
تعداد نشریات | 8 |
تعداد شمارهها | 414 |
تعداد مقالات | 5,478 |
تعداد مشاهده مقاله | 6,010,333 |
تعداد دریافت فایل اصل مقاله | 5,299,916 |
The competition of robust methods in linear and nonlinear regression with heavy-tailed stable errors | ||
AUT Journal of Mathematics and Computing | ||
مقاله 5، دوره 6، شماره 3، مهر 2025، صفحه 241-255 اصل مقاله (754.66 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2024.22960.1207 | ||
نویسندگان | ||
Mohammad Bassam Shiekh Albasatneh؛ Omid Naghshineh Arjmand* | ||
Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Iran | ||
چکیده | ||
Robust regression methods including, least trimmed squares, are among the most important methodologies for computing exact coefficient estimators when data is polluted with outliers. There is interest in generalizing least trimmed squares for regression models with heavy-tailed stable errors. This manuscript, compares estimating coefficients methods with the robust least trimmed squares method in stable errors case. Therefore, we propose stable least trimmed squares and nonlinear stable least trimmed squares methods for linear/nonlinear regression models with stable errors, respectively. The joint distribution of ordered errors is used with the finite variance property of ordered stable errors, whose indexes are defined by cut-off points (Subsection 3.1). We make many comparisons using simulated and real datasets. | ||
کلیدواژهها | ||
Least trimmed squares؛ Cut-off points؛ Finite moments؛ Order statistics | ||
آمار تعداد مشاهده مقاله: 409 تعداد دریافت فایل اصل مقاله: 17 |