- H. Ang, G. Chong, Y. Li, PID control system analysis, design, and technology, IEEE Transactions on Control Systems Technology, 13(4) (2005) 559–576.
- Morari, J.H. Lee, Model predictive control: past, present and future, Computers & Chemical Engineering, 23(4–5) (1999) 667–682.
- Kuhnle, J.-P. Kaiser, F. Theiß, N. Stricker, G. Lanza, Designing an adaptive production control system using reinforcement learning, Journal of Intelligent Manufacturing, 32 (2021) 855–876.
- Lee, S. Koo, I. Jang, J. Kim, Comparison of deep reinforcement learning and PID controllers for automatic cold shutdown operation, Energies, 15(8) (2022) 2834.
- Wang, T. Hong, Reinforcement learning for building controls: The opportunities and challenges, Applied Energy, 269 (2020) 115036.
- Tao, D. Zhang, W. Ma, X. Liu, D. Xu, Automatic metallic surface defect detection and recognition with convolutional neural networks, Applied Sciences, 8(9) (2018) 1575.
- J. Antsaklis, A. Rahnama, Control and machine intelligence for system autonomy, Journal of Intelligent & Robotic Systems, 91 (2018) 23–34.
- F. Arinez, Q. Chang, R.X. Gao, C. Xu, J. Zhang, Artificial intelligence in advanced manufacturing: Current status and future outlook, Journal of Manufacturing Science and Engineering, 142(11) (2020) 110804.
- Spielberga, A. Tulsyana, N.P. Lawrenceb, P.D. Loewenb, R.B. Gopalunia, Deep reinforcement learning for process control: A primer for beginners, Journal, 65(10) (2019).
- -J. Park, S.-K.S. Fan, C.-Y. Hsu, A review on fault detection and process diagnostics in industrial processes, Processes, 8(9) (2020) 1123.
- -M. Luo, T. Xu, H. Lai, X.-H. Chen, W. Zhang, Y. Yu, A survey on model-based reinforcement learning, Science China Information Sciences, 67(2) (2024) 121101.
- S. Sutton, Integrated architectures for learning, planning, and reacting based on approximating dynamic programming, Machine Learning Proceedings 1990, Elsevier, 1990, pp. 216–224.
- S. Sutton, Dyna, an integrated architecture for learning, planning, and reacting, ACM Sigart Bulletin, 2(4) (1991) 160–163.
- Vitolo, A. San Miguel, J. Civera, C. Mahulea, Performance evaluation of the Dyna-Q algorithm for robot navigation, in: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), IEEE, 2018, pp. 322–327.
- P. Singh, Reinforcement learning with a hierarchy of abstract models, in: Proceedings of the National Conference on Artificial Intelligence, Citeseer, 1992, p. 202.
- Peng, X. Li, J. Gao, J. Liu, K.-F. Wong, Deep Dyna-Q: Integrating planning for task-completion dialogue policy learning, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2018, pp. 2182–2192.
- Z. Holland, The effect of planning shape on Dyna-style planning in high-dimensional state spaces, PhD diss., University of Alberta, 2018.
- Liu, Y. Yao, T. Li, M. Du, X. Wang, H. Li, M. Li, Dyna algorithm-based reinforcement learning energy management for fuel cell hybrid engineering vehicles, Journal of Energy Storage, 94 (2024) 112526.
- Budiyanto, K. Azetsu, K. Miyazaki, N. Matsunaga, On fast learning of cooperative transport by multi-robots using DeepDyna-Q, in: 2022 61st Annual Conference of the Society of Instrument and Control Engineers (SICE), IEEE, 2022, pp. 1058–1062.
- Kalweit, J. Boedecker, Uncertainty-driven imagination for continuous deep reinforcement learning, in: Conference on Robot Learning, PMLR, 2017, pp. 195–206.
- Kulhánek, E. Derner, T. de Bruin and R. Babuška, Vision-based navigation using deep reinforcement learning, in: 2019 European Conference on Mobile Robots (ECMR), Prague, Czech Republic, 2019, pp. 1–8.
- Hafner, J. Pasukonis, J. Ba, T. Lillicrap, Mastering diverse control tasks through world models, Nature, 640 (2025) 647–653.
- Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, J. Davidson, Learning latent dynamics for planning from pixels, in: International Conference on Machine Learning, PMLR, 2019, pp. 2555–2565.
- Janner, J. Fu, M. Zhang, S. Levine, When to trust your model: Model-based policy optimization, In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019, pp. 12519–12530.
- Fujimoto, H. Hoof, D. Meger, Addressing function approximation error in actor-critic methods, in: International Conference on Machine Learning, PMLR, 2018, pp. 1587–1596.
- Palanisamy, Hands-on intelligent agents with OpenAI Gym, Packt Publishing Ltd., Birmingham, UK, 2018.
- S. Sutton, A.G. Barto, Reinforcement learning: An introduction, MIT Press, Cambridge, MA, 2018.
- Szepesvari, Algorithms for reinforcement learning, Morgan & Claypool Publishers, Switzerland, 2010.
- -t. Liu, J.-m. Yang, L. Chen, T. Guo, Y. Jiang, Overview of reinforcement learning based on value and policy, in: 2020 Chinese Control and Decision Conference (CCDC), IEEE, 2020, pp. 598–603.
- J. Watkins, P. Dayan, Q-learning, Machine Learning, 8 (1992) 279–292.
- S. Sutton, D. McAllester, S. Singh, Y. Mansour, Policy gradient methods for reinforcement learning with function approximately, Advances in Neural Information Processing Systems, 12 (2000) 1057–1063.
- Bennett, Y. Niv, A.J. Langdon, Value-free reinforcement learning: Policy optimization as a minimal model of operant behavior, Current Opinion in Behavioral Sciences, 41 (2021) 114–121.
- Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control through deep reinforcement learning, Nature, 518(7540) (2015) 529–533.
- Gobinathan, R. Ponnusamy, Deep-Q-based reinforcement learning method to predict accuracy of Atari gaming set classification, in: 2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI), Chennai, India, 2023, pp. 1–4.
- Bellman, Dynamic Programming, 1st Ed., Princeton University Press, Princeton, NJ, USA, 1957.
- Tan, Reinforcement learning with deep deterministic policy gradient, in: 2021 International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA), Xi'an, China, 2021, pp. 82–85.
- Y. Choi, A.S. Coyner, J. Kalpathy-Cramer, M.F. Chiang, J.P. Campbell, Introduction to machine learning, neural networks, and deep learning, Translational Vision Science & Technology, 9(2) (2020) 14.
- Terven, D.-M. Cordova-Esparza, J.-A. Romero-González, A. Ramírez-Pedraza, E.A. Chávez-Urbiola, A comprehensive survey of loss functions and metrics in deep learning, Artificial Intelligence Review, 58(7) (2025) 195.
|