
تعداد نشریات | 8 |
تعداد شمارهها | 421 |
تعداد مقالات | 5,525 |
تعداد مشاهده مقاله | 6,356,370 |
تعداد دریافت فایل اصل مقاله | 5,475,384 |
ارزیابی تاثیر شاخصهای محیطی در آسایش حرارتی برای اقلیمهای مختلف ایران با مدل پیاموی | ||
نشریه مهندسی مکانیک امیرکبیر | ||
دوره 57، شماره 1، 1404، صفحه 3-24 اصل مقاله (1.98 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2025.23850.7819 | ||
نویسندگان | ||
وحید رضائی* ؛ ابوذر تقی زاده | ||
گروه مهندسی مکانیک و مهندسی برق، دانشگاه ملی مهارت، تهران، ایران | ||
چکیده | ||
در این پژوهش شاخصهای محیطی در تامین شرایط آسایش حرارتی جهت طراحی ساختمانهای مسکونی برای شرایط مختلف اقلیمی ایران بررسی و ارزیابی شده است. این بررسی با استفاده از کدنویسی و مدل آسایش حرارتی استاندارد اشری در نرمافزار کلایمنت کانسالتنت، تاثیر شاخصهای اقلیمی روی طراحی ساختمان را پیشنهاد میدهد. شهرهای ایران با روش اقلیمشناسی کوپن به 9 اقلیم تقسیم میشوند. پارامترهای شاخص محیطی در این 9 اقلیم شامل دما بین 18 تا 38 درجه سلسیوس، سرعت هوا بین 0/1 تا 0/5 متر بر ثانیه، رطوبتنسبی بین 40 تا 80 درصد، نرخ متابولیک (میت) بین 0/7 تا 2 و عایق لباس (کلو) 0/5 تا 1/5 به صورت تصادفی تولید میشوند. نتایج روشهای فعال (سرمایش تبخیری، گرمایش و رطوبتزنی، سرمایش و رطوبتگیری) و روشهای غیرفعال (سایهاندازی پنجرهها، حرارت مستقیم غیرفعال خورشیدی) برای آسایش حرارتی نشان داد که برای چهار حالت (کلو زمستانی، تابستانی و میت) بهترین عملکرد در حالت (کلو زمستانی و تابستانی0/5 و میت برابر با 2)، برای اکثر اقلیمهای ایران تقریبا 15 تا 20 درصد اوقات سال شرایط آسایش با روشهای غیرفعال برقرار است. | ||
کلیدواژهها | ||
سرمایش غیرفعال؛ آسایش حرارتی؛ مدل پیاموی؛ اقلیم شناسی کوپن؛ تهویه مطبوع | ||
عنوان مقاله [English] | ||
Evaluating of the Impact of Environmental Indicators on Thermal Comfort for Different Climates in Iran Using the PMV Model | ||
نویسندگان [English] | ||
Vahid Rezaee؛ Abouzar Taghizadeh | ||
Department of Mechanical Engineering and Electrical Engineering, National University of Skills (NUS), Tehran, Iran | ||
چکیده [English] | ||
In this study, environmental indicators for ensuring thermal comfort conditions for the design of residential buildings in various climatic conditions of Iran have been investigated and evaluated. This study proposes the impact of climatic indicators on building design using coding and the ASHRAE 55 standard thermal comfort model in the Climate Consultant software. Iranian cities are divided into 9 climates using the Köppen climatology method. The environmental indicator parameters in these 9 climates include temperature ranging from 18 to 38 degrees Celsius, air velocity between 0.1 to 0.5 meters per second, relative humidity between 40 to 80 percent, metabolic rate (met) between 0.7 to 2, and clothing insulation (clo) ranging from 0.5 to 1.5, which are generated randomly. The results of active methods (evaporative cooling, heating and humidification, cooling and dehumidification) and passive methods (window shading, direct passive solar heating) for thermal comfort showed that for the four scenarios (winter and summer clo, and met), the best performance was in the scenarios of (winter and summer clo at 0.5 and met at 2). For most climates in Iran, comfortable conditions are achieved with passive methods for approximately 15 to 20 percent of the year. | ||
کلیدواژهها [English] | ||
Passive Cooling, Thermal Comfort, PMV Model, Koppen Climatology, Air Conditioning | ||
مراجع | ||
[1] Place of Ceiling Fans on Thermal Comfort and Reducing Energy in Office Buildings, Amirkabir Journal of Mechanical Engineering, 50(2) (2018) 309-326. (in Persian) [2] S. Schiavon, T. Hoyt, A. Piccioli, Web application for thermal comfort visualization and calculation according to ASHRAE Standard 55, in: Building Simulation, Springer, 2014, pp. 321-334. [3] M. Hamze Nejad, F. Fadaee, P. Ildarabadi, Evaluation of comfort and thermal comfort (PMV and PPD) according to daylight and home orientation in Yazd traditional houses (Case study: Malekzade home in Yazd city), Journal of Architecture in Hot and Dry Climate, 8(11) (2020) 151-182. (in Persian) [4] S. Wei, M. Li, W. Lin, Y. Sun, Parametric studies and evaluations of indoor thermal environment in wet season using a field survey and PMV–PPD method, Energy and Buildings, 42(6) (2010) 799-806. [5] N.M. MONJEZI, A. ESLAMIMOGHADAM, Investigation of PMV index in thermal comfort of urban open spaces in summer Case study: River sidewalk near Khorramabad, Lorestan, Urban Design Discourse-a Review of Contemporary Litreatures and Theories, 2(3) (2022) 19-41. (in Persian) [6] C.B. Ze Ze, L. Nneme Nneme, L. Monkam, PMVd/PPDd model for predicting thermal comfort in air-conditioned buildings in hot and humid regions of Sub-Saharan Africa, International Journal of Air-Conditioning