuated manipulator, IEEE Journal on Robotics and Automation, 4(3) (1988) 354-360. [23] J.J. Craig, Introduction to robotics: mechanics and control, Pearson Prentice Hall Upper Saddle River, 2005. [24] X. Yang, H. Wu, Y. Li, B. Chen, A dual quaternion solution to the forward kinematics of a class of six-DOF parallel robots with full or reductant actuation, Mechanism and Machine Theory, 107 (2017) 27-36. [25] K.H. Harib, Dynamic modeling, identification and control of Stewart platform-based machine tools, The Ohio State University, 1997. [26] L.-W. Tsai, Robot analysis: the mechanics of serial and parallel manipulators, John Wiley & Sons, 1999. [27] F.L. Lewis, C.T. Abdallah, D.M. Dawson, Control of robot manipulators, Macmillan New York, 1993. | ||
کلیدواژهها | ||
Parallel manipulator؛ Dynamic modeling؛ Trajectory tracking؛ Feedback linearization؛ sliding mode control | ||
مراجع | ||
[1] P. Nanua, K.J. Waldron, V. Murthy, Direct kinematic solution of a Stewart platform, IEEE Transactions on Robotics and Automation, 6(4) (1990) 438-444. [2] P. Ji, H. Wu, A closed-form forward kinematics solution for the 6-6/sup p/Stewart platform, IEEE Transactions on robotics and automation, 17(4) (2001) 522-526. [3] J. Schadlbauer, D. Walter, M. Husty, The 3-RPS parallel manipulator from an algebraic viewpoint, Mechanism and Machine Theory, 75 (2014) 161-176. [4] J.-P. Merlet, Parallel robots, Springer Science & Business Media, 2006. [5] J.-P. Merlet, Direct kinematics of parallel manipulators, IEEE transactions on robotics and automation, 9(6) (1993) 842-846. [6] C.-f. Yang, S.-t. Zheng, J. Jin, S.-b. Zhu, J.-w. Han, Forward kinematics analysis of parallel manipulator using modified global Newton-Raphson method, Journal of Central South University of Technology, 17(6) (2010) 1264-1270. [7] W.-H. Ding, H. Deng, Q.-M. Li, Y.-M. Xia, Control-orientated dynamic modeling of forging manipulators with multi-closed kinematic chains, Robotics and Computer-Integrated Manufacturing, 30(5) (2014) 421-431. [8] S.-H. Lee, J.-B. Song, W.-C. Choi, D. Hong, Position control of a Stewart platform using inverse dynamics control with approximate dynamics, Mechatronics, 13(6) (2003) 605-619. [9] M.-J. Liu, C.-X. Li, C.-N. Li, Dynamics analysis of the Gough-Stewart platform manipulator, IEEE Transactions on Robotics and Automation, 16(1) (2000) 94-98. [10] W. Khalil, S. Guegan, Inverse and direct dynamic modeling of Gough-Stewart robots, IEEE Transactions on Robotics, 20(4) (2004) 754-761. [11] H. Pendar, M. Vakil, H. Zohoor, Efficient dynamic equations of 3-RPS parallel mechanism through Lagrange method, in: Robotics, Automation and Mechatronics, 2004 IEEE Conference on, IEEE, 2004, pp. 1152-1157. [12] E. Özgür, N. Andreff, P. Martinet, Linear dynamic modeling of parallel kinematic manipulators from observable kinematic elements, Mechanism and Machine Theory, 69 (2013) 73-89. [13] M. Diaz-Rodriguez, A. Valera, V. Mata, M. Valles, Model-based control of a 3-DOF parallel robot based on identified relevant parameters, IEEE/ASME Transactions on Mechatronics, 18(6) (2013) 1737-1744. [14] M. Zeinali, L. Notash, Adaptive sliding mode control with uncertainty estimator for robot manipulators, Mechanism and Machine Theory, 45(1) (2010) 80-90. [15] J. Cazalilla, M. Vallés, V. Mata, M. Díaz-Rodríguez, A. Valera, Adaptive control of a 3-DOF parallel manipulator considering payload handling and relevant parameter models, Robotics and Computer-Integrated Manufacturing, 30(5) (2014) 468-477. [16] M.R. Sirouspour, S.E. Salcudean, Nonlinear control of hydraulic robots, IEEE Transactions on Robotics and Automation, 17(2) (2001) 173-182. [17] I. Davliakos, E. Papadopoulos, Model-based control of a 6-dof electrohydraulic Stewart–Gough platform, Mechanism and machine theory, 43(11) (2008) 1385-1400. [18] M.A. Khosravi, H.D. Taghirad, Robust PID control of fully-constrained cable driven parallel robots, Mechatronics, 24(2) (2014) 87-97. [19] J.-M. Yang, J.-H. Kim, Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots, IEEE Transactions on robotics and automation, 15(3) (1999) 578-587. [20] M.A. Hussain, P.Y. Ho, Adaptive sliding mode control with neural network based hybrid models, Journal of Process Control, 14(2) (2004) 157-176. [21] P. Doostdar, J. Keighobadi, Design and implementation of SMO for a nonlinear MIMO AHRS, Mechanical Systems and Signal Processing, 32 (2012) 94-115. [22] K.-M. Lee, D.K. Shah, Kinematic analysis of a three-degrees-of-freedom in-parallel actuated manipulator, IEEE Journal on Robotics and Automation, 4(3) (1988) 354-360. [23] J.J. Craig, Introduction to robotics: mechanics and control, Pearson Prentice Hall Upper Saddle River, 2005. [24] X. Yang, H. Wu, Y. Li, B. Chen, A dual quaternion solution to the forward kinematics of a class of six-DOF parallel robots with full or reductant actuation, Mechanism and Machine Theory, 107 (2017) 27-36. [25] K.H. Harib, Dynamic modeling, identification and control of Stewart platform-based machine tools, The Ohio State University, 1997. [26] L.-W. Tsai, Robot analysis: the mechanics of serial and parallel manipulators, John Wiley & Sons, 1999. [27] F.L. Lewis, C.T. Abdallah, D.M. Dawson, Control of robot manipulators, Macmillan New York, 1993. | ||
آمار تعداد مشاهده مقاله: 1,262 تعداد دریافت فایل اصل مقاله: 1,170 |