
تعداد نشریات | 8 |
تعداد شمارهها | 422 |
تعداد مقالات | 5,533 |
تعداد مشاهده مقاله | 6,392,005 |
تعداد دریافت فایل اصل مقاله | 5,490,646 |
Enhancing Agricultural Diagnostics: Tomato Leaf Disease Detection Using Quantum Vision Transformer | ||
AUT Journal of Electrical Engineering | ||
دوره 57، Issue 2 (Special Issue)، 2025، صفحه 343-354 اصل مقاله (1.33 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22060/eej.2024.23496.5617 | ||
نویسندگان | ||
Nasrin Rahmani؛ Hossein Ebrahimnezhad* ؛ Erfan Ahmadi | ||
Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran | ||
چکیده | ||
The early and accurate detection of plant diseases is vital for ensuring food security and enhancing agricultural productivity. Tomato plants, being one of the most widely cultivated crops, are particularly susceptible to several prevalent leaf conditions. These conditions can lead to significant crop losses and adversely affect both yield and quality, posing a substantial challenge to farmers and the agricultural industry. To identify tomato leaf conditions, traditional methods such as Machine Learning and modern approaches like various Deep Learning architectures have been developed and studied by researchers. This paper presents a novel approach for the detection of ten classes of tomato leaf conditions, encompassing both healthy and diseased leaves. The proposed method leverages a new Quantum Vision Transformer architecture, integrating variational quantum circuits within both the attention mechanism and the multi-layer perceptron. In our study, we conducted extensive experiments comparing the performance of the Quantum Vision Transformer with the Vision Transformer. The experimental results demonstrate that the Quantum Vision Transformer model achieves an Area Under the Curve of 0.928 and an accuracy of 66.85%, while the Vision Transformer model reaches an Area Under the Curve of 0.95 and an accuracy of 72.15%. This highlights the effectiveness and robustness of both models in accurately detecting tomato leaf conditions. The research findings suggest that the Quantum Vision Transformer architecture can serve as a powerful tool for early detection in agricultural applications using quantum computers, contributing to more efficient and sustainable farming practices. | ||
کلیدواژهها | ||
Tomato Leaf Disease؛ Quantum Vision Transformer؛ Deep Learning؛ Disease Detection؛ Quantum Circuits | ||
مراجع | ||
[1] R. Sujatha, J.M. Chatterjee, N. Jhanjhi, S.N. Brohi, Performance of deep learning vs machine learning in plant leaf disease detection, Microprocessors and Microsystems, 80 (2021) 103615.
[2] M. Badiger, J.A. Mathew, Tomato plant leaf disease segmentation and multiclass disease detection using hybrid optimization enabled deep learning, Journal of Biotechnology, 374 (2023) 101-113.
[3] S.K. Sahu, M. Pandey, An optimal hybrid multiclass SVM for plant leaf disease detection using spatial Fuzzy C-Means model, Expert systems with applications, 214 (2023) 118989.
[4] C. Mattihalli, E. Gedefaye, F. Endalamaw, A. Necho, Plant leaf diseases detection and auto-medicine, Internet of Things, 1 (2018) 67-73.
[5] P. Schreinemachers, E.B. Simmons, M.C. Wopereis, Tapping the economic and nutritional power of vegetables, Global food security, 16 (2018) 36-45.
[6] S.L. Vini, P. Rathika, TrioConvTomatoNet: A robust CNN architecture for fast and accurate tomato leaf disease classification for real-time application, Scientia Horticulturae, 330 (2024) 113079.
[7] A. Ali, Plant leaf disease data set, Online available., (2019).
[8] S. Panno, S. Davino, A.G. Caruso, S. Bertacca, A. Crnogorac, A. Mandić, E. Noris, S. Matić, A review of the most common and economically important diseases that undermine the cultivation of tomato crop in the Mediterranean basin, Agronomy, 11(11) (2021) 2188.
[9] R. Wang, M. Lammers, Y. Tikunov, A.G. Bovy, G.C. Angenent, R.A. de Maagd, The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners, Plant science, 294 (2020) 110436.
[10] Y. Toda, F. Okura, How convolutional neural networks diagnose plant disease, Plant Phenomics, (2019).
[11] H. Sun, H. Xu, B. Liu, D. He, J. He, H. Zhang, N. Geng, MEAN-SSD: A novel real-time detector for apple leaf diseases using improved light-weight convolutional neural networks, Computers and Electronics in Agriculture, 189 (2021) 106379.
[12] P. Bedi, P. Gole, Plant disease detection using hybrid model based on convolutional autoencoder and convolutional neural network, Artificial Intelligence in Agriculture, 5 (2021) 90-101.
[13] M.I. Hossain, S. Jahan, M.R. Al Asif, M. Samsuddoha, K. Ahmed, Detecting tomato leaf diseases by image processing through deep convolutional neural networks, Smart Agricultural Technology, 5 (2023) 100301.