and Refrigeration, 32(1) (2024) 19. [7] M. Amini, A. Minaei, N. Moallemi Khiavi, Numerical evaluation of thermal comfort and indoor air quality in an office space equipped with a radiant ceiling cooling system and hybrid radiative-convective cooling system, Journal of Modeling in Engineering, 22(77) (2024) 37-56. (in Persian) [8] B. Mohammadi, P. Mohammadkhani, M.H. Gholizadeh, Preparing Iran’s bioclimatic map by using the predicted mean vote index, Geographical Research, 32(2) (2017) 21-39. (in Persian) [9] M. Taheri, H. Dehghan, B. Mahaki, N. Khoshzat, Assessment of thermal comfort Alzahra hospital staffs and comparison with the ASHRAE Standard 55-2010, Journal of Health System Research, 9(12) (2014) 1283-1292. (in Persian) [10] A. Khoorani, A. Moradi, A. Moradi, Projecting changes in the thermal comfort of coastal tourists in Hormozgan province, Physical Geography Research, 55(2) (2023) 71-87. (in Persian) [11] M.L. Ruz, J. Garrido, F. Vázquez, Educational tool for the learning of thermal comfort control based on PMV‐PPD indices, Computer Applications in Engineering Education, 26(4) (2018) 906-917. [12] A.O. Kouassi, C. Honoré, K. Clé, Determination of Comfort Conditions Using the PMV, Set and PDD Thermal Comfort Indexes in Ivory Coast, Journal of Geoscience and Environment Protection, 12(10) (2024) 277-286. [13] L. Wang, J. Kim, J. Xiong, H. Yin, Optimal clothing insulation in naturally ventilated buildings, Building and Environment, 154 (2019) 200-210. [14] H. Mortazavi Alavi, S. Heidari, N. Nikghadam, An Evaluation of The Thermal Comfort of Users in Hot and Humid Climates (Case study: Indigenous housing in Kish Island), Housing and Rural Environment, 40(174) (2021) 29-44. (in Persian) [15] A.A.M. Damanhuri, N.N.M. Ishak, T.B. Tuan, M.S.S. Mustafa, A.M.H.S. Lubis, C.C. Khean, Evaluation Thermal Comfort based on PMV and PPD using CBE Tool for Three Non-Air-Conditioned Pre School: A Case Study in Melaka Tengah, Malaysia District Area, Journal of Design and Built Environment, (2025) 126-135. [16] A. Carneiro, P. Gonçalves, R. Saraiva, D. Oliveira, L. Martins, J.C. Teixeira, N. Rodrigues, A.C. Ferreira, S. Teixeira, Assessment of the Thermal Comfort of a Masonry Building—Numerical Study, in: Occupational and Environmental Safety and Health VI: Volume 1: Occupational Risk Assessment, Management and Case Studies, Springer, 2025, pp. 217-227. [17] T. Raziei, Koppen-Geiger climate classification of Iran and investigation of its changes during 20th century, (2017). (in Persian) [18] J. Sajedifar, R. Mirzaei, G.H. Teimori, A. Mehri, F. Azadbakht, A. Choupani, M.R. Taheri, Evaluation of thermal comfort in an Iranian educational hospital using PMV-PPD model, Biotech Health Science, 2017 (2017). [19] I. ISO, 7730: Ergonomics of the thermal environment Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, Management, 3(605) (2005) e615. [20] L. Yang, F. Wang, S. Zhao, S. Gao, H. Yan, Z. Sun, Z. Lian, L. Duanmu, Y. Zhang, X. Zhou, Comparative analysis of indoor thermal environment characteristics and occupants’ adaptability: Insights from ASHRAE RP-884 and the Chinese thermal comfort database, Energy and Buildings, 309 (2024) 114033. [21] E.E. Broday, C.R. Ruivo, M.G. da Silva, The use of Monte Carlo method to assess the uncertainty of thermal comfort indices PMV and PPD: Benefits of using a measuring set with an operative temperature probe, Journal of Building Engineering, 35 (2021) 101961. [22] J. Shaeri, M. Mahdavinejad, Prediction indoor thermal comfort in traditional houses of Shiraz with PMV/PPD model, International Journal of Ambient Energy, 43(1) (2022) 8316-8334. [23] W. Huo, Y. Cheng, Y. Jia, C. Guo, Research on the thermal comfort of passenger compartment based on the PMV/PPD, International Journal of Thermal Sciences, 184 (2023) 107876. [24] H. Rezaei Rad, Z. Khodaee, M.M. Ghiai, J. Tabe Arjmand, M. El Haj Assad, The quantitative assessment of the effects of the morphology of urban complexes on the thermal comfort using the PMV/PPD model (a case study of Gheytariyeh neighborhood in Tehran), International Journal of Low-Carbon Technologies, 16(2) (2021) 672-682. [25] M. Charai, A. Mezrhab, L. Moga, A structural wall incorporating biosourced earth for summer thermal comfort improvement: Hygrothermal characterization and building simulation using calibrated PMV-PPD model, Building and Environment, 212 (2022) 108842. [26] V. Rezaee, M. Masoumnezhad, A. Tahvili, Feasibility of natural ventilation potential of residential buildings for different climates of Iran, Science and Technology in Mechanical Engineering, (2024). (in Persian) | ||
آمار تعداد مشاهده مقاله: 292 تعداد دریافت فایل اصل مقاله: 266 |