- V. Ahrari, S. Baratpour, A. Habibirad, and V. Fakoor, Goodness of fit tests for Rayleigh distribution based on quantiles, Comm. Statist. Simulation Comput., 51 (2022), pp. 341–357.
- R. Alizadeh Noughabi, H. Alizadeh Noughabi, and A. Ebrahimi Moghaddam Behabadi, An entropy test for the Rayleigh distribution and power comparison, J. Stat. Comput. Simul., 84 (2014), pp. 151–158.
- T. W. Anderson and D. A. Darling, A test of goodness of fit, J. Amer. Statist. Assoc., 49 (1954), pp. 765– 769.
- S. Baratpour and F. a. Khodadadi, A cumulative residual entropy characterization of the Rayleigh distribution and related goodness-of-fit test, J. Statist. Res. Iran, 9 (2013), pp. 115–131.
- S. Baratpour and A. H. Rad, Testing goodness-of-fit for exponential distribution based on cumulative residual entropy, Comm. Statist. Theory Methods, 41 (2012), pp. 1387–1396.
- S. K. Bhattacharya and K. T. Ravinder, Bayesian survival analysis based on the Rayleigh model, Trabajos de Estad´ıstica, 5 (1990), pp. 81–92.
- C. Caroni, The correct “ball bearings” data, Lifetime Data Anal., 8 (2002), pp. 395–399.
- Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Statistics & Probability Letters, 49 (2000), pp. 155–161.
- Y. Chung, Estimation of scale parameter from Rayleigh distribution under entropy loss, J. Appl. Math. Comput., 2 (1995), pp. 33–40.
- R. B. D’Agostino and M. A. Stephens, Goodness-of-fit techniques, Marcel Dekker, Inc., USA, 1986.
- S. Dey and S. Maiti, Bayesian estimation of the parameter of Rayleigh distribution under the extended Jeffrey’s prior, Electron. J. Appl. Stat. Anal., 5 (2012), pp. 44–59.
- B. S. Dhillon, Life distributions, IEEE Transactions on Reliability, R-30 (1981), pp. 457–460.
- D. D. Dyer and C. W. Whisenand, Best linear unbiased estimator of the parameter of the Rayleigh distribution, IEEE Transactions on Reliability, R-22 (1973), pp. 229–231.
- A. J. Fernandez´ , Bayesian estimation and prediction based on Rayleigh sample quantiles, Quality & Quantity, 44 (2010), pp. 1239–1248.
- D. Hinkley, On quick choice of power transformation, Journal of the Royal Statistical Society. Series C (Applied Statistics), 26 (1977), pp. 67–69.
- S. M. A. Jahanshahi, A. H. Rad, and V. Fakoor, A goodness-of-fit test for Rayleigh distribution based on hellinger distance, Annals of Data Science, 3 (2016), pp. 401–411.
- S. M. A. Jahanshahi, A. H. Rad, and V. Fakoor, Some new goodness-of-fit tests for Rayleigh distribution, Pak. J. Stat. Oper. Res., (2020), pp. 305–315.
- N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions, Volume 1, Wiley Series in Probability and Statistics, John Wiley & Sons, Nashville, TN, 2 ed., 1994.
- A. Kohansal and S. Rezakhah, Inference of R = P(Y < X) for two-parameter Rayleigh distribution based on progressively censored samples, Statistics, 53 (2019), pp. 81–100.
- A. Kolmogoroff, Sulla determinazione empirica di una legge di distribuzione., G. Ist. Ital. Attuari, 4 (1933), pp. 83–91.
- N. H. Kuiper, Tests concerning random points on a circle, Nederl. Akad. Wet., Proc., Ser. A, 63 (1960), pp. 38–47.
- H. Liao and W. Gui, Statistical inference of the Rayleigh distribution based on progressively type-II censored competing risks data, Symmetry, 11 (2019), p. 898.
- S. Liebenberg and J. Allison, A review of goodness-of-fit tests for the Rayleigh distribution, Austrian Journal of Statistics, 52 (2023), pp. 1–22.
- A. Pak, G. A. Parham, and M. Saraj, Inference for the Rayleigh distribution based on progressive type-II fuzzy censored data, J. Mod. Appl. Stat. Methods, 13 (2014), pp. 287–304.
- L. Rayleigh, On the resultant of a large number of vibrations of the same pitch and of arbitrary phase, Phil. Mag. (5), 10 (1880), pp. 73–78.
- J. Ren and W. Gui, Goodness-of-fit test for Rayleigh distribution based on progressively type-II censored sample, Commun. Stat., Theory Methods, 50 (2021), pp. 3851–3874.
- M. Safavinejad, S. Jomhoori, and H. A. Noughabi, A density-based empirical likelihood ratio goodnessof-fit test for the Rayleigh distribution and power comparison, J. Stat. Comput. Simulation, 85 (2015), pp. 3322– 3334.
- M. M. Siddiqui, Some problems connected with Rayleigh distributions, J. Res. Natl. Bur. Stand., Sect. D, 66 (1962), pp. 167–174.
- M. M. Siddisqui, Statistical inference for Rayleigh distributions, J. Res. Natl. Bur. Stand., Sect. D, 68 (1964), pp. 1005–1010.
- H. Torabi, N. H. Montazeri, and A. Grane´, A test for normality based on the empirical distribution function, SORT, 40 (2016), pp. 55–88.
- , A wide review on exponentiality tests and two competitive proposals with application on reliability, J. Stat. Comput. Simulation, 88 (2018), pp. 108–139.
- K. M. Vaisakh, T. Xavier, and E. P. Sreedevi, Goodness of fit test for Rayleigh distribution with censored observations, J. Korean Statist. Soc., 52 (2023), pp. 794–815.
- R. von Mises, Vorlesungen aus dem Gebiete der angewandten Mathematik. Bd. 1. Wahrscheinlichkeitsrechnung und ihre Anwendung in der Statistik und theoretischen Physik. Leipzig u. Wien: Franz Deuticke. X, 574 S. u. 90 Abb. (1931)., 1931.
- G. S. Watson, Goodness-of-fit tests on a circle, Biometrika, 48 (1961), pp. 109–114.
- E. Zamanzade and M. Mahdizadeh, Goodness of fit tests for Rayleigh distribution based on Phi-divergence, Rev. Colomb. Estad., 40 (2017), pp. 279–290.
|