[14] S.G. Paul, A.A. Biswas, A. Saha, M.S. Zulfiker, N.A. Ritu, I. Zahan, M. Rahman, M.A. Islam, A real-time application-based convolutional neural network approach for tomato leaf disease classification, Array, 19 (2023) 100313.
[15] K. Perveen, S. Debnath, B. Pandey, S.P. Chand, N.A. Bukhari, P. Bhowmick, N.A. Alshaikh, S. Arzoo, S. Batool, Deep learning-based multiscale CNN-based U network model for leaf disease diagnosis and segmentation of lesions in tomato, Physiological and Molecular Plant Pathology, 128 (2023) 102148.
[16] J. Qiu, X. Lu, X. Wang, C. Chen, Y. Chen, Y. Yang, Research on image recognition of tomato leaf diseases based on improved AlexNet model, Heliyon, 10(13) (2024).
[17] S. DL, V. K, A. N, S. Vashistha, Tomato Leaf Disease Detection Using CNN, (2024).
[18] N.S. Kumar, J. Sony, A. Premkumar, R. Meenakshi, J.J. Nair, Transfer Learning-based Object Detection Models for Improved Diagnosis of Tomato Leaf Disease, Procedia Computer Science, 235 (2024) 3025-3034.
[19] P. Kaur, S. Harnal, V. Gautam, M.P. Singh, S.P. Singh, An approach for characterization of infected area in tomato leaf disease based on deep learning and object detection technique, Engineering Applications of Artificial Intelligence, 115 (2022) 105210.
[20] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929, (2020).
[21] M.C. Cara, G.R. Dahale, Z. Dong, R.T. Forestano, S. Gleyzer, D. Justice, K. Kong, T. Magorsch, K.T. Matchev, K. Matcheva, Quantum Vision Transformers for Quark-Gluon Classification, arXiv preprint arXiv:2405.10284, (2024).
[22] D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus), arXiv preprint arXiv:1606.08415, (2016).
[23] W.G. Marchant, S. Gautam, S.F. Hutton, R. Srinivasan, Tomato yellow leaf curl virus-resistant and-susceptible tomato genotypes similarly impact the virus population genetics, Frontiers in Plant Science, 11 (2020) 599697.
[24] K.J. MacKenzie, L.G. Sumabat, K.V. Xavier, G.E. Vallad, A review of Corynespora cassiicola and its increasing relevance to tomato in Florida, Plant Health Progress, 19(4) (2018) 303-309.
[25] L. Broadbent, Epidemiology and control of tomato mosaic virus, Annual review of Phytopathology, 14(1) (1976) 75-96.
[26] J. Kroschel, N. Mujica, J. Okonya, A. Alyokhin, Insect pests affecting potatoes in tropical, subtropical, and temperate regions, The potato crop: Its agricultural, nutritional and social contribution to humankind, (2020) 251-306.
[27] R. Chaerani, R.E. Voorrips, Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance, Journal of general plant pathology, 72 (2006) 335-347.
[28] J. Carlier, M.-F. Zapater, F. Lapeyre, D.R. Jones, X. Mourichon, Septoria leaf spot of banana: a newly discovered disease caused by Mycosphaerella eumusae (anamorph Septoria eumusae), Phytopathology, 90(8) (2000) 884-890.
[29] S. Rivas, C.M. Thomas, Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum, Annu. Rev. Phytopathol., 43(1) (2005) 395-436.
[30] R.E. Stall, J.B. Jones, G.V. Minsavage, Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot, Annual review of phytopathology, 47(1) (2009) 265-284.
[31] N. Herrmann, D. Arya, M.W. Doherty, A. Mingare, J.C. Pillay, F. Preis, S. Prestel, Quantum utility–definition and assessment of a practical quantum advantage, in: 2023 IEEE International Conference on Quantum Software (QSW), IEEE, 2023, pp. 162-174.
[32] J. Bradbury, R. Frostig, P. Hawkins, M.J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, JAX: composable transformations of Python+ NumPy programs, (2018).
[33] J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre, A. Steiner, M. van Zee, Flax: A neural network library and ecosystem for JAX, 2020, URL http://github. com/google/flax, 1 (2020).
[34] S.-X. Zhang, J. Allcock, Z.-Q. Wan, S. Liu, J. Sun, H. Yu, X.-H. Yang, J. Qiu, Z. Ye, Y.-Q. Chen, Tensorcircuit: a quantum software framework for the nisq era, Quantum, 7 (2023) 912.
[35] M. Andrews, J. Alison, S. An, B. Burkle, S. Gleyzer, M. Narain, M. Paulini, B. Poczos, E. Usai, End-to-end jet classification of quarks and gluons with the CMS Open Data, Nuclear instruments and methods in physics research section A: accelerators, spectrometers, detectors and associated equipment, 977 (2020) 164304. | ||
آمار تعداد مشاهده مقاله: 531 تعداد دریافت فایل اصل مقاله: 352 |